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Abstract This paper presents two optimization methods

for solving the passenger train timetabling problem to

minimize the total delay time in the single track railway

networks. The goal of the train timetable problem is to

determine departure and arrival times to or from each

station in order to prevent collisions between trains and

effective utilization of resources. The two proposed

methods are based on integration of a simulation and an

optimization method to simulate train traffic flow and

generate near optimal train timetable under realistic con-

straints including stops for track maintenance and praying.

The first proposed method integrates a cellular automata

(CA) simulation model with genetic algorithm optimiza-

tion method. In the second proposed approach, a CA

simulation model combines with dynamically dimensioned

search optimization method. The proposed models are

applied to hypothetical case study to demonstrate the merit

of them. The Islamic Republic of Iran Railways (IRIR)

data and regulations have been used to optimize train

timetable. The results show the first method is more effi-

cient than the second method to obtain near optimal train

timetabling.

Keywords Train timetabling problem (TTP) � Cellular
automata (CA) � Genetic algorithm (GA) � Dynamically

dimensioned search (DDS) algorithm � Station � Track
maintenance � Praying

1 Introduction

The train timetabling is one of the most challenging and

difficult problems in railway transportation planning. The

train timetable qualification greatly impacts the service

quality and operating cost. The goal of train timetabling

models is to determine train arrival and departure times to

and from each station with the minimum total delay time

while satisfying a set of operational constraints.

Preliminary review on analytical railway optimization

models was undertaken by Assad [1]. Similarly, Caprara et al.

[2] reported an excellent state-of-the-art review of railway

optimization problems. Finding the optimum train timetable

while satisfying all constraints increases the complexity of this

problem. Therefore, train timetabling problem belongs to the

class of computationally difficult NP-hard problems. This

implies that it is not expected to find exact algorithm for solving

any instance to optimality in polynomial time [3, 4].Therefore,

meta-heuristic algorithms have been used to determine opti-

mum solution. Optimization of train timetabling problem has

been investigated in different studies [5–8].

Several attempts have been made to use complex search

procedures including look-ahead search [9], backtracking

search and meta-heuristics algorithms [10, 11], mixed-in-

teger linear programming, branch and bound, tabu search

(TS) [12], an enhanced local search heuristic (LSH), GA,

TS, and two hybrid algorithms [13] and GA[14–17].

However, these studies have not optimized train traffic flow

considering stops for track maintenance and praying.
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A number of studies have examined CA methodology to

simulate train traffic flow [18–31]. However, these studies

have not considered stops for track maintenance and

praying. Also they have only focused on simulation and not

dealt with optimization of train traffic flow.

To the best our knowledge, Ref. [32] is the only ref-

ereed publication dealing with train timetabling problem

with considering train stops for praying using an inte-

grated simulation model and evolutionary algorithm.

However, the authors applied enterprise dynamics simu-

lation with evolutionary path re-linking algorithm to solve

the train scheduling problem and only focused on stops

for praying and did not consider other operational con-

straints. The authors suggested further investigations

using different simulation models and optimizations

algorithms.

In summary, the research to date did not provide ade-

quate scientific evidence to optimize train timetabling

problem considering realistic constraints including stops

for track maintenance and praying. In the absence of such

evidence, current practice has been guided to optimize

passenger train timetabling problem on a single-line rail-

way using GA and DDS and evaluate the fitness of each

chromosome using CA model under operational

constraints.

The remainder of the paper was as follows. In Sects. 2

and 3, the proposed methods and the optimization results

are presented and compared. Finally, Sect. 4 states the

conclusion and the future works.

2 Proposed methodology

The proposed methods integrate a CA simulation and

optimization algorithm to generate near optimal train

timetable. The GA and DSS methods have been used to

optimize the train timetable problem. The fitness (i.e., total

delay of the trains) of each solution has been evaluated by a

simulation of train traffic flow known to be CA method.

Figure 1 shows the architecture of the proposed methods.

This paper integrates a CA simulation and optimization

algorithm to generate near optimal train timetable. The

assumptions underlying this study included the following

statements. (1) The trains move on single line track. (2)

Similar train typemoves onwith the same speed limits. (3) A

train service begins from the first station and ends at the last

station. (4) The minimum instantaneous distance between

two successive trains is constant. (5) The train speed limit at

stations is constant. (6) The distance that a train can move

after decelerating at a station is constant. (7) The time and

position of blocked segments due to maintenance are fixed.

(8) The praying times at each station have been given.

The route characteristics (e.g., track and structure),

rolling stock attributes (e.g., train), maintenance/inspection

schedule, and praying time windows are given as follows:

• The infrastructure characteristics:

The position of stations

The minimum stop time at stations

The maximum train speed at stations

Inputs 

Trains data 

Infrastructure 
data 

Maintenance 
schedule 

Praying time of 
each station 

Output of first 
proposed method

Optimum train 
timetable

Simulation of total delay time 
for train timetable using CA 

Optimization of train 
timetabling using GA 

First proposed method

Simulation of total delay time 
for train timetable using CA 

Optimization of train 
timetabling using DDS 

Second proposed method

Output of second 
proposed method 

Optimum train 
timetable

Fig. 1 The architecture of the proposed method
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• The train characteristics:

The initial departure interval with tolerance

Safety rules

The maximum speed limitation

The minimum instantaneous distance between two

successive trains

The distance that a train can move after decelerating

at a station

• The maintenance schedule characteristics:

Track maintenance periods (section unavailability

times)

The sections/segments that were blocked due main-

tenance operations

• The praying time characteristics:

The praying times of each station

The required time for praying at each station

2.1 Optimization model

In the train timetabling problem, the optimization objective

is minimization of total delay time which includes the

predefined time the train must stop in the stations, the time

to stop the trains due to maintenance operations, and the

time to stop the trains due to pray (Eqs. 1–7).

Minimize DelayTime

¼
Xntrain

i¼1

DelayTimeiPredefinedDwellTime

�

þDelayTimeiMaintenance þ DelayTimeiPraying

�
;

ð1Þ

DelayTimeiPredefinedDwellTime

¼
Xnstation

j¼1

ðXij
PredefinedDwellTime � 2minÞ; ð2Þ

X
ij
PredefinedDwellTime ¼

1; if ith train travels on jth station

0; otherwise

�
;

ð3Þ

DelayTimeiMaintenance

¼
XnMaintenance

k¼1
ðYik

Maintenance � tikMaintenanceÞ;
ð4Þ

Yik
Maintenance ¼

1; if ith train stops for kth maintainance

0; otherwise
;

�

ð5Þ

DelayTimeiPraying ¼
X3

l¼1

Zil
Praying � 20min

� �
; ð6Þ

Zik
Praying ¼

1; if ith train stops for lth maintainance

0; otherwise

�
;

ð7Þ

where DelayTime is the total delay time,

DelayTimeiPredefinedDwellTime is the predefined time the ith

train must stop in the stations, DelayTimeiMaintenance is the

time the ith train stop due to maintenance operations, and

DelayTimeiPraying is the time the ith train stop due to pray.

X
ij
PredefinedDwellTime, Y

ik
Maintenance, and Zil

Praying are binary indi-

cator variables. tikMaintenance is the required time that ith train

stops to carry out the kth maintenance operation. This

paper has used GA and DSS to optimize the train timetable

problem.

2.1.1 Genetic algorithm

As train timetabling problem is known to be NP-hard [5, 7,

15, 33], a meta-heuristic algorithms have been applied to

solve it. It has been shown that GA has high potential in

finding the global optimum in a large, poorly defined

search space even in the presence of difficulties such as

high dimensionality, multi-modality, discontinuity, and

noise [15]. GA has been successfully applied to combina-

torial problems and is able to handle huge search spaces as

those arising in scheduling problems [33]. Therefore, in

this paper, GA has been used to optimize train timetable.

GA implemented optimization strategies based on sim-

ulation of the natural evolution of a species. Through

repetitive application of selection, crossover, and mutation,

a population of candidate solutions is evolved to generate

better solution. More details on the GA process can be

found in [34]. In this paper, the genetic parameters are

listed in Table 1.

In this paper, the population size is 20. Each chromo-

some included 18 genes, which equals to the total number

of trains. It consists of train departure times from origin

station, during a 24 h period. Each train has a departure

time interval which could be set by user. The default length

of initial interval time is 2 h. It means that if the user set

the assumed time of departure to 7, system can select any

time between 5 and 9 for departure.

The first population was created randomly within max-

imum half an hour difference from the predefined timetable

for each train. After generating the first population, eval-

uation of each chromosome was carried out using simula-

tion. For calculating the fitness of each chromosome, a

simulation model was used, and total delay of the trains

was recorded as the value of fitness. Following the evalu-

ation, the process of creating new generation is started.

150 Z. Bahramian, M. Bagheri

123 J. Mod. Transport. (2015) 23(2):148–157



In this paper, after calculating fitness of all chromosomes

(i.e., total delay time), the first and second best timetables

(elites) are copied over to the next GA generation. GA func-

tions are designed on the basis of the rank selection method.

GA sorts the chromosomes in ascending order (better chro-

mosome placed first). Selection opportunity of each chro-

mosome is increased by its rank through GA operations.

In each generation, with a probability of 0.9 (crossover

rate = 0.9), a pair of parent chromosome was selected for

breeding and two children chromosomes were produced

using one-point crossover operator. This meant that a sin-

gle crossover point on both parents’ chromosome was

selected and all train departure time beyond that point in

either parent was swapped between the two parents. Then,

there were some chromosomes with some of their genes

changed within maximum 1-h period by mutation. The

mutation rate is set to 0.05. This process has been repeated

until reaching a termination condition (predefined number

of iteration). Experiments showed that around 400 gener-

ations had to be passed to achieve the result.

2.1.2 Dynamically dimensioned search algorithm

The train timetabling problem is an optimization problem.

It has been shown that DSS has high potential in finding the

global optimum without any algorithm parameter tuning in

less iteration. DSS has been successfully applied to auto-

matic calibration of watershed simulation models [35–38].

Therefore, in this paper, DSS has been used to optimize

train timetable.

The DDS algorithm is a simple, stochastic, single-so-

lution-based, heuristic, global search algorithm that was

developed for the purpose of finding a good globally

optimal solution within a specified maximum number of

function evaluation limit [35–38]. The algorithm initially

searches globally and becomes increasingly local when the

number of iterations approaches the maximum number of

iterations. The transition from global to local search

involves dynamically and probabilistically reducing the

number of dimensions in the neighborhood. Candidate

solutions are created by perturbing the current solution

values in the randomly selected dimensions only. The DDS

algorithm pseudo code for minimization is as follows

(Eqs. 8–17).

• Step 1. Define DDS inputs:

Neighborhood perturbation size parameter, r (0.2 is

default)

Maximum number of iterations, m

Vector of lower, xmin, and upper, xmax, bounds for all

decision variables (departure time of each train)

Initial solution (predefined train timetable),

x1 = [x1,…,xD]

• Step 2. Set initial solution as the best solution and

initialize i with 1:

Fbest ¼ F xi
� �

; and xbest ¼ xi: ð8Þ

• Step 3. Select a subset of decision variables for

perturbation:

Initialize delta=Ø (9)

(10)

(11)

(12)

for ith iteration

P(i)=1-ln(i)/ln(m)

end

for each decision variable d

Get a uniform random number, rand

if rand<P(i)

delta(d)=1

end

end

if delta= Ø

rand’=ceiling(rand.D)

delta(rand’)=1

end

• Step 4. Generate a candidate solution:

Get  a standard normal random number, randn

for each decision variable d

xd
new= xd

best+( xd
max - xd

min)*delta(d (13)

(14)

(15)

)*r

end

if xd
new < xd

min

xd
new = xd

min +( xd
min - xd

new)

if xd
new > xd

max

xd
new = xd

min

end

end

if xd
new > xd

max

xd
new = xd

max-( xd
new - xd

max)

if xd
new < xd

min,

xd
new = xd

max

end

end

Table 1 GA parameters

Metaphor Optimization Railway model

Evolution Problem solving Finding the optimum

timetable

Individual Solution Train timetable

Fitness Objective function Total delay time

Environment Optimization problem Train timetabling problem

Locus Elements of the

solution

Each train departure time

Allele Value of the element

(locus)

Value of each train

departure time
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• Step 5. Evaluate the candidate solution xnew, and update

current best solution if necessary:

if F(xnew)≥Fbest

Fbest=F(xnew)

xbest=xnew

end

16

• Step 6. Check stopping criterion:

if i<m

Go to Step 3

i=i+1 (17)

else

Stop

end

The only algorithm parameter to set in the DDS algo-

rithm is the scalar neighborhood size perturbation param-

eter (r) that defines the random perturbation size standard

deviation as a fraction of the decision variable range. In

this paper, the value of the r parameter is set to 0.2.

2.2 Simulation model

In this paper, the fitness (total delay of the trains) evalua-

tion of each chromosome is carried out using a simulation

method. The simulation methods can be categorized as

synchronous simulation and asynchronous simulation [15].

Synchronous simulation models processed the movements

of all trains at the same time, but asynchronous modeled

rank trains according to their priorities and inserted trains

into simulation procedure sequentially based on the ranks.

In this paper, the synchronous simulation approach was

applied for the scheduling trains.

Train traffic flow models can be divided into two major

categories: macroscopic and microscopic [39]. In macro-

scopic models, the aggregate behavior of traffic was

described and the characteristics of traffic flow like average

velocity, density, flow, and mean speed of a traffic stream

were studied. A main limitation of macroscopic models

was their aggregate nature [39]. A primary advantage of

microscopic models was the ability to study individual

train motion position and velocity of the trains.

The CA model is one of the most popular microscopic

modeling approaches. CA has been used to study compli-

cated non-linear systems such as train traffic flow. The CA

method proposed by Cremer and Ludwing [40] can be used

to study complicated non-linear systems such as traffic flow

simulation in railway transportation. Preliminary work on

CA application in transportation traffic flow was under-

taken in Ref. [41]. NaSch model is a one-dimensional

probabilistic cellular automata model which models traffic

flow on a single-lane. Space, time, and the state of NaSch

model are discrete. It is a minimal model that reproduces

the basic features of real traffic. In comparison with other

continuous models, it has very fast calculations. In NaSch

model, the railway is divided into L cells (i = 1, 2,…,L),

and the time is discrete. Each site can be either empty or

occupied by a train with an integer speed vi = 0, 1,…,vmax,

where vmax is the maximum speed. According to four

successive steps, all sites are simultaneously updated

(Eqs. 18–22):

• Step 1. Acceleration

vi t þ 1ð Þ ¼ min vi tð Þ þ 1; vmaxð Þ: ð18Þ

• Step 2. Slowing down

vi t þ 1ð Þ ¼ min vi tð Þ; gapi tð Þð Þ: ð19Þ
gapi tð Þ ¼ xiþ1 tð Þ � xi tð Þ�1; ð20Þ

where gapi (t) expresses the gap between ith train and

(i ? 1)th train at time t and xi (t) is the position where

ith train is at time t.

• Step 3. Randomization

vi t þ 1ð Þ ¼ max vi tð Þ � 1; 0ð Þ: ð21Þ

In this step, vi (t) is decreased by 1 with randomization

probability q if vi (t)[ 0.

• Step 4. Movement

xi t þ 1ð Þ ¼ xi tð Þ þ vi t þ 1ð Þ: ð22Þ

CA has been used to study train traffic flow. In this

method, the dynamic system was divided to discrete cells

in space and time, each in one of a finite number of states

(empty or occupied by a train). For each cell, a set of rules

is defined as its neighborhood. In initial state, a state is

assigned to each cell. Using the current state of the cell, the

states of the cells in its neighborhood, and a transition rule,

the new state of each cell was determined. Using very

simple rules, this model can reproduce the basic

phenomena encountered in real traffic. By modification

of the simple rules, more complex situations (such as the

multi-lane traffic, bidirectional traffic, and the traffic with

different types of trains) can be described. In this paper, a

CA method has been used to simulate train traffic flow and

calculate the total delay time of a train timetable. In

addition, according to the IRIR needs, two constraints

(stops for track maintenance and praying) were considered.

The proposed model simulated the complex railway traffic

using some simple transition rules as follows:

2.2.1 Case 1

When the (n - 1)th train was in front of the nth train at the

tth time step, to avoid the collision between two successive

trains, the distance between these trains must be larger than

or equal to the minimum instantaneous distance. The

152 Z. Bahramian, M. Bagheri
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velocity of the nth train varied by comparing the headway

distance (Dxn) and the minimum instantaneous distance

(dn) to determine whether accelerating or decelerating

(Eqs. 23–24).

• Step 1: Acceleration

if Δxn> dn, vn = min(vn + a, vmax);

else if Δxn< dn, vn = max(vn − b, 0 (23));

else vn = vn

end.

• Step 2: Movement

xn ¼ xn þ vn: ð24Þ

2.2.2 Case 2

When the nth train was near the station:

• If the station has beenoccupiedby the train thatwas in front

of the nth train, the safety distance must be maintained

between the nth train and its leading train. The update rules

were as same as the update rules of the case 1.

• If the station was empty, the nth train was allowed to

travel into the station and stop at the station. Then it

needed to wait for a time, and then left the station

(Eqs. 25–30).

– Step 1: Acceleration

if dxn [ db; vn ¼ min vn þ a; vmaxð Þ
else if dxn\db; vn ¼ max vn � b; 0ð Þ
else vn ¼ vn

end

ð25Þ

where dxn is the distance from the nth train to the

station in front of the nth train, and db is the distance

that the trainn can arrive at the station by decelerating.

– Step 2: Slowing down

vn ¼ min vn; Dxnð Þ: ð26Þ

– Step 3: Movement

xn ¼ xn þ vn: ð27Þ

– Step 4: Acceleration

If the actual dwell time of the nth train (tdwell) was

more than the planned dwell time (Td)

vn ¼ min vn þ a; vmaxð Þ; tdwell ¼ 0: ð28Þ

If the actual dwell time of the nth train was less than

the planned dwell time

vn ¼ 0: ð29Þ

– Step 5: Movement

xn¼xnþvn: ð30Þ

2.2.3 Case 3

In order to improve the safety of the railway, inspection

and routine maintenance of track and structures are nec-

essary. Based on predefined schedules of maintenance

works, the (starting and ending) locations that carried out

the maintenance works, the starting maintenance time and

its duration (3 h) were determined. It is required to block

the line so the crew can get to the site.

2.2.4 Case 4

Based on religious obligations, during predefined time

periods (local praying time window), train must stop to

perform praying services. Therefore, after starting praying

time, each train stopped 20 min in the first next station in

praying time windows. Passengers got off the train and

prayed in the station mosque. It should be considered that

each station had a different local praying time windows

(starting and ending praying times).

In the proposed CA method, the parameters included the

minimum instantaneous distance (dn), the distance that the

train can arrive at the station by decelerating (db), the

planned dwell time (Td), and predefined schedules of

maintenance works. The IRIR data have been used to set

them. The results of the proposed CA method were ana-

lyzed and compare with other methods in [31].

3 Case study

In this section, the proposed methodology is applied to a

rail corridor that connects Tehran to Mashhad with 926 km

of track and 50 stations while nine of them (Tehran, Var-

amin, Garmsar, Semnan, Damghan, Shahrood, Neghab,

Neyshabur, and Mashhad) are considered as the main sta-

tions where train stops for getting on/off. The merits of a

new simulation-based optimization model lies in its ability

to achieve minimum total delay time with considering

stops for routine track maintenance and praying. In this

application, 10 trains traverse on a single-line rail corridor.

It is assumed that the trains should dispatch within 2 h

before or after their predetermined departure time.

According to the predefined schedules of maintenance

works, Garmsar–Semnan, Damghan–Shahrood, and Ney-

shabur–Mashhad section were blocked in 19–22, 13–16,

and 4–7, respectively.

In the first proposed approach, an integration of a CA

simulation and GA optimization algorithm was applied.
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The best objective value in different iterations for GA has

been achieved after convergence for solving the problem.

In this paper, four genetic algorithm parameters are

investigated, namely, population size, number of best

timetables that are copied over to the next generation,

crossover rate, and mutation rate with rang values shown in

Table 2. The range values of investigated genetic algo-

rithms parameters are examined, and the best value of each

parameter is determined based on their fitness values

(Table 2).

Using the best value of the parameters, the fitness at

each GA iteration is shown in Fig. 2. Considering depar-

ture time constraint, GA found best fitness value (447 min)

in the 241 iteration and stayed in this value up to the 400th

iteration, while the fitness value of the initial predefined

schedules of train was 496 min. Therefore, the result

revealed a potential for 9 % total delay time reduction over

the currently used timetable. If there was no departure time

constraint, the best fitness value is 383 min (in the 218

iteration) and total delay time reduced 23 % over the

currently used timetable.

In the second proposed approach, an integration of a CA

simulation and DSS optimization algorithm was applied.

The scalar neighborhood size perturbation parameter (r) is

set to 0.2. It considers departure time constraint. The total

delay time at each DDS iteration is shown in Fig. 2. The

DDS found best fitness value (456 min) in the 211 iteration

and stayed in this value up to the 400th iteration. Therefore,

the result revealed a potential for 8 % total delay time

reduction over the currently used timetable.

Table 3 shows the predefined train schedule, the result

of the GA optimization phase without or with departure

time constraint (the trains dispatch within 2 h before or

after their predetermined departure time) and the result of

the DDS optimization phase with departure time constraint.

Fig. 3 shows the trajectory of the trains in optimum train

schedule by the space–time diagram for the single-line

railway using GA without or with considering departure

Table 2 The range and the best value of investigated genetic algo-

rithm parameters

Parameter Range Best

value

Population size 5,10,15 10

Number of best timetables that are copied

over to the next generation

0.05,0.1,0.2 0.1

Crossover rate 0.9,0.65,0.4 0.9

Mutation rate 0.01,0.05,0.2 0.05

Fig. 2 The fitness of two proposed methods at each iteration

Table 3 The predefined and optimum train schedule (with or without departure time constraint)

Train number 1 2 3 4 5

Predefined departure time 7:20 7:40 9:35 10:25 11:30

Optimum departure time (GA without departure time constraint) 5:20 9:06 7:35 12:25 13:30

Optimum departure time (GA with departure time constraint) 6:57 7:12 8:49 10:36 11:54

Optimum departure time (DDS with departure time constraint) 6:15 7:19 9:40 10:31 11:28

Train number 6 7 8 9 10

Predefined departure time 14:10 14:35 16:35 17:00 17:25

Optimum departure time (GA without departure time constraint) 14:02 14:36 16:08 17:04 17:21

Optimum departure time (GA with departure time constraint) 14:13 14:38 16:22 16:54 17:34

Optimum departure time (DDS with departure time constraint) 13:04 14:58 16:10 16:45 15:25
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time constraint and DDS with considering departure time

constraint. As can be seen, the railway was blocked in the

time of track maintenance and each train stop at a station

three times a day for praying. The proposed method min-

imizes the total delay time due to predefined train stop in

the station, train stop due to maintenance operations and

praying. In this example, the GA tried to reduce total delay

time due to maintenance operations by having the trains

departed later or sooner from its origin. If there was no

constraint on departure time, the trains departed later or

sooner to have no delay time due to maintenance opera-

tions. If there was departure time constraint, the delay time

due to maintenance is as little as possible. Reducing travel

delay due maintenance operations led to reduce the travel

time and the need to stop for praying.

Train timetable deals with uncertainties and distur-

bances in their operations. Small-scale disturbances, often

caused by minor delays, do not require a significant change

of the schedules. Robust train timetable is necessary to

absorb the small-scale disturbances. In this paper, to

measure the resilience of a timetable to minor disruptions

in dwell time and evaluate the robustness of the proposed

approaches’ results, uncertainty in dwell time is consid-

ered. An 8 min disturbance in one station, dwell time is

simulated and its effect on the timetables of two constraint

methods (integration of CA and GA, and integration of CA

and DDS) are evaluated. The results show 0 and 9 extra

total delay time in their train timetables, respectively.

Therefore, integration of CA and GA is more robust rather

than integration of CA and DDS.

4 Conclusion and future works

This paper integrates simulation and optimization algo-

rithm to generate near optimal train timetable. The GA (in

the first proposed method) and DDS (in the second pro-

posed method) have been used to optimize train time-

tabling problem, while a CA simulation approach has been

used to model the train traffic flow and evaluate the fitness

of each solution (i.e., the total delay time generated during

the optimization). In the proposed update rules, four cases

were considered: a train was in front of another train, the

train was near the station, the railway was blocked for

maintenance, and the train must stop in a station three

times a day for praying. The results reveal GA is more

efficient than DDS.

Specific recommendations for future research directions

include developing the proposed method in more complex

situations such as the multi-lane and bidirectional railway

traffic, and considering different types of trains. The next

step in the process of train timetabling optimization is to

obtain a train timetable that minimizes the total delay time

and maximizes the capacity of rail network simultaneously.

Other meta-heuristic methods can be used to optimize train

timetable. Also, optimization of maximum speed, dwell

time, maintenance time, and rail station for praying can be

considered.
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