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Abstract A covering map formalism for studying the spectral curves associated with
finite gap Jacobi matrices is presented. We advocate a constructive function theoretic
framework based on use of the Schottky–Klein prime function. The single gap, or
genus-one, case is studied in explicit detail.
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1 Introduction

This paper is motivated by recent work of Christiansen et al. [9] who describe a
covering map formalism to define and study the isospectral torus associated with
finite gap Jacobi matrices. In turn, that paper drew on earlier work of Sodin and
Yuditskii [29] and Peherstorfer and Yuditskii [27] which concentrated on infinite gap
sets. The focus in the present paper is the finite gap situation, and our goals are limited
to offering a complementary perspective to the covering map formalism of prior work.
It is offered both for mathematical interest and because it is believed that the approach
here provides a framework for constructive computational methods.
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320 D. Crowdy

In another work, the author has been interested in physical science problems involv-
ing arbitrary multiply connected domains, that is, finitely connected planar domains
generally not possessing any geometrical symmetries. Themathematical approach has
been to develop a constructive framework based on the Schottky uniformization of
the so-called Schottky double—a compact Riemann surface naturally associated to
any given multiply connected planar domain—and to make use of the Schottky–Klein
prime function that lives on that surface as the basic functional building block for
more complicated functions (we adopt the designation “Schottky–Klein prime func-
tion” following Baker [3]; see also [7,8]). This idea has proven to be surprisingly
fruitful. A survey of many other results, including applications to potential theory, the
construction of multiply connected quadrature domains, the solution to a variety of
problems in fluid dynamics, and the derivation of a multiply connected extension of
the classical Schwarz–Christoffel conformal mapping formula, is given in the review
articles [10,11]. Most recently, a connection between a problem in the field of vortex
dynamics and the planar limit of random normal matrices has been pointed out [19];
both those application areas benefit from the function theoretic approach just outlined,
either for the description of vortex patches (“V-states”) or, in the random matrix case,
the limiting shapes of the multi-support eigenvalue sets.

The central point of contactwith finite gap Jacobimatrices is the observation that the
hyperelliptic curve associated with a given multi-support spectrum can be viewed as
the Schottky double of the multiply connected domain exterior to a finite set of bands
on the real axis. For general multiply connected domains, not necessarily enjoying
any reflectional symmetry about the real axis, the Schottky double is made up of
two “sides”, often referred to as a frontside and a backside, with an antiholomorphic
involution relating them [24]. With an additional reflectional symmetry about the real
axis, the natural holomorphic coordinate on the backside of the double becomes the
same as that on the frontside and the Schottky double is a two-sheeted hyperelliptic
Riemann surface which we call S following [9]. The two sheets of the surface will be
denoted by S+ (the “physical” sheet) and S−. Accordingly, the points at infinity on
the two sheets will be denoted by ∞+ and ∞−.

To fix ideas, a (one-sided) Jacobi matrix J as considered in [9] is one of the tridi-
agonal forms

J =

⎡
⎢⎢⎢⎢⎢⎣

b1 a1 0 0 0 · · ·
a1 b2 a2 0 0 · · ·
0 a2 b3 a3 0 · · ·
0 0 a3 b4 a4 · · ·
...

...
...

...
...

⎤
⎥⎥⎥⎥⎥⎦

. (1)

The key mathematical results of this paper can be summarized concisely as follows.
Let the essential spectrum of such a Jacobi matrix take the form

e = e0 ∪ e2 ∪ · · · ∪ el,

ej = [α j , β j ],
α0 < β0 < α1 < · · · < αl < βl

(2)
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Fig. 1 A typical finite gap
spectrum on the real axis with
l = 2

α0 β0 α1 β1 α2 β2

bands

gaps

which is a union of l +1 disjoint closed intervals, or bands, with l gaps. The case l = 2
is shown schematically in Fig. 1. It is known that the isospectral torus of a Jacobimatrix
having such a spectrum can be parametrized in terms of so-called minimal Herglotz
functions [9]; the isospectral torus essentially encodes the set of Jacobimatrices having
the same essential spectrum.We show here that a parametrization of a typical minimal
Herglotz function m(z) associated to such a finite gap set is furnished, in terms of a
parameter ζ , by the explicit formulas

z = f (ζ ) = A
ω(ζ, β)ω(ζ, 1/β)

ω(ζ, α)ω(ζ, 1/α)
,

m = M(ζ ) = D

[
ω(ζ, α)

ω(ζ, 1/α)

] l∏
j=1

[
ω(ζ, s j )

ω(ζ, r j )

]
e2π i

∑l
k=1 nkvk (ζ ), (3)

where ω(., .) is the Schottky–Klein prime function associated to a multiply connected
circular domain Dζ consisting of the unit ζ -disc with l smaller circular discs excised,
all with centres located on the real diameter (−1, 1). A and D are constants, the set
{r j | j = 1, . . . , l} gives the l poles of the minimal Herglotz function, while {s j | j =
1, . . . , l} is a set of its zeros. Another pole at the real point α corresponds to ∞+. The
exponential terms appearing in M(ζ ) will be explained later in the paper.

Based on these results, we find the following explicit expressions that assist in the
inverse problem of finding the Jacobi parameters associated to e, as explained later.
Namely

b1 = X∞
d

dζ
log N (ζ )

∣∣∣∣
ζ=α

,

a2
1 = Y∞b1 − b21

2
+ X2∞

2

d2

dζ 2 log N (ζ )

∣∣∣∣
ζ=α

, (4)

where

N (ζ ) ≡
[
ω(ζ, β)ω(ζ, 1/β)

ω(ζ, 1/α)2

] l∏
j=1

[
ω(ζ, s j )

ω(ζ, r j )

]
e2π i

∑l
k=1 nkvk (ζ ) (5)

is meromorphic on S (it is automorphic under a Schottky group action associated to
Dζ ). The set of zeros {s j | j = 1, ..., l} is given by the solution of a system of equations
written down in Sect. 6. The parameter X∞ is related to the logarithmic capacity of
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e while Y∞ is a geometrical parameter (explained later) associated with the spectral
bands. Formulas for both are also available in terms of the S–K prime function and a
related function ω̃(ζ, α) defined later in (28):

X∞ = A
ω(α, β)ω(α, 1/β)

ω̃(α, α)ω(α, 1/α)
Y∞ = A

{
d

dζ

[
ω(ζ, β)ω(ζ, 1/β)

ω̃(ζ, α)ω(ζ, 1/α)

]} ∣∣∣∣
ζ=α

. (6)

The Schottky double setting has been employed previously by Aptekarev [2] in
a study of orthogonal polynomials on a general set of contours, but he builds the
associated function theory based on a Riemann theta function formalism. Here, we
eschew the latter and use instead the Schottky–Klein prime function as the basic
building block in the belief that it is a natural way to build the requisite functions.
Lukashov and Peherstorfer [22] (see also [7,8]) have used a function theory similar
to ours in their studies of orthogonal polynomials (although they use the designation
Schottky–Burnside function to refer to what we call the Schottky–Klein prime func-
tion). Christiansen, Simon and Zinchenko [9] also avoid use of the Riemann theta
function and develop their own construction based on representations of the requisite
functions in terms of infinite Blaschke products. Additional discussion of the Schot-
tky model and its applications in approximation theory is given in the monograph by
Bogatyrëv [6].

It is worth clarifying how our approach differs from previous work since it allows
us to underline the reason for writing this article. Like [9], we adopt a covering map
formalism but our viewpoint differs in that it is the bands, not the gaps, that correspond
to Möbius-identified circles in our uniformization domain. But the most important
distinction is that, within this alternative model of the underlying curves, the function
theory we employ to solve the inverse problem is different to that used in previous
work: herewe use the Schottky–Klein prime functionwhich affordsmany constructive
advantages. This is because the efficient computation of S–K prime functions has been
a focus of much recent work by the author and co-workers who have prepared freely
downloadable software, on theMATLAB platform, for its fast and effective computation
[15,20]. Further discussion of this is given in Sect. 11.

2 The Schottky Double of a Domain

It is known, by a multiply connected extension of the Riemann mapping theorem [23],
that any (M + 1)-connected domain (for M ≥ 0) is conformally equivalent to the
unit ζ -disc with M smaller circular discs excised. Let such a domain be denoted Dζ .
To model the so-called Schottky double of Dζ one can reflect, in the unit circle, the
circular boundaries of the interior discs to produce M additional circles in |ζ | > 1.
By this same antiholomorphic reflection of points in Dζ , one produces a precise copy,
or “backside”, of the original multiply connected domain outside the unit ζ -disc. We
then identify each circle inside |ζ | < 1 with its reflection in |ζ | > 1 by means of
a holomorphic Möbius transformation. For an (M + 1)-connected domain there will
be M such Möbius transformations. The basic idea of this construction lies at the
heart of the Schottky model of algebraic curves and, by forming the union of Dζ
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with its backside (its reflection in the unit circle) and identifying the boundary circles
as just described, we produce a model of the Schottky double. Gustafsson [24] and
Varchenko and Etingof [30] have discussed the so-called Hele-Shaw free boundary
problem in a multiply connected domain by considering the Schottky double of the
domain. Aptekarev [2] used it in his study of orthogonal polynomials on a general set
of contours.

In more detail, suppose the M smaller circular discs inside |ζ | < 1 have centres
{δ j | j = 1, ..., M} and radii {q j | j = 1, ..., M}. The data {δ j , q j | j = 1, ..., M} will
be called the conformal moduli of Dζ and they can be uniquely associated to a given
set of spectral bands up to specification of an automorphism of the unit disc. Let the
unit circle be denoted C0 and let the M interior circular boundaries be denoted by
{Ck |k = 1, ..., M}. For k = 1, ..., M , let C ′

k denote the reflection of Ck in C0. Figure
2 shows a schematic in the quadruply connected case M = 3. For k = 0, 1, ..., M ,
introduce the Möbius transformation φk(ζ ) defined by

φk(ζ ) = δk + q2
k

ζ − δk
, k = 0, 1, ..., M. (7)

It is straightforward to check that for points on the circle Ck

φk(ζ ) = ζ . (8)

We define the reflection of a point ζ in the circle Ck by φk(ζ ). Then for k = 1, ..., M
introduce the Möbius transformation θk(ζ ) defined by

θk(ζ ) = φk(ζ
−1

), k = 1, ..., M. (9)

It follows from (9) and (7) that

θk(ζ ) = δk + q2
k ζ

1 − δkζ
, k = 1, ..., M. (10)

It is straightforward to show that θk(ζ )mapsC ′
k holomorphically ontoCk as illustrated

schematically in Fig. 2.
The set 
 consisting of all functional compositions of the maps {θk(ζ )|k =

1, ..., M} and their inverses, including the identity map, is an example of a classi-
cal Schottky group [3,4]. We refer to the maps {θk(ζ )|k = 1, ..., M} and their inverses
as the generators of the group 
. A fundamental region of 
 is a connected region
whose images under all maps in 
 tessellate the complement of the limit set of the
group. Let us define F as the region consisting of Dζ and its reflection in C0, i.e. the
2M-connected region bounded by {Ck, C ′

k |k = 1, ..., M}. Then F is a fundamental
region for the group 
.
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C0
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Fig. 2 Model of a general Schottky double with M = 3. The circles {C j , C ′
j | j = 1, ...., M} and the maps

{θ j (ζ )| j = 1, ...., M} identifying them. C0 is the unit circle that separates the two sides of the double. For
Jacobi matrices with a real spectrum all circles are centred on the real axis

3 The Schottky–Klein Prime Function

Associated with the Schottky double of the given domain Dζ are M integrals of the
first kind [3] which we denote {vk(ζ )|k = 1, ..., M}. These are analytic, but not single
valued, in F . Indeed, for j, k = 1, ..., M , we fix the normalization [3]

[vk(ζ )]C j = −[vk(ζ )]C ′
j
= δ jk, (11)

where [vk(ζ )]C j and [vk(ζ )]C ′
j
denote, respectively, the changes in vk(ζ ) on traversing

C j andC ′
j with the interior of F on the right. δ jk denotes the Kronecker delta function.

Then, for j, k = 1, ..., M and modulo the addition of integers dependent on the choice
of integration paths for {dvk |k = 1, ...M}, we have

vk(θ j (ζ )) − vk(ζ ) = τ jk (12)

for some {τ jk | j, k = 1, ..., M} which are constants (i.e. they are independent of ζ , but
they depend on the conformal moduli).

It is established in [25] that there exists a unique function X (ζ, α) defined by the
properties:

(i) X (ζ, α) is single valued and analytic in F (except possibly at infinity if this point
is contained in F).

(ii) X (ζ, α) has a second-order zero at each of the points θ(α), θ ∈ 
.
(iii) It is normalized such that

lim
ζ→α

X (ζ, α)

(ζ − α)2
= 1. (13)
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(iv) If θk(ζ ) (for k = 1, ..., M) is one of the generators of 
, then

X (θk(ζ ), α) = exp(−2π i(2vk(ζ ) − 2vk(α) + τkk))
dθk(ζ )

dζ
X (ζ, α). (14)

The Schottky–Klein prime function (henceforth, S–K prime function) is then defined
as the square root of X (ζ, α). There is a similar characterization for the prime function
itself subject only to an ambiguity in sign, a matter which has recently been discussed
by Bogatyrëv [5].

For the special class of Schottky groups considered here, it is also possible to
establish [14,31] that the corresponding S–Kprime function and its Schwarz conjugate
function satisfy the additional functional relation

ω(1/ζ, 1/α) = − 1

ζα
ω(ζ, α), (15)

where the Schwarz conjugate h(ζ ) of an analytic function h(ζ ) is defined by h(ζ ) ≡
h(ζ ).

A classical infinite product formula of the Schottky–Klein prime function is [3,13]

ω(ζ, α) = (ζ − α)
∏

θi ∈
′′

(θi (ζ ) − α)(θi (α) − ζ )

(θi (ζ ) − ζ )(θi (α) − α)
, (16)

where θi (ζ ) is taken to be all elements in the set, denoted by 
′′, comprising all
elements of the group 
 excluding the identity and all inverses. While this formula
has been used in applications [13,14] to compute the prime function it can be inefficient
to implement numerically especially as the connectivity of the domains grows. It is
for this reason that the author, with collaborators, has developed novel numerical
algorithms for the evaluation of the prime function that do not rely on this classical
infinite product formula [15,20]. Indeed an important fact, with both theoretical and
numerical implications (cf. Crowdy and Marshall [15]), is that all the symmetries
of Schottky doubles of planar domains imply that the relevant integrals of the first-
kind {vk(ζ )|k = 1, ..., M} are linear combinations of the analytic extensions of the
harmonic measures of the domain (defined below). Crowdy and Marshall [15] used
this fact to devise a novel and effective numerical algorithm to compute both the
{vk(ζ )|k = 1, ..., M}—and hence, in effect, the Abel map—as well as the S–K prime
function itself, and without recourse to the (often slowly convergent) infinite product
formula (16). The algorithms of [15] have now been improved even further [20].

In more detail, it is known [15] that Im[v j (ζ )] = 0 on |ζ | = 1 so that by analytic
continuation off this circle

v j (1/ζ ) = v j (ζ ). (17)

Now introduce the modified functions

ṽ j (ζ ) = Hj (ζ ) + i� j (ζ ), (18)
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where {� j | j = 1, ..., l} are what we refer to as the harmonic measures [15] of the
domain: for any j = 1, ..., M , the function � j is harmonic everywhere in the funda-
mental region and satisfies the boundary conditions

� j =
{
1, on C j ,

0, on Ck, k 	= j.
(19)

Hj (ζ ) is the harmonic conjugate of � j . It is demonstrated in [15] that we can write

v j (ζ ) =
∑

Q jk ṽk(ζ ) (20)

for some symmetric invertible matrix Q jk where, in fact [15],

Q jk = iτ jk

2
(21)

where τ jk appeared earlier in (12).

4 Potential Theory

In their development Christiansen, Simon and Zinchenko [9] make connections
between the inverse Jacobi problem and the potential theory associated with the spec-
tral bands. To make contact with those observations, we introduce a few additional
ideas (Fig. 3).

For an M-connected domain Dζ there are M + 1 so-called modified Green’s func-
tions {G j (ζ, α)| j = 0, 1, . . . M}. The function G j (ζ, α) has a logarithmic singularity
in Dζ at α, vanishes on boundary C j , and has a constant value on all other boundaries
of Dζ [28]; those constants are determined by the conditions that

∮
Ck

∂G j

∂n
ds = 0, k = 1, . . . , M, k 	= j, (22)

Fig. 3 Preimage circular
domain Dζ in the ζ plane: the
unit circle with two excised
circles with centres δ1 and δ2 on
the real axis. Their radii are q1
and q2. The real point α maps to
∞+; its reflection 1/α, which
sits outside the unit disc,
corresponds to ∞−

δ1δ2

q2 q1
α 1−1

C2
C1

C0
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where s denotes boundary arc length and ∂/∂n is the normal derivative. Thesemodified
Green’s functions are distinct from the usual potential theoretic first-type Green’s
function which has zero imaginary part on all boundaries (and does not, in general,
satisfy (22)).

Within our Schottky model of the hyperelliptic curve, the analytic extension
G̃0(ζ, α) of a modified Green’s function G0(ζ, α) for our domain has relevance to
the inverse Jacobi problem. It was demonstrated in [14,18] that the analytic extension
G̃0(ζ, α) of amultiply connected domain Dζ has, in terms of the associated S–K prime
function, the concise representation

G̃0(ζ, α) = 1

2π i
log

[
ω(ζ, α)

|α|ω(ζ, 1/α)

]
. (23)

It follows from (23) that
ω(ζ, α)

|α|ω(ζ, 1/α)
= e2π iG̃0(ζ,α) (24)

and it is this fact that will be useful later.

5 Conformal Mapping to l + 1 Real Slits

All of the mathematical technologies we have introduced so far pertain to anymultiply
connected domain of connectivity M + 1. Henceforth, we set M = l, in accord with
the notation of [9] where the spectrum of a Jacobi matrix is taken to comprise l + 1
bands on the real axis with l finite gaps. Only now do we restrict to the special class of
domains Dζ for which all the circles {C j | j = 1, . . . , l} are centred on the real interval
(−1, 1).

We wish to construct a conformal map from Dζ to the unbounded region exterior
to the l + 1 bands e and where the circular boundary C j is transplanted to the band
[α j , β j ] for j = 0, 1, . . . , l. Portions of the real ζ -axis inside the unit disc will be
transplanted to the gaps with some point α chosen to map to z = ∞. By the freedoms
of the Riemann mapping theorem, the point α can be chosen as we like provided it
lies on the real ζ -axis outside the circles {Ck |k = 1, ..., l} and inside C0.

The required conformal mapping is provided by an instance of the so-called “radial
slit mapping” formula

z = f (ζ ) = A
ω(ζ, β)ω(ζ, 1/β)

ω(ζ, α)ω(ζ, 1/α)
(25)

written down in terms of the S–K prime function by Crowdy and Marshall [12]; see
also [22] where a similar result is recorded in a different context. For the present
application, we require α, β ∈ R. It is easy to show from the symmetry property (15)
of the S–K prime function that (25) in fact maps the other half of F (i.e. the reflection
of Dζ in the unit circle) onto another copy of the plane exterior to the slits.

The explicit form (25) means that once a domain Dζ is fixed, so that the conformal
modulus set {q j , δ j | j = 1, ..., l} and the parameters A, α and β are known, formulas
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328 D. Crowdy

for the finite gap set e follow directly from the formulas

α j = f (δ j + q j ), β j = f (δ j − q j ), j = 0, 1, . . . , l. (26)

Conversely, if the finite gap set e is given then it is a simple numerical matter to inverse
the explicit non-linear relations (26) to find the relevant conformal moduli.

Furthermore, from a Laurent expansion of (25) near ζ = α we have that, locally,

z ∼ X∞
(ζ − α)

+ Y∞ + · · · (27)

for some constants X∞ and Y∞. Indeed, if we define the function ω̃(ζ, α) via

ω(ζ, α) = (ζ − α)ω̃(ζ, α) (28)

then we find the formulas (6). The parameter X∞ is related to the conformal radius
or logarithmic capacity of the domain. Immediately we observe that, near z = ∞ or
ζ = α,

(ζ − α) = X∞
z

+ X∞Y∞
z2

+ · · · , (ζ − α)2 = X2∞
z2

+ · · · (29)

The function (25) is invariant under the action of the Schottky group 
, i.e. it is
automorphic with respect to this group action. This can be argued directly from its
required properties as the relevant conformal mapping function where the image of
each circle Ck (for k = 0, 1, ..., l) is required to lie on the real z-axis. Alternatively,
given the explicit form (25), it can also be verified directly on use of the properties
(14) of the S–K prime function.

Although we do not make use of them here, we record that there are at least two
alternative ways to write the conformal map taking Dζ to S+ in terms of the associated
S–K prime function. We could also write it as the “parallel slit map” [12]

z = f1(ζ ) = iB

[
∂

∂α
− ∂

∂α

]
G̃0(ζ ;α) + C, (30)

where G̃0(ζ ;α) is the analytic extension of the modified Green’s function given in
(23) and B and C are real constants. (This provides an interesting link between the
covering map and the potential theory associated with the spectrum.) This alternative
form is also discussed in [12]. The representation

z(ζ ) = f2(ζ ) = E

[
ω2(ζ, 1) − ω2(ζ,−1)

ω2(ζ, 1) + ω2(ζ,−1)

]
+ F, (31)

where E and F are real constants, is also viable. Formula (31) has been used in an
application studying fluid motion through gaps in walls [16].
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6 Minimal Herglotz Functions

From its characterization given in [9, Thm. 6.1], we know that a minimal Herglotz
function m(z)

(a) is a rational function on the hyperelliptic curve S;
(b) it has a simple pole at ∞− and one more in each of the l gaps;
(c) it also has a simple zero at ∞+ with asymptotic behaviour

m(z) = −1

z
− b1

z2
− a2

1 + b21
z3

+ O(1/z4), (32)

where a1 and b1 are Jacobi parameters. It also has one more zero in each of the
l gaps.

The procedure of “coefficient stripping” [9] corresponds to the following: with the
function m1(z), say, yielding parameters a1 and b1 successfully found, the parameters
a2 and b2 can be determined by constructing anotherminimalHerglotz functionm2(z),
say, with all the same properties of m1(z) but where the simple zeros of m1(z) in the
gaps become the simple poles of next-generationHerglotz functionm2(z). By iterating
this construction, the full set of Jacobi parameters can be generated.

To effect this construction within our model, we introduce

M(ζ ) ≡ m(z(ζ )). (33)

If m(z) is rational on S then the function M(ζ ) must be automorphic with respect to
the Schottky group 
. It follows from the general theory for automorphic functions
of this kind [3,13] that we can write

M(ζ ) = D

[
ω(ζ, α)

ω(ζ, 1/α)

] l∏
k=1

[
ω(ζ, sk)

ω(ζ, rk)

]
e2π i

∑l
k=1 nkvk (ζ ) (34)

for some set of integers {nk |k = 1, ..., l} and some constant D where ω(., .) is the
relevant Schottky–Klein prime function with the poles {1/α, r j | j = 1, ..., l} and zeros
{α, s j | j = 1, ..., l} chosen to satisfy a set of automorphicity conditions [13]—these
are just the conditions of Abel’s theorem [3]. It is clear from (34) that M(ζ ) has the
required simple pole at ζ = 1/α, corresponding to z = ∞−, and that it vanishes
at ζ = α, i.e. at z = ∞+. Each point ζ = r j is on the real axis in F and projects
down to the gap [β j−1, α j ] for j = 1, . . . , l. On use of (14), these l conditions can be
expressed as

v j (α) − v j (1/α) +
l∑

k=1

(v j (sk) − v j (rk)) = −
l∑

k=1

nkτk j , j = 1, ..., l. (35)
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Observe that the first factor in the representation (34) for theminimalHerglotz function
can be written, on use of (24), in the form

M(ζ ) = D̃e2π iG̃0(ζ,α)
l∏

j=1

[
ω(ζ, s j )

ω(ζ, r j )

]
e2π i

∑l
k=1 nkvk (ζ ), (36)

where D̃ is some constant and G̃0(ζ, α) is the modified Green’s function of (23). A
similar expression involving the potential theoretic Green’s function is found using
the alternative approach of [9]. Note that finding the zero set {s j } for a given set of
poles from the expressions in (35) is an example of a Jacobi inversion problem. We
proceed to present our construction under the assumption that its solution exists and
is unique.

Finally, we also make a comment here on the integrals of the first kind for the
classes of domains to which we have now restricted. For such domains we can always
pick the real part of v j (ζ ), for each j = 1, ..., l, for ζ on the real axis to be zero, so
that

v j (ζ ) = −v j (ζ ). (37)

Together, (17) and (37) imply that

v j (1/ζ ) = −v j (ζ ), j = 1, ..., l. (38)

7 Inverse Problem for the Jacobi Parameters

We can write

M(ζ ) = N (ζ )
f (ζ )

= N (ζ )
z , (39)

where

N (ζ ) ≡ AD

[
ω(ζ, β)ω(ζ, 1/β)

ω(ζ, 1/α)2

] l∏
j=1

[
ω(ζ, s j )

ω(ζ, r j )

]
e2π i

∑l
k=1 nkvk (ζ ). (40)

Since both M(ζ ) and f (ζ ) are automorphic with respect to the Schottky group action
then so is N (ζ ). A Taylor expansion of N (ζ ) near ζ = α gives

N (ζ ) = N (α) + (ζ − α)N ′(α) + N ′′(α)

2! (ζ − α)2 + · · · (41)

or, on use of (29),

N = N (α) + N ′(α)X∞
z

+
[

N ′(α)X∞Y∞ + X2∞N ′′(α)

2!
]

1

z2
+ · · · (42)
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On substitution of this into (39), we find

M = N (α)

z
+ N ′(α)X∞

z2
+

[
N ′(α)X∞Y∞ + X2∞N ′′(α)

2

]
1

z3
+ · · · (43)

Enforcing the condition that M = −1/z + O(1/z2) implies

N (α) = −1. (44)

On substitution of this result into (43), we arrive at

M = −1

z
− X∞N ′(α)

N (α)

1

z2
−

[
X∞Y∞

N ′(α)

N (α)
+ X2∞

2

N ′′(α)

N (α)

]
1

z3
+ · · · (45)

A comparison with (32) yields

b1 = X∞N ′(α)

N (α)
, a2

1 + b21 = X∞Y∞
N ′(α)

N (α)
+ X2∞

2

N ′′(α)

N (α)
. (46)

The logarithmic derivatives arising naturally in these expressions imply that they can
be rewritten more explicitly as Eq. (4) which are independent of the prefactor AD in
the formula (40) for N (ζ ) which is why we have set AD = 1 in (5).

8 Periodic Jacobi Matrices

To examine the nature of any conditions necessary for the determination of a periodic
Jacobi matrix, we now study a specific example. Modifications for the general case
will be obvious from what follows.

Suppose that we seek a p = 4 periodic Jacobi matrix in the l = 2 gap case. Suppose
that the initial poles are at {r1, x1}with zeros, following fromAbel’s theorem, at {s1, y1}
(in addition to the pole at 1/α and zero at α that are present at every stage). Then,
from (35), we have

v1(α) − v1(1/α) + v1(s1) − v1(r1) + v1(y1) − v1(x1) = −n(1)
11 τ11 − n(1)

21 τ21,

v2(α) − v2(1/α) + v2(s1) − v2(r1) + v2(y1) − v2(x1) = −n(1)
12 τ12 − n(1)

22 τ22,

(47)

for some integers {n(1)
jk }. The construction via the minimal Herglotz functions implies

that there are a succession of poles and zeros given by

{1/α, s1, y1} (poles), {α, s2, y2} (zeros),

{1/α, s2, y2} (poles), {α, s3, y3} (zeros),

{1/α, s3, y3} (poles), {α, s1, y1} (zeros), (48)

123



332 D. Crowdy

where since the zeros of the last iteration (aside from the one at α) will now become
the poles of the next minimal Herglotz function (aside from the one at 1/α), and since
the matrix is periodic by assumption, the sequence must repeat itself. The poles and
zeros (48) satisfy, respectively, the Abel conditions

v1(α) − v1(1/α) + v1(s2) − v1(s1) + v1(y2) − v1(y1) = −n(2)
11 τ11 − n(2)

21 τ21,

v2(α) − v2(1/α) + v2(s2) − v2(s1) + v2(y2) − v2(y1) = −n(2)
12 τ12 − n(2)

22 τ22,

(49)

and

v1(α) − v1(1/α) + v1(s3) − v1(s2) + v1(y3) − v1(y2) = −n(3)
11 τ11 − n(3)

21 τ21,

v2(α) − v2(1/α) + v2(s3) − v2(s2) + v2(y3) − v2(y2) = −n(3)
12 τ12 − n(3)

22 τ22,

(50)

and

v1(α) − v1(1/α) + v1(r1) − v1(s3) + v1(x1) − v1(y3) = −n(4)
11 τ11 − n(4)

21 τ21,

v2(α) − v2(1/α) + v2(r1) − v2(s3) + v2(x1) − v2(y3) = −n(4)
12 τ12 − n(4)

22 τ22,

(51)

for some {n(m)
jk ∈ Z| j, k = 1, 2; m = 1, 2, 3, 4}. Addition of (47) and (49)–(51)

produces a cancellation of most of the terms leaving, for j = 1, 2,

p[v j (α) − v j (1/α)] =
l∑

k=1

N ( j)
k τk j , (52)

where

N ( j)
k =

p∑
m=1

n(m)
k j (53)

is some integer. But (38) allows us to deduce that (52) is

2pv j (α) =
l∑

k=1

N ( j)
k τk j , for j = 1, ..., l. (54)

Hence, on use of (21), (54) can be written after division by 2p as

v j (α) = −i
l∑

k=1

N ( j)
k

p
Qkj , for j = 1, ..., l. (55)
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On evaluating (20) at ζ = α, we find

v j (α) =
l∑

k=1

Q jk ṽk(α), for j = 1, ..., l. (56)

But the matrix Q jk is symmetric and invertible [15,28], so a comparison of (55) and
(56) leads to

ṽk(α) ≡ Hk(α) + i�k(α) = − iN ( j)
k

p
, for j = 1, ..., l, (57)

which, on equating imaginary parts, implies that we must have

�k(α) = mk

p
(58)

for some integer mk . Thus, the condition for a p-periodic Jacobi matrix is that the
l harmonic measures, when evaluated at infinity (i.e. at ζ = α), must be rational
numbers of the form (58).

Such matters are explored in more detail in [9] within the covering map formalism
considered there; other related discussion is to be found in [22, Cor. 5]. The above
treatment aims to give a flavour of how these considerations translate to the Schottky
uniformization used here.

9 Two Spectral Bands

An instructive exercise is to study the single gap case (genus one) within this Schottky
model because the construction can be performed analytically, and quite explicitly. It
is then possible to see both the construction based on our formulation in action, as
well as many features of the underlying general theory [9]. All the required function
theory can be derived from elementary considerations without invoking any special
results from classical elliptic or theta function theory. The genus-one case has also
been considered, from different perspectives, by other authors [1,26].

For the concentric annulus ρ < |ζ | < 1, the Schottky–Klein prime function is

ω(ζ, α) = − α

C
P(ζ/α), (59)

where P(ζ ) can be defined by the infinite product

P(ζ ) ≡ (1 − ζ )

∞∏
n=1

(1 − ρ2nζ )(1 − ρ2n/ζ ), C ≡
∞∏

n=1

(1 − ρ2n)2. (60)

This is precisely the form given by (16) in this doubly connected case where the
Schottky group has just a single generator (and its inverse). As for the prime function
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itself, we suppress the dependence of P(ζ ) on the conformal modulus ρ. The product
(60) can be shown to converge by standard methods and it is elementary to verify,
directly from the infinite product definition, that P(ζ ) satisfies

P(1/ζ ) = −ζ−1P(ζ ), P(ρ2ζ ) = −ζ−1P(ζ ). (61)

Indeed (60) is proportional to the infinite product given in (16) when the Schottky
group 
 is generated by θ1(ζ ) = ρ2ζ and its inverse. The second of the relations (61)
is essentially just (14) with the function v1(ζ ) defined by

v1(ζ ) = 1

2π i
log ζ , τ11 = 1

2π i
log ρ2. (62)

It is clear from (62), and its definition given earlier, that the single harmonic measure
in this case is

�1(ζ ) = log |ζ |
log ρ

. (63)

In passing, we note that the Schottky–Klein prime function (59) can be related to the
first Jacobi theta function (see [10,11]).

The conformal mapping from the concentric annulus ρ < |ζ | < 1 to two bands on
the real axis is

z(ζ ) = R

[
P(ζ/β)P(ζβ)

P(ζ/α)P(ζα)

]
(64)

for some real α with ρ < α < 1 and real parameters R, ρ and β. The choice of these
four real parameters corresponds to the freedom to pick the four real end points of the
two spectral bands.

Period-2 Solution Let us take the first minimal Herglotz function to be

M1(ζ ) = A1

ζ

[
P(ζ/α)P(ζ/s1)

P(ζα)P(ζ/r1)

]
, (65)

where the simple pole r1 satisfies −1/ρ < r1 < −ρ so that it sits in the gap. The
condition for automorphicity, i.e. the requirement that M1(ζ ) satisfies

M1(ρ
2ζ ) = M1(ζ ), (66)

is easily seen to be
α2s1
ρ2r1

= 1, or
s1
r1

= ρ2

α2 . (67)

For a period-2 solution the second minimal Herglotz function is then

M2(ζ ) = A2

[
P(ζ/α)P(ζ/r1)

P(ζα)P(ζ/s1)

]
(68)
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where, in order that this is automorphic, we require

r1α2

s1
= 1, or

s1
r1

= α2. (69)

Together (67) and (69) imply the condition

α2 = ρ, (70)

which is consistent with the requirement that ρ < α < 1.
On taking a logarithm, condition (70) is

log |α|
log ρ

= 1

2
(71)

which, by (63), is equivalent to

�1(α) = 1

2
. (72)

Period-3 Solution Let the first minimal Herglotz function be

M1(ζ ) = A1

ζ

[
P(ζ/α)P(ζ/s1)

P(ζα)P(ζ/r1)

]
, (73)

with−1/ρ < r1 < −ρ. Again wemust enforce the condition (67) for automorphicity.
Now suppose the second minimal Herglotz function is

M2(ζ ) = A2

[
P(ζ/α)P(ζ/s2)

P(ζα)P(ζ/s1)

]
. (74)

Then, that it is automorphic, we require

s2α2

s1
= 1, or

s2
s1

= 1

α2 . (75)

Finally, for a period-3 solution, the third minimal Herglotz function is

M3(ζ ) = A3

[
P(ζ/α)P(ζ/r1)

P(ζα)P(ζ/s2)

]
, (76)

where, for its automorphicity, we require

r1α2

s2
= 1, or

r1
s2

= 1

α2 . (77)

It follows from (67), (75) and (77) that we must have

α3 = ρ, (78)
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which is consistent with the requirement that ρ < α < 1. On taking logarithms this is
equivalent, by (63), to

�1(α) = 1

3
. (79)

But there is another option. Instead of choosing M2(ζ ) as in (80) we could alterna-
tively pick

M2(ζ ) = A2

ζ

[
P(ζ/α)P(ζ/s2)

P(ζα)P(ζ/s1)

]
, (80)

implying the automorphicity condition

α2s2
ρ2s1

= 1, or
s2
s1

= ρ2

α2 . (81)

Then, with M3(ζ ) given by (76), conditions (67), (81) and (77) imply

α3 = ρ2, (82)

which is consistent with the requirement that ρ < α < 1. On taking logarithms this is
equivalent, by (63), to

�1(α) = 2

3
. (83)

10 Two Spectral Bands of Equal Length

The case of two spectral bands of equal length is of interest and has recently been
studied, in a more general context, by Eichingeret al. [21]. Our formulation can be
applied to this special case. The condition (70) for a period-two Jacobi matrix is
consistent with a spectrum comprising two equal intervals. To see this, consider the
covering map given by

z = f (ζ ) = R
P(−ζ/

√
ρ)P(−ζ

√
ρ)

P(ζ/
√

ρ)P(ζ
√

ρ)
. (84)

It is readily verified that this map satisfies

f (ρ/ζ ) = − f (ζ ) (85)

implying the required symmetry between the images of |ζ | = ρ and |ζ | = 1.
For two spectral bands on the real axis between [−(λ + 2)1/2,−(λ − 2)1/2] and

[(λ − 2)1/2, (λ + 2)1/2] where λ > 2 we must pick ρ such that

f (+1)

f (−1)
=

(
λ + 2

λ − 2

)1/2

(86)
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and, for given λ, this is easily solved by Newton’s method. Once ρ is determined R
follows explicitly:

R = (λ + 2)1/2
[

P(1/
√

ρ)P(
√

ρ)

P(−1/
√

ρ)P(−√
ρ)

]
. (87)

With the covering map determined by the geometry of the spectral bands in this way,
it can be shown that

X∞ = − R
√

ρ P(−1)P(−ρ)

P̂(1)P(ρ)
, Y∞ = X∞

2
√

ρ
, (88)

where we define

P̂(ζ ) ≡
∞∏

n=1

(1 − ρ2nζ )(1 − ρ2n/ζ ). (89)

In addition, with

N1(ζ ) ≡ M1(ζ ) f (ζ ) = P(−ζ/
√

ρ)P(−ζ
√

ρ)P(ζ/(ρr1))

ζ P2(ζ
√

ρ)P(ζ/r1)
,

N2(ζ ) ≡ M2(ζ ) f (ζ ) = P(−ζ/
√

ρ)P(−ζ
√

ρ)P(ζ/r1)

P2(ζ
√

ρ)P(ζ/(ρr1))
, (90)

where we have used the expressions for M1(ζ ) and M2(ζ ) from (65) and (68), it
follows directly that

d

dζ
log N1

∣∣∣∣
ζ=√

ρ

= 1√
ρ

[
K (−1) + K (−ρ) + K (1/(

√
ρr1))

− 1 − 2K (ρ) − K (
√

ρ/r1)

]
,

d

dζ
log N2

∣∣∣∣
ζ=√

ρ

= 1√
ρ

[
K (−1) + K (−ρ) + K (

√
ρ/r1))

− 2K (ρ) − K (1/(
√

ρr1))

]
,

(91)

where

K (ζ ) ≡ ζ P ′(ζ )

P(ζ )
(92)

which, from (61), can be shown to satisfy

K (ρ2ζ ) = K (ζ ) − 1, K (1/ζ ) = 1 − K (ζ ). (93)

On use of the results (easily checked) that K (−1) = 1/2, K (±ρ) = 0, we find

b1 = −b2. (94)
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With a second differentiation, we find

d2

dζ 2 log N1

∣∣∣∣
ζ=√

ρ

= − 1

ρ

[
K (−1) + K (−ρ) + K (1/(

√
ρr1))

−1 − 2K (ρ) − K (
√

ρ/r1)

]

+ 1

ρ

[
L(−1) + L(−ρ) + L(1/(

√
ρr1))

−2L(ρ) − L(
√

ρ/r1)

]
,

d2

dζ 2 log N2

∣∣∣∣
ζ=√

ρ

= − 1

ρ

[
K (−1) + K (−ρ) + K (

√
ρ/r1))

−2K (ρ) − K (1/(
√

ρr1))

]

+ 1

ρ

[
L(−1) + L(−ρ) + L(

√
ρ/r1))

−2L(ρ) − L(1/(
√

ρr1))

]
, (95)

where we define
L(ζ ) ≡ ζ K ′(ζ ). (96)

It can be confirmed numerically that, for any choice of r1,

a1 = 1

a2
. (97)

In summary, we find the following structure of period-2 Jacobimatrices over two equal
intervals: ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .

a b
1

a

0
1

a
−b a

a b
1

a
1

a
−b a

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(98)

where a and b are real parameters given by

b = X∞√
ρ

[K (−1) + K (−ρ) + K (1/(
√

ρr1)) − 1 − 2K (ρ) − K (
√

ρ/r1)],

a2 = Y∞b − b2

2
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+ X2∞
2

{
− 1

ρ
[K (−1) + K (−ρ) + K (1/(

√
ρr1)) − 1 − 2K (ρ) − K (

√
ρ/r1)]

+ 1

ρ
[L(−1) + L(−ρ) + L(1/(

√
ρr1)) − 2L(ρ) − L(

√
ρ/r1)]

}
.

(99)

For a given spectrum, the parameters ρ, X∞ and Y∞ will be set leaving the parameters
a and b in (99) dependent on the explicit way given above on the single real parameter
r1. Indeed, we are also able to confirm numerically that, for any r1, the formulas for
a and b given in (99) satisfy the relation

(
a − 1

a

)2

+ b2 − (λ − 2) = 0 (100)

established in an appendix to [21].
Just as P(ζ ) can be related to the first Jacobi theta function, the functions K (ζ ) and

L(ζ ) relate to the Weierstrass ζ and ℘ functions, respectively, so our results (99) can
be viewed as expressions of the Jacobi parameters in terms of those special functions.

11 Discussion

This paper has presented the basis of a constructive approach to the inverse problem
for finite gap Jacobi matrices based on a Schottky model of the underlying hyperel-
liptic spectral curve and use of the Schottky–Klein prime function. The latter function
can now be calculated with great speed and computational efficiency by means of
novel numerical algorithms (see [15,17,20])) which are not based on the calculation
of infinite products over the Schottky group action, or of any infinite Blaschke prod-
ucts. While, for the groups relevant here, all those products are known to converge
(for example, by some of Beardon’s results—see [9] for references), they are not
numerically efficient as a basis for constructive methods. The single gap case can be
performed quite explicitly with our approach using a convenient infinite product for-
mula for the Schottky–Klein prime function associated with a concentric annulus. The
construction for more spectral bands can be performed entirely analogously, and with
great numerical efficiency given the new software routines to evaluate Schottky–Klein
prime functions on the Schottky doubles of planar domains [20].

A closing remark is that our explicit form (4) for the Jacobi parameters solving
the inverse problem for a given spectrum is interesting. The appearance of a second
derivative of log N (ζ ) is highly reminiscent of similar formulas in the isospectral
theory of the KdV equation with the automorphic function N (ζ ) ostensibly playing
the role of a tau function.
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