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Abstract The paper addresses the problem of static state feedback linearization for
nonlinear control systems defined on homogeneous time scales. Necessary and suf-
ficient conditions for generic local linearizability of the considered systems by static
state feedback and state transformation are presented in terms of a sequence of sub-
spaces of differential one-forms related to the system.
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1 Introduction

There is ongoing need to make the knowledge base of control theory more compact
so that the field can continue to grow. Integrating existing results by providing a more
abstract structure is, therefore, always necessary, evenmore so in the fragmentedworld
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of today. Time scale calculus is a general framework that allows unification of the study
of continuous- and discrete-time systems [8]. The term “time scales” refer to the way
dynamic systems behave over time. Most engineering applications assume time to
be either continuous or (uniformly) discrete, both of which are merged in time scale
formalism into a general framework, and follow from the latter as special cases. The
main concept of time scale calculus, the delta derivative, is the generalization of both
time derivative and the difference operator. Though time scale calculus accommodates
more possibilities, regarding the control theory, the most important special cases are
continuous- and (uniformly) discrete-time systems that are the examples of systems
defined on homogeneous time scale.

The description of the dynamics that relies on the difference operator is often called
delta-domain description, see for instance [13,17,18,22,30,37,39]. The delta-domain
approach has been promoted as an effective tool for dynamic system modeling and
control. Compared to models based on the shift operator, the delta-domain models are
less sensitive to round-off errors and do not yield ill-conditioned models when signals
are sampled at a high sampling rate, see [23,31,33]. In [1], the authors demonstrate that
the numerical properties of structure detection are improved by a delta-domain model
and such delta-domain models provide models closely linked to the continuous-time
systems. The delta-domain approach allows to address the question of preservation of
the system properties under Euler discretization scheme since it treats the discretized
systems as a special case of a system defined on a time scale.

Though the literature on time scale calculus is rich (see the references in [3,6,9,
16,19,20,32,34,38]), there is not so many papers addressing the control problems
for nonlinear systems defined on time scale [7,12,28]. In the earlier papers [4,5] the
algebraic formalism has been developed that allows to address various analysis and
control problems for nonlinear systems, defined on homogeneous time scales. This
approach has been successfully applied to address the irreducibility, reduction [28]
and realization of the input–output equations in the state space form [12].

The theories of continuous- and discrete-time dynamical systems as presented in
the literature are different, but the analysis on time scales is nowadays recognized
as the right tool to unify the seemingly separate fields of discrete dynamical systems
(i.e., difference equations) and continuous dynamical systems (i.e., differential equa-
tions), and also to present both continuous- and discrete-time theories in the same
language. The goal of this paper is to study the iconic problem of static state feed-
back linearization for nonlinear systems defined on homogeneous time scales where
the state transformation method based on one-forms is used. The presented approach
covers the continuous- and discrete-time cases in such a manner that those are the spe-
cial cases of the formalism. Since delta derivative (used in our paper to describe the
dynamical systems) coincides with the time derivative for the continuous-time case,
the earlier results for continuous-time systems, see for instance [15,25], follow from
our results as a special case, namely the case in which the time scale is the set of real
numbers. Note, however, that our results do not recover those given in [2,21,26,29]
for the discrete-time systems, defined in terms of the shift operator since the latter is
not a delta-derivative. Instead, our formalism includes the description of a discrete-
time system based on the difference operator description (delta-domain approach),
for which the results shown in the paper are new. Using the difference operator in
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the discrete case allows to unify the theories of static state feedback linearization for
continuous- and discrete-time nonlinear control systems.

Static state feedback linearization is a much studied research topic since 1980s,
both for continuous- and discrete-time cases, see [24,26,27] and the references therein.
Many different techniques that speak different languages (including differential geom-
etry and algebra) have been used in linearization studies that make their comparison
a difficult task. The paper [35] establishes the explicit relationship between the two
sets of necessary and sufficient solvability conditions, given in terms of integrability
of certain vector spaces of differential one-forms and involutivity of distributions of
vector fields. In particular, it has been demonstrated that the distributions, when they
are involutive, are the maximal annihilators of the corresponding codistributions (vec-
tor spaces of one-forms). Moreover, in [35], two methods have been compared from
the point of view of computational complexity and it was shown that regarding the
computation of the state transformation method based on one-forms is simpler. By this
reason, we decided to rely on this method in unification. Finally, note that the results
of [11] are claimed in [11] to be dual to those of [2] though not shown in detail.

The paper is organized as follows. Section 2 recalls the notions from time scale
calculus and algebraic formalism used in the paper, while in Sect. 3 the properties of
the sequences of subspaces of differential one-forms are presented, in terms of which
our main results are formulated. The basic results given in Sect. 3 together with the
facts presented in Sect. 4 contain the key contribution of the paper. Section 4 is devoted
to give the main results, i.e., the conditions for the generic local static state feedback
linearization of control systems defined on homogeneous time scales. Finally, some
illustrative examples that describe our results are presented.

2 Time scale calculus and algebraic formalism

For a general introduction to the calculus on time scales, see [8]. Here, we recall only
those notions and facts that will be used later.

A time scaleT is a nonempty closed subset ofR.We assume that the topology ofT is
induced byR. The forward jump operator σ : T → T is defined asσ(t) := inf{s ∈ T |
s > t}, σ(maxT) = maxT if there exists a finite maxT, the backward jump operator
ρ(t) : T → T is defined as ρ(t) := sup{s ∈ T | s < t}, ρ(minT) = minT if there
exists a finite minT. The graininess functions μ : T → [0,∞) and ν : T → [0,∞)

are defined by μ(t) := σ(t) − t and ν(t) := t − ρ(t), respectively. A time scale is
called homogeneous if μ and ν are constant functions. Homogeneous time scales are
either of the form t0 + μZ, where t0 ∈ R and μ > 0, or are closed intervals, bounded
or unbounded, including in particular R.

From now, we assume that T is a homogeneous time scale.

Remark 1 In [5], we called time scale homogeneous if only μ is a constant function.
The reason is that when one only needs the forward shift and delta derivative, it is not
necessary to have constant ν. However, if we also need the backward shift and nabla
derivative, we have to assume additionally ν to be constant sinceμ being constant does
not yield the latter. For example, in the set of natural numbers μ ≡ 1, but ν(1) = 0
whereas ν(k) = 1 for k ≥ 1; so ν is not constant.
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Let us now recall the definition of the delta derivative f Δ of a real valued function
f .

Definition 1 The delta derivative of a function f : T → R at t ∈ T is the real number
f Δ(t) (provided it exists) such that for each ε > 0 there exists a neighborhood U (ε)

of t , U (ε) ⊂ T such that for all τ ∈ U (ε), |( f (σ (t)) − f (τ )) − f Δ(t)(σ (t) − τ)| �
ε|σ(t)−τ |. Moreover, we say that f is delta differentiable onT provided f Δ(t) exists
for all t ∈ T.

Remark 2 The delta derivative is a natural extension of time derivative in the
continuous-time case and forward difference operator in the discrete-time case. There-
fore, for T = R, f Δ(t) = lim

s→t

f (t)− f (s)
t−s = f ′(t) and for T = Z, f Δ(t) =

f (σ (t))− f (t)
μ(t) = f (t + 1) − f (t) =: 	 f (t), where 	 is the usual forward difference

operator.

For a function f : T → R, we can define the second delta derivative f [2] := ( f Δ)Δ

provided that f Δ is delta differentiable with derivative f [2] : T → R. Similarly, we
define higher order delta derivatives f [n] : T → R, f [n] := ( f [n−1])Δ. Note that for a
homogeneous time scale, there is no left-scattered maximal point in T, so f [n], n � 1
are uniquely defined for all t ∈ T .

For f : T → R, define f σ := f ◦ σ . Denote f Δσ := ( f Δ)σ and f σΔ := ( f σ )Δ.
If f and f Δ are delta differentiable functions, then for homogeneous time scale

one has f σΔ = f Δσ .
Now, we recall some definitions and facts given in [4,5] that will be used in the

paper.

2.1 Differential field and space of one-forms

Consider now the control system, defined on a homogenous time scale T,

xΔ(t) = f (x(t), u(t)) (1)

where (x(t), u(t)) ∈ X × U , X × U is an open subset of R
n × R

m , m � n, and
f : X × U → R

n is analytic. We assume that the input applied to system (1) is
infinitely many times delta differentiable, i.e., u[k] exists for all k � 0. Let us define
˜f (x, u) := x + μ f (x, u) and assume that there exists a map ϕ : X × U → R

m

such that Φ = (˜f , ϕ)T is an analytic diffeomorphism1 from the set X × U onto
Φ(X × U). This means that from (x̄, z) = (˜f (x, u), ϕ(x, u)) = Φ(x, u), we can
uniquely compute (x, u) as an analytic function of (x̄, z). For μ = 0, this condition is
always satisfied with ϕ(x, u) = u.

Note that for T = R, the Eq. (1) becomes an ordinary differential equation and
when T = hZ, for h > 0, it becomes the difference equation. Both T = R and
T = hZ are homogeneous time scales.

1 This assumption guarantees that the system xσ = f̃ (x, u) is submersive, that is generically

rank ∂ f̃ (x,u)
∂(x,u)

= n.
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For notational convenience, (x1, . . . , xn) will simply be written as x , and
(u[k]

1 , . . . , u[k]
m ) as u[k], for k � 0. For i � k, let u[i..k] := (u[i], . . . , u[k]). Consider

the infinite set of real (independent) indeterminates

C = {xi , i = 1, . . . , n, u[k]
j , j = 1, . . . ,m, k � 0}

and let K be the (commutative) field of meromorphic functions in a finite number of
the variables from the set C. Let σ f : K → K be an operator defined by

σ f (F)(x, u[0..k+1]) := F(σ f (x), σ f (u
[0..k])), (2)

where F ∈ K, σ f (u[0..k]) := u[0..k] + μu[1..k+1], for k � 0 and by (1) σ f (x) :=
x + μxΔ = x + μ f (x, u). Under the assumption about the existence of ϕ such that
Φ is an analytic diffeomorphism, σ f is an injective endomorphism.

The field K can be equipped with an operator Δ f : K → K defined by

Δ f (F)(x, u[0..k+1])

:=
⎧

⎨

⎩

1
μ
[F(x + μ f (x, u), u[0..k] + μu[1..k+1]) − F(x, u[0..k])], if μ �= 0

∂F
∂x (x, u[0..k]) f (x, u) + ∑

k�0

∂F
∂u[0..k] (x, u

[0..k])u[1..k+1], if μ = 0. (3)

Remark 3 Note that in both continuous-time and discrete-time case, the operator Δ f

corresponds to the total delta derivative of a function with respect to the dynamic
of the system, i.e., for control u(·) applied to system (1), for solution x(·) of (1)
corresponding to control u and F ∈ K we get

Δ

Δt
(F(x(t), u[0..k](t))) = Δ f (F)(x(t), u[0..k+1](t)). (4)

On the right hand side of (4), the operator Δ f is applied to function F which depends
on indeterminates from the set C and substituting x(·) and u[l](·) instead of x and u[l],
respectively, we get relation (4) where the time appears.

The operator Δ f satisfies, for all F,G ∈ K, the conditions

(i) Δ f (F + G) = Δ f (F) + Δ f (G),
(ii) Δ f (FG) = Δ f (F)G + σ f (F)Δ f (G) (generalized Leibniz rule).

An operator satisfying the generalized Leibniz rule is called a “σ f -derivation” and
a commutative field endowed with a σ f -derivation is called a σ f -differential field
[14]. Therefore, under the assumption about the existence of ϕ such that Φ is an
analytic diffeomorphism,K endowed with the delta derivative Δ f is a σ f -differential
field. The σ f -differential field K is called inversive, if every element of K has a pre-
image in K with respect to σ f , i.e., σ−1

f (F) is defined for all F ∈ K, see [14]. For

μ = 0, σ f = σ−1
f = id and K is inversive. Though K is not inversive in general, it

is always possible to embed K into an inversive σ f -differential overfield K∗, called
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the inversive closure of K [14]. Since σ f is an injective endomorphism, it can be
extended to K∗ such that σ f : K∗ → K∗ is an automorphism. For μ �= 0, the
overfield K∗ consists of meromorphic functions in a finite number of the independent
variables C∗ = C ∪ {z〈−�〉

s , s = 1, . . . ,m, � � 1}, where z〈−k〉
i = σ f (z

〈−k−1〉
i )

for k � 1, and zi = ϕi (x, u) = σ f (z
〈−1〉
i ), see [4,5]. Let z := (z1, . . . , zm). Then,

σ−1
f (x, u) = ψ(x, z〈−1〉), where ψ is a certain vector valued function, determined

by f in (1) and the extension z = ϕ(x, u). Although the choice of variables z is not
unique, all possible choices yield isomorphic field extensions. We extend the operator
Δ f to new variables by

Δ f (z
〈−�〉) := z〈−�+1〉 − z〈−�〉

μ
, l � 1.

The extension of operator Δ f to K∗ can be made in analogy to (3). Such operator
Δ f is now a σ f -derivation of K∗. A practical procedure for construction of K∗ (for
μ �= 0) is given in [5], where the explicit construction of an inversive σ f -differential
overfield K∗ is unique up to an isomorphism, see [5].

Note that K∗ = K for μ = 0.
We assume that for system (1) the assumption of independence of controls

rankK
∂ f

∂u
= m (5)

holds.2 We will consider regular state feedbacks, which are defined as follows:

Definition 2 A regular static state feedback is an analytic mapping φ : X ×V → U ,

(x, v) �→ u = φ(x, v) (6)

satisfying rank ∂φ
∂v

(x, v) = m for all (x, v) ∈ X × V and φ(X × V) = U , where
V ⊂ R

m .

Remark 4 The regular static state feedback defined above is not globally invertible,
but the condition rank ∂φ

∂v
= m guarantees local invertibility with respect to v for each

fixed point x ∈ X . Moreover, the map ϑ : (X ,V) � (x, v) �→ (x, φ(x, v)) ∈ (X ,U)

is a local analytic diffeomorphism.

From now on

C∗ =
{

C, if μ = 0

C ∪ {z〈−�〉| � � 1}, if μ �= 0.

Consider the infinite set of differentials of indeterminates dC∗ = {dζi , ζi ∈ C∗}.
Then, dxi , i = 1, . . . , n, du[k]

j , j = 1, . . . ,m, k � 0, can be treated as differentials of

2 This assumption, though natural, is not necessary for construction of K∗.
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coordinate functions which select xi or u
[k]
j from the set of all variables, respectively.

Define E := spanK∗dC∗. Any element of E is a vector of the form

ω =
n
∑

i=1

Aidxi +
∑

k�0

m
∑

j=1

Bjkdu
[k]
j +

∑

��1

m
∑

s=1

Cs�dz
〈−�〉
s

where only a finite number of coefficients Bjk and Cs� are nonzero elements of K∗.
Since F is a meromorphic function in a finite number of variables from the set C∗,
then an operator d : K∗ → E can be defined in the standard manner:

dF :=
n
∑

i=1

∂F

∂xi
dxi +

∑

k�0

m
∑

j=1

∂F

∂u[k]
j

du[k]
j +

∑

��1

m
∑

s=1

∂F

∂z〈−�〉
s

dz〈−�〉
s . (7)

The elements of E are called differential one-forms. One says that ω ∈ E is an exact
one-form if ω = dF for some F ∈ K∗. We will refer to dF as to the total differential
(or simply the differential) of F .

If ω = ∑

i
Aidζi is a one-form, where Ai ∈ K∗ and ζi ∈ C∗, one can define the

operators Δ f : E → E and σ f : E → E by

Δ f (ω) :=
∑

i

{Δ f (Ai )dζi + σ f (Ai )d[Δ f (ζi )]},

and

σ f (ω) :=
∑

i

σ f (Ai )d[σ f (ζi )].

The operator σ f : E → E is invertible and the inverse operator σ−1
f : E → E is

given by

σ−1
f

(

∑

i

Aidζi

)

=
∑

i

σ−1
f (Ai )d[σ−1

f (ζi )],

for Ai ∈ K∗ and ζi ∈ C∗.
Since σ f (Ai ) = Ai + μΔ f (Ai ) (see [5]),

Δ f (ω) =
∑

i

{Δ f (Ai )dζi + (Ai + μΔ f (Ai ))d[Δ f (ζi )]}.

For the homogeneous time scale T, we have for F ∈ K∗

[dF]Δ f = d[FΔ f ] and [dF]σ f = d[Fσ f ].
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Note that the following relation between operators Δ f and σ f holds

σ f = id + μ · σ f , (8)

where id denotes the identity operator.
Wewill use sometimes themore compact notations FΔ f ,ωΔ f , Fσ f andωσ f instead

of Δ f (F), Δ f (ω), σ f (F) and σ f (ω).

2.2 Vector fields and p-forms

Let E ′ be the dual vector space of E , i.e., the space of linear mappings from E to K∗.
The elements of E ′ are of the form

X =
n
∑

i=1

ai
∂

∂xi
+
∑

k�0

m
∑

j=1

b jk
∂

∂u[k]
j

+
∑

��1

m
∑

s=1

cs�
∂

∂z〈−�〉
s

, (9)

where ai , b jk, cs� ∈ K∗ and are called vector fields. Taking ω = ∑n
i=1 Aidxi +

∑p
k=0

∑m
j=1 Bjkdu

[k]
j +∑q

�=1

∑m
s=1 Cs�dz

〈−�〉
s ∈ E and the vector field X ∈ E ′ of

the form (9), we get

X (ω) =: 〈X, ω〉 =
n
∑

i=1

ai Ai +
p
∑

k=0

m
∑

j=1

b jk B jk +
q
∑

�=1

m
∑

s=1

cs�Cs�.

The delta-derivative XΔ f and the forward-shift Xσ f of X ∈ E ′ may be defined
uniquely by the equations

〈XΔ f , ω〉 = 〈X, σ−1
f (ω)〉Δ f − 〈X, [σ−1

f (ω)]Δ f 〉 (10)

and

〈Xσ f , ω〉 = 〈X, σ−1
f (ω)〉σ f ,

respectively, where ω is an arbitrary one-form. Note that 〈X, σ−1
f (ω)〉 ∈ K∗, so

〈X, σ−1
f (ω)〉σ f and 〈X, σ−1

f (ω)〉Δ f are well defined.

Proposition 1 [4] Let X ∈ E ′. Then for arbitrary ω ∈ E

Xσ f = X + μXΔ f , (11)

〈X, ω〉Δ f = 〈XΔ f , ω〉 + 〈Xσ f , ωΔ f 〉. (12)
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Let E p be the set of differential p-forms, see [4]. Every p-form α ∈ E p has a unique
representative of the form

α =
∑

i1<···<i p

Ai1...i pdζi1 ∧ · · · ∧ dζi p ,

where Ai1···i p ∈ K∗.
The exterior product (alternatively called the wedge product) of a p-form ω1 =

∑

i1<···<i p Fi1···i pdζi1∧· · ·∧dζi p and q-formω2 =∑ j1<···< jq G j1··· jqdζ j1∧· · ·∧dζ jq ,
denoted as ω1 ∧ ω2, is (p + q)-form defined in the following way

ω1 ∧ ω2 =
∑

i1<···<i p

∑

j1<···< jq

Fi1···i pG j1··· jqdζi1 ∧ · · · ∧ dζi p ∧ dζ j1 ∧ · · · ∧ dζ jq ,

where Fi1···i p ,G j1··· jq ∈ K∗ and ζil , ζ js ∈ C∗, l = 1, . . . , p, s = 1, . . . , q, see [4].
Let E be the space of all forms, i.e., E =⊎p�0 E p, where E0 := K∗, E1 := E .
Exterior differential d is an operator d : E → E that satisfies the following proper-

ties:

(i) d(E p) ∈ E p+1 and d : E p → E p+1 is an R-linear operator.
(ii) d(α ∧ β) = dα ∧ β + (−1)sα ∧ dβ, where α ∈ E s and β ∈ E p−s ,
(iii) if F ∈ K∗, then dF coincides with the ordinary differential, see (7).
(iv) d2 = 0, where d2 = d ◦ d : E → E.

The properties (i)–(iii) define uniquely the operator d.
The operators Δ f : K∗ → K∗ and σ f : K∗ → K∗, related to system (1), induce

the operators Δ f : E p → E p and σ f : E p → E p by

Δ f

⎛

⎝

∑

i1<...<i p

Ai1...i pdζi1 ∧ · · · ∧ dζi p

⎞

⎠

:=
∑

i1<···<i p

[

A
Δ f
i1···i pdζi1 ∧ · · · ∧ dζi p + A

σ f
i1···i pdζ

Δ f
i1

∧ dζi2 ∧ · · · ∧ dζi p

+A
σ f
i1···i pdζ

σ f
i1

∧ dζ
Δ f
i2

∧ dζi3 ∧ · · · ∧ dζi p

+ · · · + A
σ f
i1···i pdζ

σ f
i1

∧ · · · ∧ dζ
σ f
i p−1

∧ dζ
Δ f
i p

]

(13)

and

σ f

⎛

⎝

∑

i1<···<i p

Ai1···i pdζi1 ∧ · · · ∧ dζi p

⎞

⎠ :=
∑

i1<···<i p

[

A
σ f
i1···i pdζ

σ f
i1

∧ · · · ∧ dζ
σ f
i p

]

,

(14)

where ζi1 , . . . , ζi p ∈ C∗ and Ai1···i p ∈ K∗.

123



532 Z. Bartosiewicz et al.

Proposition 2 [4] Let ω ∈ E p, p � 1. Then, for a homogeneous time scale T:

d[ωΔ f ] = [dω]Δ f and d[ωσ f ] = [dω]σ f .

Now let us consider an operator iX : E → E associated with a vector field X ∈ E ′
that satisfies the following properties:

(i) iX (E p+1) ∈ E p, for p � 0 and iX : E p+1 → E p is a K∗-linear operator.
(ii) iX (ω1 ∧ ω2) = iX (ω1) ∧ ω2 + (−1)pω1 ∧ iX (ω2), where p is the degree of ω1;
(iii) iX (F) = 0, for all F ∈ K∗;
(iv) iX (dxi ) = Xi , where by Xi is denoted the i th component of X .

The operator iX is called interior product with respect to X . Note that iX (dζi ) =
〈X, dζi 〉 so that for a differential 2-form θ =∑

i, j
ai jdζi ∧ dζ j we have

iXθ =
∑

i, j

ai j (〈X, dζi 〉dζ j − 〈X, dζ j 〉dζi ).

3 Sequence of subspaces of one-forms

In this section, we introduce the sequence of subspaces of E being the main tool
for characterizing solvability/solution of numerous problems in control theory, for
example accessibility (irreducibility), realization and feedback linearization.

Introduce, in analogy with [15], the sequence of subspaces (Hk) of E defined by

H0 := spanK∗{dx, du}
Hk+1 := spanK∗{ω ∈ Hk | ωΔ f ∈ Hk}, k � 0 (15)

Then, H1 := spanK∗{dx}. Note that dimK∗ H0 = n + m and dimK∗ H1 = n.
Let Δk

f := Δ f ◦ Δ f ◦ · · · ◦ Δ f
︸ ︷︷ ︸

k-times

. The relative degree of a one-form ω ∈ H0 is

defined as:

r := min
{

k � 0 | Δk
f (ω) = ω

Δk
f /∈ H1

}

.

If such integer does not exist, set r = ∞. The relative degree of a meromorphic
function A(x, u) is defined to be the relative degree of the one-form dA(x, u).

The following proposition is a simple consequence of the construction ofHk .

Proposition 3 (i) For k � 0,Hk is the space of one-forms that have relative degree
greater than or equal to k.

(ii) There exists an integer 0 < k∗ � n such that, for 0 � k � k∗, Hk+1 � Hk and
Hk∗+1 = H�, � � k∗ + 1.
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Proof Point (i) is a simple consequence of definition (15). Concerning (ii), the exis-
tence of the integer k∗ comes from the fact that each Hk is a finite-dimensional
K∗-vector space so that, at each step, either its dimension decreases or Hk+1 = Hk .
Moreover, k∗ � n = dimK∗ H1.

Define H∞ := Hk∗+1. Then from the construction of Hk , we get

Proposition 4 H∞ is the largest subspace ofH1 that is invariant under σ f -derivation
Δ f .

Now, we will show that the coordinate transformation yields an inversive closure
isomorphic to the original one. Consequently, we have some correspondence between
the constructed subspaces of one-forms.

Let x̂ = ξ(x), ξ = (ξ1, . . . , ξn) and ξ : X → ̂X ⊂ R
n be an analytic diffeomor-

phism. Then,

x̂Δ(t) = f̂ (x̂(t), u(t)),

where t ∈ T and f̂ (x̂, u) := ξΔ f (x, u)
∣

∣

x=ξ−1(x̂).

Note that x and z〈−�〉, � � 1, belong to some open subsets of R
n and R

m , respec-
tively. Let ̂K∗ be the field of functions in variables from the set ̂C := {x̂, u[k], z〈−�〉 |
k � 0, � � 1}, where z = ϕ(x, u) = ϕ(ξ−1(x̂), u) =: ϕ̂(x̂, u) and x̂ ∈ ξ(U ). More-
over, ̂K∗ is equippedwith operators ̂Δ f̂ and σ̂ f̂ defined in a similarmanner as operators
Δ f and σ f (see definitions (3) and (2), respectively). Observe that if U = R

n , then
K∗ = ̂K∗. It is easy to see that the relation similar to (8) holds also for the operators
̂Δ f̂ and σ̂ f̂ , i.e.,

̂Δ f̂ = id + μ · σ̂ f̂ . (16)

Let ̂E := span
̂K∗{dx̂, du[k], dz〈−�〉, k � 0, � � 1}. Then, ξ induces the isomor-

phisms ξ∗ : ̂K∗ → K∗ and ξ∗ : ̂E → E by

ξ∗(̂Ai )(x, u
[0..k], z〈−1〉, . . . , z〈−�〉) := ̂Ai (ξ(x), u[0..k], z〈−1〉, . . . , z〈−�〉) (17)

and

ξ∗
⎛

⎝

n
∑

i=1

̂Aidx̂i +
∑

k�0

m
∑

j=1

̂Bjkdu
[k]
j +

∑

��1

m
∑

s=1

̂Cs�dz
〈−�〉
s

⎞

⎠

:=
n
∑

i=1

n
∑

j=1

ξ∗(̂Ai )
∂ξi

∂x j
dx j

+
∑

k�0

m
∑

j=1

ξ∗(̂Bjk)du
[k]
j +

∑

��1

m
∑

s=1

ξ∗(̂Cs�)dz
〈−�〉
s , (18)

respectively, where x̂i = ξi (x), i = 1, . . . , n.
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Remark 5 Note that if μ = 0, then the variables z〈−�〉
s , s = 1, . . . ,m, � � 1 do not

appear and σ f = σ̂ f̂ = id.

If ̂G ∈ ̂K∗ and ̂G depends only on u[0..k], z〈−1〉, . . . , z〈−�〉 and does not depend on
x , then ξ∗(̂G) = ̂G.

In general, we have

(ξ∗ ◦ σ̂ f̂ )(x̂)(x, u) = ξ∗(x̂ + μ f̂ (x̂, u))(x, u) = ξ∗(x̂)(x, u) + μξ∗( f̂ )(x, u)

= ξ(x) + μ f̂ (ξ(x), u) = ξ(x) + μΔ f (ξ)(x, u)

= σ f (ξ(x))(x, u) = σ f (ξ
∗(x̂))(x, u) = (σ f ◦ ξ∗)(x̂)(x, u)

and

(ξ∗ ◦ σ̂ f̂ )(u
[k])(u[k], u[k+1]) = ξ∗(u[k] + μu[k+1]) = ξ∗(u[k]) + μξ∗(u[k+1])

= u[k] + μΔ f (u
[k])(u[k], u[k+1]) = σ f (u

[k])(u[k], u[k+1])
= σ f (ξ

∗(u[k]))(u[k], u[k+1]) = (σ f ◦ ξ∗)(u[k])(u[k], u[k+1]).

Moreover,

(ξ∗ ◦ σ̂ f̂ )(z
〈−1〉)(x, u) = (ξ∗ ◦ σ̂ f̂ )(̂σ

−1
f̂

(ϕ̂(x̂, u)))(x, u) = ξ∗(ϕ̂)(x, u)

= ϕ̂(ξ(x), u) = ϕ((ξ−1 ◦ ξ)(x), u) = ϕ(x, u)

= σ f (σ
−1
f (ϕ(x, u))) = σ f (z

〈−1〉)(x, u) = (σ f ◦ ξ∗)(z〈−1〉)(x, u)

and for � � 2

(ξ∗ ◦ σ̂ f̂ )(z
〈−�〉)(z〈−�+1〉) = ξ∗(z〈−�+1〉) = z〈−�+1〉

= σ f (z
〈−�〉)(z〈−�+1〉) = (σ f ◦ ξ∗)(z〈−�〉)(z〈−�+1〉).

Therefore, we get

ξ∗ ◦ σ̂ f̂ = σ f ◦ ξ∗.

Note that u[k], k � 0 and z〈−�〉, � � 1 are the same for K∗ and ̂K∗. Consequently,
σ̂ f̂ (z

〈−�〉) = z〈−�+1〉 = σ f (z〈−�〉).

Proposition 5 For ̂A ∈ ̂K∗

ξ∗ (
̂A
̂Δ f̂

)

= [ξ∗ (
̂A
)]Δ f (19)

and

ξ∗ (
̂Aσ̂ f̂

)

= [ξ∗ (
̂A
)]σ f

. (20)
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Proof Let ̂A ∈ ̂K∗. Then, ξ∗(̂A) ∈ K∗. Since, by (3), for μ �= 0

̂A
̂Δ f̂ (x̂, u[0..k+1], z〈−1〉, . . . , z〈−�+1〉)

= 1

μ
·
[

̂A(x̂ + μ f̂ (x̂, u), u[0..k] + μu[1..k+1], ϕ̂(x̂, u), z〈−1〉, . . . , z〈−�+1〉)

−̂A(x̂, u[0..k], z〈−1〉, z〈−2〉, . . . , z〈−�〉)
]

,

and for μ = 0

̂A
̂Δ f̂ (x̂, u[0..k+1]) = ∂̂A

∂ x̂

(

x̂, u[0..k]) f̂ (x̂, u) +
k
∑

j=0

∂̂A

∂u[ j]
(

x̂, u[0..k]) u[ j+1],

we get

ξ∗(̂ÂΔ f )(x, u[0..k+1], z〈−1〉, . . . , z〈−�+1〉)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1
μ

· [̂A(ξ(x) + μξΔ f (x, u), u[0..k] + μu[1..k+1], ϕ(x, u), z〈−1〉, . . . ,

z〈−�+1〉) − ̂A(ξ(x), u[0..k], z〈−1〉, z〈−2〉, . . . , z〈−�〉)
]

, μ �= 0

∂̂A
∂ x̂ (ξ(x), u[0..k]) ∂ξ

∂x f (x, u) +
k
∑

j=0

∂̂A
∂u[ j] (ξ(x), u[0..k])u[ j+1], μ = 0

= [̂A(ξ(x), u[0..k], z〈−1〉, z〈−2〉, . . . , z〈−�〉)]Δ f

= [ξ∗(̂A)(x, u[0..k], z〈−1〉, z〈−2〉, . . . , z〈−�〉)]Δ f

= [ξ∗(̂A)]Δ f (x, u[0..k+1], z〈−1〉, z〈−2〉, . . . , z〈−�+1〉).

Using the relations (8), (16) and (19), one gets

ξ∗(̂Aσ̂ f̂ ) = ξ∗(̂A + μ · ̂ÂΔ f̂ ) = ξ∗(̂A) + μ · [ξ∗(̂A)]Δ f = [ξ∗(̂A)]σ f .

Hence the proposition holds.

Proposition 6 Let ω̂ ∈ ̂E . Then,

ξ∗(ω̂̂Δ f̂ ) = [ξ∗(ω̂)]Δ f . (21)

The proof is given in the Appendix.
In ̂E , we have the following sequence of subspaces (̂Hk):

̂H0 = span
̂K∗{dx̂i , du j , i = 1, . . . , n, j = 1, . . . ,m}

̂H1 = span
̂K∗{dx̂i , i = 1, . . . , n}

̂Hk = span
̂K∗{ω̂ ∈ ̂Hk−1 | ω̂

̂Δ f̂ ∈ ̂Hk−1}, k � 2. (22)
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Proposition 7 For subspacesHk, ̂Hk defined by (15) and (22), respectively,we have,
for k � 0

ξ∗(̂Hk) = Hk . (23)

Proof The proof is by the induction principle. Since the diffeomorphism ξ induces
isomorphism ξ∗ : ̂E → E and for arbitrary ω̂x = ∑n

i=1
̂Aidx̂i ∈ ̂H1 ⊂ ̂H0, ω̂u =

∑

k�0
∑m

j=1
̂Bjkdû

[k]
j ∈ ̂H0 by (18) we have

ξ∗(ω̂x + ω̂u) = ξ∗
⎛

⎝

n
∑

i=1

̂Aidx̂i +
∑

k�0

m
∑

j=1

̂Bjkdû
[k]
j

⎞

⎠

=
n
∑

i=1

n
∑

j=1

ξ∗(̂Ai )
∂ξi

∂x j
dx j +

∑

k�0

m
∑

j=1

ξ∗(̂Bjk)dû
[k]
j ∈ H0

and ξ∗(ω̂x ) =
n
∑

i=1

n
∑

j=1
ξ∗(̂Ai )

∂ξi
∂x j

dx j ∈ H1 , so (23) holds for k = 0, 1. Assume

that (23) is true for k = n, and let ω̂ ∈ ̂Hn+1. From definition (15), we get ω̂ ∈
̂Hn and ω̂

̂Δ f̂ ∈ ̂Hn . Since ξ∗(̂Hn) = Hn ,

ξ∗(ω̂) ∈ Hn and ξ∗(ω̂̂Δ f̂ ) ∈ Hn .

By (21), we get

[ξ∗(ω̂)]Δ f ∈ Hn

and it is equivalent to ξ∗(ω̂) ∈ Hn+1. Hence using the induction principle, we get that
(23) holds for all k � 0.

Remark 6 The dimension of the subspace Hk , k � 0, is invariant under diffeomor-
phism ξ , i.e., dimK∗ Hk = dimK∗ ̂Hk , forHk = ξ∗(̂Hk).

Let u = φ(x, v) be a static state feedback such that the map ϑ : (X ,V) � (x, v) �→
(x, φ(x, v)) ∈ (X ,U) is an analytic diffeomorphism. Then, the field ˜K∗ of meromor-
phic functions in a finite number of variables from the set ˜C := {x, v[k], z〈−�〉 | k �
0, � � 1} where z = ϕ(x, φ(x, v)), and ˜E can be constructed similarly as ̂K∗ and ̂E ,
respectively. Then, ϑ induces the isomorphisms ϑ∗ : ˜K∗ → K∗ and ϑ∗ : ˜E → E by
the formulas similar to (17) and (18). Moreover, the sequence (˜Hk) can be defined by
analogy with (22). Subspaces Hk and ˜Hk , for k � 0, are isomorphic similarly as in
Proposition 7. In particular,

H0 = spanK∗ {dx, du} = span
˜K∗

{

dx,
∂φ

∂x
dx + ∂φ

∂v
dv

}

= span
˜K∗

{

dx,
∂φ

∂v
dv

}

.
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Since ϑ is a diffeomorphism, one gets

˜H0 = span
˜K∗{dx, dv}.

Note that the relative degrees of the one-forms are invariant under regular static state
feedback. This fact is well known for continuous-time systems, see Proposition 8.8 in
[36], and carries easily over for systems, defined on homogeneous time scales. Then,
the following property characterizes the subspaces Hk :

Corollary 1 Let k � 0. The subspaces Hk and ˜Hk are isomorphic, i.e., dimHk =
dim ˜Hk, for Hk = ϑ∗(˜Hk). Moreover, for k � 1 the subspaces Hk are invariant
under regular static state feedback, so Hk = ˜Hk . Feedback invariance comes from
the fact that the relative degrees are invariant under regular static state feedback and
from the definition of the subspaces Hk and ˜Hk, k � 1.

Theorem 1 Suppose H∞ = {0}. Then, there exists a list of integers r1, . . . , rm and
one-formsω1, . . . , ωm ∈ H1 whose relative degrees are, respectively, r1, . . . , rm such
that

(i) spanK∗{ωΔ
j
f

i , 1 � i � m, 0 � j � ri − k} = Hk, k � 0, in particular

spanK∗{ωΔ
j
f

i , 1 � i � m, 0 � j � ri − 1} = spanK∗{dx} = H1,

spanK∗{ωΔ
j
f

i , 1 � i � m, 0 � j � ri } = spanK∗{dx, du} = H0,

(ii) the one-forms {ωΔ
j
f

i , 1 � i � m, j � 0} are linearly independent over the field
K∗; in particular∑m

i=1 ri = n.

Proof Let Wk∗ = {η1, . . . , ηrk∗ } be a basis for Hk∗ .3 Then by definition (15), the

elements of Wk∗ and WΔ f
k∗ = {ηΔ f

1 , . . . , η
Δ f
rk∗ } belong to Hk∗−1. Now, we want to

prove that the vectors inWk∗ ∪WΔ f
k∗ are independent and we prove it by contradiction.

Suppose thatWk∗ ∪WΔ f
k∗ are linearly dependent. Then, there exist some coefficients

ai , bi , 1 � i � rk∗ , some of them nonzero, such that
∑

i (aiηi + biη
Δ f
i ) = 0. The

linear independence of the ηi ’s implies that not all the bi ’s vanish. Denote σ−1
f (bi )

by b
ρ f
i and consider the one-form ω = ∑

i b
ρ f
i ηi ∈ Hk∗ whose delta derivative is

ωΔ f = ∑

i ((b
ρ f
i )Δ f ηi + biη

Δ f
i ) = ∑

i (b
ρ f
i )Δ f ηi −∑i aiηi . Hence ω ∈ Hk∗+1 =

H∞, which contradicts the assumptionH∞ = {0}. Therefore,Wk∗ ∪WΔ
k∗ are linearly

independent. Hence it is always possible to choose a set (possibly empty)Wk∗−1 such
thatWk∗ ∪WΔ

k∗ ∪Wk∗−1 is a basis forHk∗−1. Repeating this procedure k∗ − 1 times,
we obtain

3 Note that k∗ is defined by Proposition 3.
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Hk = spanK∗

{

WΔ
j
f

i , k � i � k∗, 0 � j � i − k

}

, 0 � k � k∗. (24)

It can be proved by induction that, for 0 � k � k∗, the set
{

Wk∗ , . . . ,WΔk∗−k
f

k∗ , . . . ,Wk+1,WΔ f
k+1,Wk

}

is linearly independent. H1 = spanK∗{dx} and assumption (5) imply W0 = ∅. Note
that H0 = H1 ⊕ spanK∗{du}. By (24), we get

spanK∗{du} = spanK∗

{

WΔ f
1 ,WΔ2

f
2 , . . . ,WΔk∗

f
k∗

}

.

Since dim spanK∗{du} = m, there exist ω1, . . . , ωm such that

{ω1, . . . , ωm} = Wk∗ ∪ · · · ∪ W1,

ri is the relative degree of the one-form ωi for i = 1, . . . ,m, and

spanK∗{du} = spanK∗

{

ω
Δ
r1
f

1 , . . . , ω
Δ
rm
f

m

}

.

Consequently,H1 = spanK∗{ωi , . . . , ω
Δ
ri−1
f

i , i = 1, . . . ,m} and by dimH1 = n, we

get
m
∑

i=1
ri = n.

Corollary 2 Suppose H∞ = {0}. Then, there exists a basis {ωi, j , 1 � i � m, 1 �
j � ri } of H1 such that

ω
Δ f
i,1 =ωi,2

ω
Δ f
i,2 =ωi,3

...

ω
Δ f
i,ri−1 =ωi,ri

ω
Δ f
i,ri

=
m
∑

s=1

rs
∑

j=1

ais, jωs, j +
m
∑

j=1

bijdu j , i = 1, 2, . . . ,m,

(25)

where ais, j , b
i
j ∈ K∗ and [bij ] has the inverse in the ring of m×m matrices with entries

in K∗.

Proof For 1 � i � m and 1 � j � ri , we take ωi, j = ω
Δ

j−1
f

i .
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Proposition 8 For 1 � k � k∗ + 1, there exist nk one-forms α1, . . . , αnk that depend
on variables {x, u[i] | i � 0} for k = 1 and variables {x, u[i], z〈− j〉 | i � 0, 1 �
j � k − 1} for k � 2 and constitute a basis for Hk .

Proof The proof is by induction. Proposition 8 is evidently true for k = 1
and dimH1 = n1 = n. Suppose it is true for some integer k � 1. Let
{η1, . . . , ηnk , ϑ1, . . . , ϑnk−1−nk } and {η1, . . . , ηnk } be, respectively, the bases ofHk−1
and Hk . An arbitrary element α = ∑

i
aiηi ∈ Hk belongs to Hk+1 if and only if

αΔ f = ∑

i
a

Δ f
i ηi + a

σ f
i η

Δ f
i ∈ Hk . Since ηi ∈ Hk , it follows that ηi , η

Δ f
i ∈ Hk−1.

Hence

αΔ f =
∑

i

a
Δ f
i ηi + a

σ f
i

⎛

⎝

∑

j

bi jη j +
∑

�

ci�ϑ�

⎞

⎠ .

Thus, α ∈ Hk+1 if and only if the coefficients a
σ f
i satisfy the following system of

linear equations:

∑

i

a
σ f
i ci� = 0, 1 � � � nk−1 − nk . (26)

System (26) has nk − rankK∗ [ci�] =: s linearly independent solutions and s =
dimK∗ Hk+1. Observe also that s = nk+1 from definition of Hk+1.

Note that from the induction assumption, the coefficients a
σ f
i may be chosen to

depend only on variables {x, u[i], z〈− j〉 | j � k − 1, i � 0}. Since ai = σ−1
f (a

σ f
i ), so

ai depends only on the variables {x, u[i], z〈− j〉 | j � k, i � 0}.
The proof of Proposition 8 provides a procedure to compute bases of the subspaces

Hk , k � 2. Let ωi, j , 1 � i � m, 1 � j � ri be a basis of H1 satisfying (25).
Observe that there exists an integer number M such that one-forms ωi, j depend on
(x, u, u[1], . . . , u[ι], z〈−1〉, . . . , z〈−κ〉) ∈ X × U × R

ι+κ ⊂ R
M . Let S be an open and

dense subset of X × U × R
ι+κ such that the forms ω

Δ
j
f

i , 1 � i � k∗, 0 � j � ri − 1
evaluated at (x, u, u[1], . . . , u[ι], z〈−1〉, . . . , z〈−κ〉) ∈ S are linearly independent over
R.

Let us recall that a codistribution on V ⊂ R
M is a map H : V � p �→ Hp,

where Hp is a linear subspace of T ∗
pR

M . The codistribution H is locally integrable
if for each point p ∈ V there exist some neighbourhood V of p and exact one-forms
defined on V such that for every q ∈ V the one-forms evaluated at q form the basis
of Hq . If p �→ dimHp is constant and H is generated by one-forms ω1, . . . , ωr (i.e.,
at each p ∈ V , Hp is spanned by ω1(p), . . . , ωr (p)), then local integrability of H is
equivalent to the Frobenius condition, i.e., dωk ∧ ω1 ∧ · · · ∧ ωr = 0, for 1 ≤ k ≤ r ,
see for instance [10].

Observe that the spaces Hk are not codistributions in the sense defined above. To
associate withHk a codistribution on S, for p ∈ S, we set Hp to be the space of ω(p),
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where ω ∈ Hk is well defined at p. This codistribution is generated by the one-forms
given in Proposition 8 and S is the subset of X ×U ×R

ι+κ on which these one-forms
are well defined and linearly independent at every point. We say that Hk is locally
integrable if the codistribution associated withHk is locally integrable.

Assumption 1 Assume thatH∞ = {0} and for each (x, u, u[1], . . . , u, u[1], . . . , u[ι],

z〈−1〉, . . . , z〈−κ〉) ∈ S the one-forms ω
Δ

j
f

i , 1 � i � k∗, 0 � j � ri − 1 evaluated at
(x, u, u[1], . . . , u, u[1], . . . , u[ι], z〈−1〉, . . . , z〈−κ〉) are linearly independent over R.

Observe that under Assumption 1, all Hk , k � 2, define constant-dimensional
codistributions on S.
Remark 7 Later, we shall restrict variables x and u to a neighbourhood of some
(x̄, ū) ∈ X × U . This will result in Hk and H∞ restricted to such a neighborhood.
Let us notice that H∞ = {0} if and only if H∞ restricted to all such neighbourhoods
is equal 0.

4 Feedback linearization

Definition 3 SystemΣ of the form (1) is said to be linearizableby static state feedback
if there exist a state analytic diffeomorphism ξ : X → ̂X

x̂ = ξ(x) (27)

and a static state feedback (6) such that ϑ : (X ,V) � (x, v) �→ (x, φ(x, v)) ∈ (X ,U)

is an analytic diffeomorphism and, in new coordinates, we have

x̂Δ(t) = A · x̂(t) + B · v(t), (28)

where the pair (A, B) is controllable, i.e., rank [B AB . . . An−1B] = n.

The variables (x̂, v) of system (28) belong to some open subset of R
n × R

m .

Definition 4 System Σ of the form (1) is said to be generically locally linearizable
by static state feedback if there is an open and dense subset T of X × U such that for
every (x̄, ū) ∈ T there is a neighborhood V of (x̄, ū) contained in X ×U such that Σ
restricted to V is linearizable by static state feedback.

Observe that the static state feedback (6) used in Definitions 3 and 4 is regular.

Proposition 9 If system (1) is generically locally linearizable by static state feedback,
then H∞ = {0}.
Proof From the controllability of the pair (A, B)we get ̂H∞ = {0}. Since ̂H∞ = {0},
then H∞ = {0} as the image of 0 with respect to a linear map.

Remark 8 The property H∞ = {0} corresponds to accessibility of system (1). See
[2,15] for more details.
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Theorem 2 Assume that Assumption 1 holds. Then, system (1) is generically locally
linearizable by static state feedback if and only ifHk is locally integrable for 1 � k �
k∗.

Proof ⇐: Since from Assumption 1 H∞ = {0}, then by Corollary 2 there exists a
basis {ωi, j , 1 � i � m, 1 � j � ri } of H1 = spanK∗{dx} such that in this basis the
first-order approximation of (1), i.e.,

dxΔ(t) = ∂ f

∂x
(x(t), u(t))dx(t) + ∂ f

∂u
(x(t), u(t))du(t),

locally takes form (25). Note that “locally” means in some neighborhood of arbitrary
point (x̄, ū) ∈ T . By Frobenius’s Theorem, there is no loss of generality if we assume
that the basis {ωi, j , 1 � i � m, 1 � j � ri } contains exact one-forms. Thus,
every ωi, j can be integrated, i.e., there exist ξi, j such that ωi, j = dξi, j (x). Since

dx̂Δ
i, j = [dξi, j (x)]Δ f = ω

Δ f
i, j = ωi, j+1 = dξi, j+1(x) = dx̂i, j for j = 1, . . . , ri − 1,

in coordinates x̂i, j = ξi, j (x), 1 � i � m, 1 � j � ri , system (1) can be written as:

x̂Δ
i,1(t) = x̂i,2(t)

x̂Δ
i,2(t) = x̂i,3(t)

...

x̂Δ
i,ri−1(t) = x̂i,ri (t)

x̂Δ
i,ri (t) = f̂ (x̂(t), u(t)), i = 1, 2, . . . ,m, (29)

where ∂ f̂i
∂ x̂s, j

= ais, j and
∂ f̂i
∂u j

= bij . Under the feedback u(t) = φ(x̂(t), v(t)), where

f̂i (x̂(t), φ(x̂(t), v(t))) = vi (t), i = 1, 2, . . . ,m,

the system has the Brunovsky canonical form (28) with controllability indices
r1, . . . , rm , where the pair (A, B) is controllable.

⇒: For a linear system, the ̂Hk’s are integrable and this property is invariant under
both regular static state feedback and state diffeomorphism, so for 1 � k � k∗ the
Hk’s are locally integrable.

Remark 9 For continuous-time case, Theorem 2 yields Theorem 9.1 in [15] which is
a differential-form version of a vector-field characterization presented in [24,27]. For
discrete-time systems, the results of Theorem 2 are new because they are described
in terms of difference operator while the shift operator is used for discrete time in the
literature, see for instance [2].

Now let us present examples that illustrate our results. The first example has been
suggested by one of the reviewers.
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Example 1 Consider the following nonlinear control system defined on homogeneous
time scale T with μ ≡ const � 0:

xΔ
1 = x22

xΔ
2 = u,

(30)

where (x1, x2) ∈ X = R
2 and u ∈ U = R.

By formula (24), H0 = spanK∗{dx1, dx2, du}. From Proposition 3 (i), it easily
follows that H1 = spanK∗{dx1, dx2}, because relative degrees of dx1 and dx2 are
obviously greater or equal to 1, and relative degree of du equals to 0. Since (dx1)Δ f =
2x2dx2 ∈ H1, (dx1)

Δ2
f = 2udx2 + 2(x2 + μu)du /∈ H1 and (dx2)Δ f = du /∈ H1,

the relative degrees of dx1 and dx2 are equal to 2 and 1, respectively. Then, H2 =
spanK∗{dx1} and H3 = H∞ = {0}.

From Theorem 1, there exist the one-form ω1 = dx1 whose relative degree is equal
to 2 and

H0 = spanK∗
{

dx1, (dx1)
Δ f , (dx1)

Δ2
f

}

,

= spanK∗ {dx1, 2x2dx2, 2udx2 + 2(x2 + μu)du} ,

H1 = spanK∗
{

dx1, (dx1)
Δ f
} = spanK∗ {dx1, 2x2dx2} ,

H2 = spanK∗ {dx1},
H3 = H∞ = {0}.

Note that allHk , k � 0, are integrable, but they do not satisfy Assumption 1 at x2 = 0,
x2 + μu = 0. But for x2 �= 0 and x2 + μu �= 0, we have (in terms of Corollary 2) the
one-forms ω1,1 = dx1, ω1,2 = 2x2dx2 and

ω
Δ f
1,1 = ω1,2

ω
Δ f
1,2 = u

x2
ω1,2 + (2x2 + 2μu)du.

Since for S = {(x1, x2, u) : x2 �= 0 ∧ x2 + μu �= 0} ⊂ R
3 the assumptions

of Theorem 2 are satisfied, the new local state variables can be defined as follows:
x̂1 := x1 and x̂2 := x22 . In these coordinates, the system takes the linearized form:

x̂Δ
1 = x̂2
x̂Δ
2 = v,

where v = 2u
√

x̂2 + μu2.

Example 2 Consider the following nonlinear control system defined on T = Z (with
μ ≡ 1):

xΔ
1 = −x1 + ux22

xΔ
2 = −x2 + ux2,

(31)
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where (x1, x2) ∈ X = {x | xi �= 0, i = 1, 2} ⊂ R
2 and (u1, u2) ∈ U = R\{0}.

By formula (24), H0 = spanK∗{dx1, dx2, du}. From Proposition 3 (i), it easily
follows that H1 = spanK∗{dx1, dx2}, since relative degrees of dx1 and dx2 are obvi-
ously greater or equal to 1, and relative degree of du equals to 0. To compute the next
elements of the sequence Hk , the algorithm in the proof of Proposition 8 has to be
applied repeatedly.

To find H2, we assume k = 1, rk = 2 and rk−1 − rk = 1. The basis vectors

may be chosen as η1 = dx1, η2 = dx2 and ϑ = du. The next step is to find η
Δ f
i

in terms of η1, η2 and ϑ for i = 1, 2, i.e., η
Δ f
1 = −dx1 + 2x2udx2 + x22du =

−η1 + 2x2uη2 + x22ϑ and η
Δ f
2 = −dx2 + udx2 + x2du = (u − 1)η2 + x2ϑ . The

coefficients of ϑ are (c11, c21)T = (x22 , x2)
T and thus one possible solution of (33)

is (a
σ f
1 , a

σ f
2 )T = (−1, x2)T. To find a2, we have to express x

σ−1
f

2 from (31). By (31),

x
σ f
1 = x1+x

Δ f
1 = ux22 and x

σ f
1 = ux2. Dividing the first equation by the second gives

us (x1 · x−1
2 )σ f = x2, which yields after application of the backward jump operator

x
σ−1
f

2 = x1 ·x−1
2 . Hence (a1, a2)T = (−1, x1 ·x−1

2 )T andH2 = spanK∗{a1η1+a2η2} =
spanK∗{−dx1+x1 ·x−1

2 dx2} = spanK∗{x−1
2 dx1−x1 ·x−2

2 dx2} = spanK∗{d(x1 ·x−1
2 )}.

For computing H3, one may choose η1 = −x2dx1 + x1dx2 and ϑ = dx1. Then,

η
Δ f
1 = x2dx1 − (x1u2x22 )dx2 = −[1 + (u2x22 x

−1
1 )]η1 − (u2x32 x

−1
1 )ϑ . From here

c11 = −u2x32 x
−1
1 �= 0. Since the system a

σ f
1 c11 = 0 does not admit a non-zero

solution, the subspace H3 = {0}.
According to Proposition 3, k∗ = 3. Since Assumption 1 is satisfied and all the

subspacesHk , 1 � k � 3, are locally integrable, the conditions of Theorem 2 are ful-
filled and thus, system (31) is generically locally linearizable by static state feedback.
One may choose4 new state variables as x̂1 := x1x

−1
2 , x̂2 := x2 − x1x

−1
2 . In these

variables, the system takes linearized form:

x̂Δ
1 = x̂2
x̂Δ
2 = v,

where v = (u − 1)x̂1 + (u − 2)x̂2. We could consider the system on R
2, but in order

to guarantee the constant dimensions of codistributionsHk , k � 2 the state space has
to be reduced to {(x1, x2) : x1 �= 0, x2 �= 0}.
Remark 10 Note that for the systems defined on the homogeneous time scale with
μ > 0, by (8) and (15), we get ω ∈ Hk+1 if and only if ω ∈ Hk and σ f (ω) ∈ Hk .
Hence

spanK∗
{

ω ∈ Hk | Δ f (ω) ∈ Hk
} = spanK∗

{

ω ∈ Hk | σ f (ω) ∈ Hk
}

and, consequently, Hk+1 in (15) can be alternatively defined as:

Hk+1 = spanK∗
{

ω ∈ Hk | σ f (ω) ∈ Hk
}

4 The next example describes this process in details.
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like in [2] where the shift operator is used in the description of the subspaces of
differential one-forms. Therefore, for the discrete-time systems the subspaces Hk ,
k � 0, defined by (15), are the same as in [2], but the formalism used in the description
of the subspaces is different. We base on difference operator that is a special case of
delta derivative while in [2] the shift operator formalism is used. Additionally, using
the delta-domain approach we have one description that works for both the continuous
and discrete systems. Though the computation of the delta-derivative is different in
the continuous- and discrete-time cases, the results obtained by means of it are the
same for both time domains.

Example 3 Consider a nonlinear control system defined on homogeneous time scale
T with μ � 0:

xΔ
1 = x4x6

x3
xΔ
2 = u2 + (1 + u1)x6

xΔ
3 = 1

x26
(x23 + μx3x6(u2 + u1x6) + x36(u2 + u1x6))

xΔ
4 = μu22 + u1x4x26

x3
+ u2

(

x3
x6

+ μu1x6 + x4x6
x3

)

xΔ
5 = x2 − x3

x6

xΔ
6 = x3

x6
,

(32)

where (x1, . . . , x6) ∈ X = {x | x3 �= 0 and x6 �= 0} ⊂ R
6 and (u1, u2) ∈ U = R

2.
The algorithm given in the proof of Proposition 8 allows to find the subspacesHk :

H0 = spanK∗ {dx1, . . . , dx6, du1, du2}
H1 = spanK∗ {dx1, . . . , dx6}
H2 = spanK∗

{

dx1, dx5, dx6, d

(

x2 − x3
x6

)}

H3 = spanK∗

{

dx5, d

(

x2 − x3
x6

)}

H4 = spanK∗ {dx5}
H5 = {0}.

The conditions of Theorem 2 are satisfied for (32), thus (32) is generically locally
linearizable by static state feedback and can be represented in the form (29). Note
that the computations below can be done even if some of Hk’s are non-integrable.
Namely, one may always find the linearized system equations in terms of one-forms,
not necessarily exact, as in (25).

Following the proof of Theorem 1, we construct the sets Wk , k = k∗, . . . , 1,
necessary tofind the state transformations to linearize the equations.Obviously,Wk∗ =
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W5 = 0. Then, one has to chooseWk∗−1 = W4 in a such manner that the elements of
W5 ∪WΔ

5 ∪W4 form a basis forH4. Obviously,W4 = {dx5}. As a next step, one has
to findW3 such thatW5 ∪WΔ f

5 ∪WΔ2
f

5 ∪W4 ∪WΔ f
4 ∪W3 is the basis forH3. The

setsW4 andWΔ f
4 = {dxΔ f

5 } = {d(x2 − x3
x6

)} spanH3, henceW3 = ∅. Next, we find
W2 such thatW5 ∪ · · · ∪WΔ3

f
5 ∪W4 ∪WΔ f

4 ∪WΔ2
f

4 ∪W3 ∪WΔ f
3 ∪W2 is the basis

forH2. The setW
Δ2

f
4 = {[d(x2 − x3

x6
)]Δ f } = {dx6}, thus we may chooseW2 = {dx1}.

On the last step, we have to find W1; regarding that WΔ3
f

4 = {dxΔ f
6 } = {d( x3x6 )} and

WΔ f
2 = {dxΔ f

1 } = {d( x4x6x3
)} it follows that W1 = ∅. Finally, we may take ω1 = dx5

and ω2 = dx1, and their relative degrees are r1 = 4 and r2 = 2, respectively.
In terms of Corollary 2, the one-forms ω1,1 = dx5, ω1,2 = d(x2 − x3

x6
), ω1,3 = dx6,

ω1,4 = d( x3x6 ), ω2,1 = dx1 and ω2,2 = d( x4x6x3
), and

ω
Δ f
1,1 = ω1,2

ω
Δ f
1,2 = ω1,3

ω
Δ f
1,3 = ω1,4

ω
Δ f
1,4 = u1ω1,3 + x6du1 + du2

ω
Δ f
2,1 = ω2,2

ω
Δ f
2,2 = du2.

Since the assumptions of Theorem2 are satisfied, the new state variables can be defined
as follows: x̂1 := x5, x̂2 := x2 − x3

x6
, x̂3 := x6, x̂4 := x3

x6
, x̂5 := x1 and x̂6 := x4x6

x3
. In

these coordinates, the system takes the linearized form:

x̂Δ
1 = x̂2
x̂Δ
2 = x̂3
x̂Δ
3 = x̂4
x̂Δ
4 = v1

x̂Δ
5 = x̂6

x̂Δ
6 = v2,

where v1 = u2 + u1 x̂3 and v2 = u2.

Let us now give the example where the integrability of Hk depends on the time
scale.

Example 4 Consider a nonlinear control system defined on homogeneous time scale
T with μ � 0:
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xΔ
1 = (x1 + μx3)u2x2

xΔ
2 = u1 + x4

xΔ
3 = u2x2 + x3

xΔ
4 = u1 + x1x3,

(33)

where (x1, . . . , x4) ∈ X ⊂ R
4 and (u1, u2) ∈ R

2.
LetS := {(x, u1, u2, x 〈−1〉

3 ) | x1 �= 0, x2 �= 0, x3 �= 0 and 1+x3−(1+μ)x 〈−1〉
3 �=

0} be the subset of X × U × R. Then, one gets the following subspaces:

H1 = spanK∗{dx1, dx2, dx3, dx4},
H2 = spanK∗{dx2 − dx4, ((1 + μ)x 〈−1〉

3 − 1 − x3)dx1 + (x1 + μx 〈−1〉
3 )dx3},

which define constant-dimensional codistributions on S. Note that if μ �= 0, then
in general H2 is not integrable. For μ = 0, x 〈−1〉

3 = σ−1
f (x3) = x3, 1 + x3 −

(1 + μ)x 〈−1〉
3 = 1 �= 0 and H2 = spanK∗{dx2 − dx4,−dx1 + x1dx3} is integrable.

Therefore, for μ = 0, the conditions of Theorem 2 are satisfied and one may define
new state variables as:

x̂1 := e−x3x1

x̂2 := −e−x3x1x3
x̂3 := x2 − x4
x̂4 := x4 − x1x3.

Hence the coordinates xi can be expressed in terms of x̂i as follows:

x1 = e−x̂2/x̂1 x̂1

x2 = −e−x̂2/x̂1 x̂2 + x̂3 + x̂4

x3 = − x̂2
x̂1

x4 = −e−x̂2/x̂1 x̂2 + x̂4.

For μ = 0, in the new coordinates system (33) takes the linearized form:

x̂Δ
1 = x̂2

x̂Δ
2 = v1

x̂Δ
3 = x̂4

x̂Δ
4 = v2,

where v1 = (1+e−x̂2/x̂1u2 x̂1)x̂2+x̂22/x̂1−u2 x̂1(x̂3+x̂4) and v2 = u1−e−x̂2/x̂1u2(x̂1−
x̂2)(e−x̂2/x̂1 x̂2 − x̂3 − x̂4).
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5 Conclusions

In the paper, the necessary and sufficient conditions for the generic local static state
feedback linearizability of nonlinear control systems defined on homogeneous time
scales are given. Our main contribution has been to show the properties of subspaces
of differential one-forms that contain considerable structural information about the
system. Then, one of the main results, i.e., necessary and sufficient conditions for
generic local linearizability by static state feedback, are formulated in terms of these
subspaces. Our future goal is devoted to extend the results to non-homogeneous but
regular time scales.
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Appendix: The proof of Proposition 6

Proof Let ω̂ = ω̂x + ω̂u + ω̂z ∈ ̂E , where ω̂x = ∑

i

̂Aidx̂i , ω̂u = ∑

k�0

m
∑

j=1

̂Bjkdu
[k]
j

and ω̂z = ∑

��1

m
∑

s=1

̂Cs�dz
〈−�〉
s . Then, ξ∗ (ω̂) ∈ E and by (19) and (20) we get

ξ∗
(

ω̂
̂Δ f̂
x

)

= ξ∗
(

∑

i

̂A
̂Δ f̂
i dx̂i +

∑

i

̂A
σ̂ f̂
i

[

dx̂i
]
̂Δ f̂

)

=
∑

i

[

ξ∗
(

̂A
̂Δ f̂
i

)

dξi (x) + ξ∗
(

̂A
σ̂ f̂
i

)

[dξi (x)]
Δ f

]

=
∑

i

⎧

⎪

⎨

⎪

⎩

[

ξ∗ (
̂Ai
)]Δ f

∑

j

∂ξi

∂x j
dx j + [ξ∗ (

̂Ai
)]σ f

⎡

⎣

∑

j

∂ξi

∂x j
dx j

⎤

⎦

Δ f
⎫

⎪

⎬

⎪

⎭

=
∑

i

∑

j

{

[

ξ∗ (
̂Ai
)]Δ f ∂ξi

∂x j
dx j + [ξ∗ (

̂Ai
)]σ f

[

(

∂ξi

∂x j

)Δ f

dx j

+
(

∂ξi

∂x j

)σ f
[

dx j
]Δ f

]}

=
∑

i

∑

j

{

[

ξ∗ (
̂Ai
) ∂ξi

∂x j

]Δ f

dx j +
[

ξ∗ (
̂Ai
) ∂ξi

∂x j

]σ f
[

dx j
]Δ f

}
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=
⎡

⎣

∑

i

∑

j

ξ∗ (
̂Ai
) ∂ξi

∂x j
dx j

⎤

⎦

Δ f

=
⎡

⎣

∑

i

∑

j

ξ∗ (
̂Ai
) ∂ξi

∂x j
dx j

⎤

⎦

Δ f

= [

ξ∗ (ω̂x )
]Δ f ,

ξ∗
(

ω̂
̂Δ f̂
u

)

= ξ∗
⎛

⎝

∑

k�0

m
∑

j=1

[

̂B
̂Δ f̂
j k du[k]

j + ̂B
σ̂ f̂
j k du

[k+1]
j

]

⎞

⎠

=
∑

k�0

m
∑

j=1

[

ξ∗
(

̂B
̂Δ f̂
j k

)

du[k]
j + ξ∗

(

̂B
σ̂ f̂
j k

)

du[k+1]
j

]

=
∑

k�0

m
∑

j=1

[

(

ξ∗ (
̂Bjk
))Δ f du[k]

j + (ξ∗ (
̂Bjk
))σ f du[k+1]

j

]

=
⎛

⎝

∑

k�0

m
∑

j=1

ξ∗ (
̂Bjk
)

du[k]
j

⎞

⎠

Δ f

=
⎡

⎣ξ∗
⎛

⎝

∑

k�0

m
∑

j=1

̂Bjkdu
[k]
j

⎞

⎠

⎤

⎦

Δ f

= [

ξ∗ (ω̂u)
]Δ f

and similarly

ξ∗
(

ω̂
̂Δ f̂
z

)

= ξ∗
⎛

⎝

∑

��1

m
∑

s=1

[

̂C
̂Δ f̂
s� dz〈−�〉

s + ̂C σ̂ f̂
s�

[

dz〈−�〉
s

]
̂Δ f̂

)

⎤

⎦

=
∑

��1

m
∑

s=1

[

ξ∗
(

̂C
̂Δ f̂
s�

)

dz〈−�〉
s + ξ∗

(

̂C
σ̂ f̂
s�

)

[

dz〈−�〉
s

]Δ f
]

=
∑

��1

m
∑

s=1

[

(

ξ∗ (
̂Cs�
))Δ f dz〈−�〉

s + (ξ∗ (
̂Cs�
))σ f

[

dz〈−�〉
s

]Δ f
]

=
∑

��1

m
∑

s=1

(

ξ∗ (
̂Cs�
)

dz〈−�〉
s

)Δ f =
⎡

⎣ξ∗
⎛

⎝

∑

��1

m
∑

s=1

(

̂Cs�
)

dz〈−�〉
s

⎞

⎠

⎤

⎦

Δ f

= [

ξ∗ (ω̂z)
]Δ f .

Hence

ξ∗ (ω̂̂Δ f̂

)

= ξ∗
(

ω̂
̂Δ f̂
x + ω̂

̂Δ f̂
u + ω̂

̂Δ f̂
z

)

= ξ∗
(

ω̂
̂Δ f̂
x

)

+ ξ∗
(

ω̂
̂Δ f̂
u

)

+ ξ∗
(

ω̂
̂Δ f̂
z

)

= [

ξ∗ (ω̂x )
]Δ f + [ξ∗ (ω̂u)

]Δ f + [ξ∗ (ω̂z)
]Δ f

= [

ξ∗ (ω̂x ) + ξ∗ (ω̂u) + ξ∗ (ω̂z)
]Δ f

= [

ξ∗ (ω̂x + ω̂u + ω̂z)
]Δ f = [ξ∗ (ω̂)

]Δ f .

Therefore (21) holds.
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