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Abstract We present several results giving some estimates for the error in best poly-
nomial approximation of holomorphic functions on compact subsets of R

N . We base
our approach on the Bernstein–Walsh–Siciak theorem, which states in terms of the
Siciak extremal function how fast a holomorphic function, defined in an appropriate
neighborhood of a compact L-regular set K ⊂ C

N , can be approximated on K by
complex polynomials. Our purpose is among others to state a result for an arbitrary
compact subset of R

N (not necessarily L-regular) and to replace the Siciak extremal
function (which can hardly ever be computed, especially if N > 1) simply by the
distance function to K .
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1 Introduction

We identify R
N with the set {z ∈ C

N : Im(zν) = 0 for ν = 1, . . . , N }. Throughout
the paper, N := {1, 2, 3, . . .}.
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For a nonempty set A ⊂ C
N and h : A −→ C

N ′
, we set ‖h‖A := supz∈A |h(z)|,

where | | denotes the Euclidean norm in C
N ′

. If ∅ �= A ⊂ B ⊂ C
N and ξ : B −→ C,

then for each n ∈ N, we write

En(ξ ; A) := inf
{‖ξ − Q‖A : Q ∈ C[z], deg Q ≤ n

}
.

Suppose that U ⊂ C
N is a nonempty open set. We will denote by H∞(U ) the

Banach space of all bounded and holomorphic functions in U (with the norm ‖ ‖U ).
The problem of approximation of holomorphic functions (of several variables)

was studied by many authors – see, for example, [4–10,16,32,33,37] and the huge
bibliography therein. Our aim is among others to prove Theorems 1.1 and 1.2. Theorem
1.1 is the basis for Theorem 1.2, which directly concerns the polynomial approximation
of holomorphic functions.

Theorem 1.1 There exists a constant εN > 0 (depending only on N ∈ N) such that,
for each compact set K ⊂ R

N containing at least two distinct points,

�K (z) ≥ 1 + εN

diamK
dist(z; K ),

for all z ∈ C
N .1

Theorem 1.2 Let K ⊂ R
N be a compact set containing at least two distinct points.

For each λ > 0, set Kλ := {z ∈ C
N : dist(z; K ) < λ}. Assume that 0 < υ < ς(K ).2

Then, there exists a function ϑ : (0,+∞) −→ (0,+∞) (depending on K and υ)
such that, for each λ ∈ (0,+∞), each f ∈ H∞(Kλ), and each n ∈ N,

En( f ; K ) ≤ ϑ(λ)‖ f ‖Kλ

(1 + υλ)n
.

The proof of Theorem 1.2 relies on Theorem 3.1, which is usually called the
Bernstein–Walsh–Siciak theorem. Theorem 3.1 is a very precise version of the Oka–
Weil theorem, but when we want to apply this theorem directly, we encounter a sig-
nificant inconvenience. Namely, it uses the sets of the form {z ∈ C

N : �K (z) < R},
where �K is the Siciak extremal function and R > 1. The problem is that the func-
tion �K can hardly ever be computed (even for very simple sets). The advantage of
our approach is that the sets {z ∈ C

N : �K (z) < R} are replaced by the natural
sets Kλ = {z ∈ C

N : dist(z; K ) < λ}. It should be stressed, however, that there
is also a disadvantage of such an approach. This is underlined in Remark 6.6. As
we explain in the example following Corollary 5.5, for the set K := [−1, 1] and
the family of functions fλ : Kλ � w 
−→ 1/(w − iλ) ∈ C with λ ∈ (0,+∞),
the estimate of Corollary 4.1 (which is very closely connected with Theorem 1.2) is
asymptotically exact as λ → 0. On the other hand, this is not the case for the family

1 �K denotes the Siciak extremal function (see Sect. 3) and diamK stands for the diameter of K .
2 The constant ς(K ) is a certain constant depending on K and is precisely defined in Sect. 4 via Theorem
1.1.
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gλ : Kλ � w 
−→ 1/(w − λ − 1) ∈ C (cf. the example following Remark 6.6). We
will try to explain this phenomenon now. First of all, note that Kλ is the rectangle in
the complex plane with corners (±1,±λ) with semicircles of radius λ attached to the
left and right sides, i.e., the “racetrack”. By Corollary 4.1 and the example following
Corollary 5.5, for each holomorphic function f : Kλ −→ C,

lim sup
n→∞

n
√

En( f ; K ) ≤ 1

R
,

where R := 1 + λ. However, it is well known (the Bernstein theorem) that the region
of analyticity sufficient in order to attain this order of approximation is the set

D(R) := {w ∈ C : �K (w) < R} = {w ∈ C : |w +
√

w2 − 1| < R},

which is an ellipse with the major and minor semiaxes equal to (R + 1/R)/2 and
(R − 1/R)/2, respectively. Consider now two cases.

Case 1: λ is small. Then,

1

2

(
R − 1

R

)
= λ

2 + λ

2(1 + λ)
≈ λ.

This means that the sets Kλ and D(R) are very close to each other in the vertical
direction near the origin (note that the singular points of the functions fλ defined
above lie just on the vertical line iR). On the other hand,

1

2

(
R + 1

R

)
− 1 = λ2

2(1 + λ)
≈ λ2

2
.

This means that the sets Kλ and D(R) are not very close to each other in the horizontal
direction (note that the singular points of the functions gλ defined above lie just on the
horizontal line R).

Case 2: λ is large. Then, the sets Kλ and D(R) differ significantly. The first one
is close to a disc of radius R, while the second is close to a disc of radius R/2.
Moreover, if f is holomorphic on the disc {w ∈ C : |w| < R}, then the estimate
lim supn→∞ n

√
En( f ; K ) ≤ 1/R is easily obtained, via the Cauchy estimates, by

considering the n-th Taylor polynomial for f.
To sum up:

• Theorem 1.2 gives new information if �K is not calculable (or is calculable, but its
expression is complicated) and λ’s are small.

• If �K is calculable (this is a very rare situation), then of course the Bernstein–
Walsh–Siciak theorem gives better bounds for the error in best approximation by
polynomials. However, in some situations, (as indicated above) the estimates of The-
orem 1.2 are very close to the corresponding estimates obtained via the Bernstein–
Walsh–Siciak theorem.
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• If λ’s are large (compared with the set K ), then perhaps Theorem 1.2 is not very
interesting, because then the sets Kλ’s are very nearly balls and then constructive
processes such as Taylor polynomials can be used to obtain similar estimates (see
the example above).

Note that the sets Kλ are just the sublevel sets of the distance function. Of course,
the idea of the study of the error in best polynomial approximation of holomorphic
functions (or the study of convergence of interpolatory processes) in terms of the
appropriate sublevel sets is not new. For example, Walsh considered these problems
in terms of the sublevel sets {z : G K (z) < λ}, where G K is the Green function for
K (K is a compact, regular subset of C) – see [16]. In several variables, we refer the
reader to the papers [32,33] of Siciak who considered the above mentioned sublevel
sets of his extremal function (see also [7], where a problem of convergence of Kergin
interpolating polynomials of a holomorphic function is considered).

The sets Kλ appear for example in [11]. Davis gives some results concerning the
speed of convergence of some interpolating polynomials of a holomorphic function
defined in the lemniscate interior, that is, in the set {z : |P(z)| < λ}, where P is a
complex polynomial of one variable. The sets Kλ are mentioned at the end of Chapter
IV of [11], in the context of the Hilbert theorem (on approximation by the lemniscates).

Theorem 1.2 gives an upper bound for the error in best polynomial approximation
of holomorphic functions on compact subsets of R

N . In Sects. 6, 7, and 8, we also
investigate the problem of estimating this error from below (see Theorems 6.3, 7.4, and
Corollary 7.5). However, contrary to Theorem 1.2, Theorem 6.3 requires an additional
assumption on the set.

2 Preliminaries

Recall that a set A ⊂ C
N is said to be locally analytic in C

N if for each point
a ∈ A, there exists an open neighborhood U ⊂ C

N and holomorphic functions
ξ1, . . . , ξq : U −→ C such that

A ∩ U = {z ∈ U : ξ1(z) = . . . = ξq(z) = 0}.

This concept will be used in Sect. 7.
Suppose that ∅ �= A ⊂ B ⊂ C

N , and denote by B(B; C) the Banach space of all
bounded functions ξ : B −→ C (with the norm ‖ ‖B). Let n ∈ N. It is straightforward
to check that:

• For each ξ ∈ B(B; C) and α ∈ C,

En(αξ ; A) = |α|En(ξ ; A).

• For all ξ1, ξ2 ∈ B(B; C),

|En(ξ1; A) − En(ξ2; A)| ≤ En(ξ1 − ξ2; A) ≤ ‖ξ1 − ξ2‖B .

In particular, the function B(B; C) � ξ 
−→ En(ξ ; A) ∈ R is continuous.
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• If (rn) is a sequence of real numbers, then the set

{ξ ∈ B(B; C) | ∀ n ∈ N : En(ξ ; A) ≤ rn‖ξ‖B}

is closed in B(B; C).

Lemma 2.1 ([22]) Let X be a Banach space over the field K (K = C or K = R).
Suppose that a sequence of sets Vk ⊂ X (k ∈ N) satisfies the following conditions:

(1) Int
(⋃

k∈N
Vk

) �= ∅;
(2) For each k ∈ N, there exist j1, j2 ∈ N such that V k ⊂ Vj1 and [0,+∞) ·

Vk ⊂ Vj2 ;
(3) For each j ∈ N, x0 ∈ Vj , and r > 0, there exists μ = μ( j, x0, r) ∈ N such that

(Vj − x0) ∩ {x ∈ X : ‖x‖ = r} ⊂ Vμ.

Then, X = Vk0 for some k0 ∈ N.

Proof See [22], Lemma 2.3. ��

3 A Proof of Theorem 1.1

Theorem 1.1 concerns Siciak’s extremal function. Recall that the extremal function,
associated with a compact set K ⊂ C

N and introduced by Siciak in [32], is defined
by the formula

�K (z) := sup{|P(z)|1/deg P : P ∈ C[z] is nonconstant and ‖P‖K ≤ 1}

for z ∈ C
N (cf. [14,30,32,33]). It is a deep result that log �K = VK , where

VK (z) := sup{u(z) : u ∈ L(CN ), u ≤ 0 on K }

and L(CN ) denotes the Lelong class of plurisubharmonic functions in C
N with min-

imal growth of type 1 (cf. [14,33,39]). Note that the definition of VK makes sense
for any subset of C

N – not necessarily compact. The extremal function is a very
useful tool in real and complex analysis (for example, in the theory of holomorphic
functions, in approximation theory, as well as in potential and pluripotential theory).
In general, as we noted before, an effective formula for �K is unknown, even for
very simple sets. For some very particular sets, it is however computed. For example,
�[−1, 1](w) = |w + √

w2 − 1| for w ∈ C, where the square root is so chosen that
�[−1, 1] ≥ 1.

It is particularly important to recognize, given a point a ∈ K , whether �K is
continuous at a (if so, then we say that K is L-regular at a). This problem was studied
among others in [14,15,18–21,24–27,29,31–33]. A compact set K ⊂ C

N is said to
be L-regular if �K is continuous in C

N . The continuity of �K in C
N is equivalent to

the continuity of �K on K (cf. [33], Proposition 6.1).
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Below, we state two results relevant to the proofs of Theorems 1.1 and 1.2. The
first one is due to Siciak (cf. [32,33]), but because of the contributions made in one
variable (i.e., for N = 1) by Bernstein and Walsh (cf. [1,38]), it is often called the
Bernstein–Walsh–Siciak theorem.

Theorem 3.1 (Siciak) Assume that a nonempty compact set K ⊂ C
N is L-regular.

Suppose that R > 1 and f : D(R) −→ C is holomorphic, where D(R) := {z ∈ C
N :

�K (z) < R}. Then,

lim sup
n→∞

n
√

En( f ; K ) ≤ 1

R
.

Proof Cf. [32] (see also [33], Theorem 8.5). ��

Lemma 3.2 Assume that K ⊂ R
N is a compact set containing at least two distinct

points. Then, for each z ∈ C
N ,

�K (z) ≥ 1 + �(z) dist(z; K ),

where �(z) :=
√

(diamK )−1 (diamK + 2 dist(Re(z); K ))−1.

Proof Fix a ∈ C
N . Set b := Re(a), δ := (dist(b; K ))2, δ′ := (dist(a; K ))2. It is

straightforward to check that δ′ = δ+|Im(a)|2. Let moreover R := diamK
(
diamK +

2
√

δ
)
. Define

Ka :=
{

x ∈ R
N : √

δ ≤ |x − b| ≤ √
R + δ

}
.

Note that K ⊂ Ka . Consider the polynomial

ϒ : C
N � z 
−→ R + δ −

∑
(zν − bν)

2 ∈ C.

An easy computation shows that

• ϒ(Ka) = [0, R],
• ϒ (a) = R + δ′.

Claim 1 �K (a) ≥ √
�ϒ(Ka) (ϒ(a)).

By the definition of Siciak’s extremal function, we obtain easily the following estimates
(which imply Claim 1):

�K (a) ≥ �Ka (a) ≥ √
�ϒ(Ka) (ϒ(a)).

Claim 2 �K (a) ≥ 1 + √
R−1 dist(a; K ).
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Since ϒ(Ka) = [0, R], it follows that

�ϒ(Ka) (ϒ(a)) = �[0, R] (ϒ(a)) = �[−1, 1]
(

2ϒ(a)

R
− 1

)

= �[−1, 1]
(

2(R + δ′)
R

− 1

)
=

(√
R + δ′ + √

δ′
)2

R
.

According to Claim 1, we obtain therefore

�K (a) ≥ √
�ϒ(Ka) (ϒ(a)) =

√
R + δ′ + √

δ′
√

R
≥ 1 +

√
δ′
R

= 1 + 1√
R

dist(a; K ),

which is the desired estimate.
Obviously, Claim 2 completes the proof of our lemma. ��
Białas-Cież and Kosek claim in [2] that so far very few examples of sets with so–

called Łojasiewicz–Siciak property are known. Their paper is devoted to the problem
of delivering some new examples of such sets (which are connected with iterated
function systems). Recall that a compact set K ⊂ C

N satisfies the Łojasiewicz–Siciak
condition if it is polynomially convex,3 and there exist constants σ > 0, ρ > 0 such
that

�K (z) ≥ 1 + ρ (dist(z; K ))σ as dist(z; K ) ≤ 1 (z ∈ C
N ).

We note in [23] that a straightforward consequence of Lemma 3.2 is that each compact
subset of R

N satisfies the Łojasiewicz–Siciak condition with the exponent 1. However,
this is insufficient for our purpose, and we will need Theorem 1.1 which is a more
precise result.

Proof of Theorem 1.1 Take ε ∈ (0, 1) and fix a ∈ C
N . We will show that

�K (a) ≥ 1 + εN

η
dist(a; K ), (1)

where

η := diamK , εN := min

{
ε√
N

,

√
1 − ε

1 − ε + 2
√

N

}

.

Choose a′ = (a′
1, . . . , a′

N ) ∈ K , and let C := C1 × · · · × CN , where Cν := {w ∈
C : |w − a′

ν | ≤ η} (ν = 1, . . . , N ). Clearly, K ⊂ C . We will show first that, for all
z ∈ C

N ,

3 We call a compact set K ⊂ C
N polynomially convex if

K = K̂ :=
{

z ∈ C
N : |Q(z)| ≤ ‖Q‖K for each Q ∈ C[z1, . . . , zN ]

}
.
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�C (z) ≥ 1 + 1√
Nη

dist(z; C). (2)

Since �C ≡ 1 in C ,4 it is sufficient to prove (2) for z ∈ C
N \ C . Assume, therefore,

that z ∈ C
N \ C . Since |zν0 − a′

ν0
| > η for some ν0 ≤ N , we get

�C (z) ≥ max
ν

{
1

η
|zν − a′

ν |
}

= max
ν

{
1 + 1

η
dist(zν; Cν)

}

(the inequality follows easily from the definition of �C ). Consequently,

�C (z) ≥ 1 + max
ν

{
1

η
dist(zν; Cν)

}
≥ 1 + 1√

Nη
dist(z; C).

The proof of (2) is complete.

Case 1: dist(a; C) ≥ ε dist(a; K ). Then, on account of (2),

�K (a) ≥ �C (a) ≥ 1+ 1√
Nη

dist(a; C)≥1+ ε√
Nη

dist(a; K )≥1+ εN

η
dist(a; K ).

Case 2: dist(a; C) ≤ ε dist(a; K ). Take y ∈ C such that |a − y| = dist(a; C).
We have

dist(a; K ) ≤ |a−a′| ≤ |a−y|+|a′−y| ≤ dist(a; C)+√
Nη≤ε dist(a; K )+√

Nη.

Therefore, dist(a; K ) ≤
√

Nη

1 − ε
. Combining this with Lemma 3.2, we get

�K (a) ≥ 1 + 1√
η (η + 2dist(a; K ))

dist(a; K )

≥ 1 + 1

η

√
1 − ε

1 − ε + 2
√

N
dist(a; K )

≥ 1 + εN

η
dist(a; K ).

The proof of (1) is complete. ��
Remark 3.3 Assume that σ �= 1. In Theorem 1.1, if we replace dist(z; K ) by
(dist(z; K ))σ , then in general the inequality under consideration does not hold
(even for convex sets). Set K := [−1, 1]N . Since �K (z) = max{�[−1, 1](z1), . . . ,

�[−1, 1](zN )} (cf. [32]), it follows that, for all t ≥ 0,

�K (i t, . . . , i t) = t +
√

t2 + 1 ≤ 1 + 2t = 1 + 2√
N

dist
(
(i t, . . . , i t); K

)
.

4 This is an elementary property of the Siciak extremal function.
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4 A Proof of Theorem 1.2

For each N ∈ N, set

γN := sup{εN > 0 : Theorem 1.1 holds with εN }.

The following problem seems to be interesting.

Problem Find explicitly the constant γN .

Since there are compact sets E ⊂ R
N such that �E �≡ +∞ in C

N \ E (for example,
E := [−1, 1]N or in general nonpluripolar sets), it follows that γN ∈ (0,+∞).
Clearly, for each compact set K ⊂ R

N containing at least two different points,

�K (z) ≥ 1 + γN

diamK
dist(z; K ),

for all z ∈ C
N .

Assume that K ⊂ R
N is a nonempty compact set such that �K �≡ +∞ in C

N \ K .
Define

ς(K ) := sup{ς > 0 : �K (z) ≥ 1 + ς dist(z; K ) ∀z ∈ C
N }.

(Note that the supremum above is taken over a nonempty set, because γN /diamK
belongs to the set under consideration.) Clearly, ς(K ) ∈ (0,+∞).

To sum up: if K ⊂ R
N is a nonempty compact set such that �K �≡ +∞ in C

N \ K ,
then

�K (z) ≥ 1 + ς(K )dist(z; K ) ≥ 1 + γN

diamK
dist(z; K ),

for all z ∈ C
N .

Let K ⊂ R
N be a compact set containing at least two distinct points. Define

ς(K ) :=
⎧
⎨

⎩

ς(K ) if �K �≡ +∞ in C
N \ K ,

γN

diamK
otherwise.

In the above expression for ς(K ), we can set any positive real number instead of
γN /diamK . We cannot however write simply ς(K ), because ς(K ) = +∞ if �K ≡
+∞ in C

N \ K . This is the reason why we consider two cases.

Proof of Theorem 1.2 Fix λ ∈ (0,+∞). We will show first that, for each holomorphic
function g : Kλ −→ C,

lim sup
n→∞

n
√

En(g; K ) ≤ 1

1 + ς(K )λ
. (3)
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To this end, fix ε ∈ (0, ς(K )λ) and write

α = α(ε) := 1 + ς(K )λ − ε ∈ (1,+∞),

β = β(ε) :=
√

α(ε)

1 + ς(K )λ
∈ (0, 1).

Since ε can be made arbitrarily small, it suffices to show that

lim sup
n→∞

n
√

En(g; K ) ≤ 1

α
. (4)

For each j ∈ N, set

K〈 j〉 :=
⋃

x∈K

(

x +
[
−1

j
,

1

j

]N
)

.

We easily verify that K〈 j〉 is a compact L-regular set. Moreover, for each z ∈ C
N , we

have

�K〈 j〉(z) ≥ 1 + ς(K〈 j〉)dist(z; K〈 j〉)

and therefore

�K〈 j〉(z) ≤ α �⇒ dist(z; K〈 j〉) ≤ α − 1

ς(K〈 j〉)
.

In particular,

T〈 j〉 :=
{

z ∈ C
N : �K〈 j〉(z) ≤ α

}
\ Kλ

=
{

z ∈ C
N : �K〈 j〉(z) ≤ α, dist(z; K〈 j〉) ≤ α − 1

ς(K〈 j〉)

}
\ Kλ.

Case 1: T〈 j0〉 = ∅ for some j0 ∈ N. Then,

{
z ∈ C

N : �K〈 j0〉(z) ≤ α
}

⊂ Kλ.

Since α > 1 and K〈 j0〉 is L-regular, it follows by Theorem 3.1 that

lim sup
n→∞

n
√

En(g; K ) ≤ lim sup
n→∞

n
√

En(g; K〈 j0〉) ≤ 1

α
,

which yields (4).
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Case 2: T〈 j〉 �= ∅ for each j ∈ N. Take a ∈ ⋂
j∈N

T〈 j〉.5 In particular, a �∈ Kλ,
that is, dist(a; K ) ≥ λ. Since

�K (a) ≥ 1 + ς(K )dist(a; K ) > β(1 + ς(K )λ),

it follows by the definition of the Siciak extremal function that there exists a noncon-
stant polynomial P : C

N −→ C such that ‖P‖K ≤ 1 and

|P(a)|1/deg P > β(1 + ς(K )λ).

The set
{
z ∈ C

N : |P(z)| < β− deg P
}

is an open neighborhood of K . Consequently,
if j ∈ N is sufficiently large, then

K〈 j〉 ⊂
{

z ∈ C
N : |P(z)| ≤ β− deg P

}

and therefore (again by the definition of the Siciak extremal function)

�K〈 j〉(a) ≥
(
βdeg P |P(a)|

)1/deg P
> β2(1 + ς(K )λ) = α.

This is however impossible, because a ∈ T〈 j〉.
The proof of (3) is complete. Fix now a positive number υ < ς(K ). If f ∈

H∞(Kλ), then according to (3) there exists a constant M( f ) > 0 such that

En( f ; K ) ≤ M( f )‖ f ‖Kλ

(1 + υλ)n

for each n ∈ N. Consequently, H∞(Kλ) = ⋃
k∈N

Vk(K , υ, λ), where

Vk(K , υ, λ) := {
f ∈ H∞(Kλ) | ∀ n ∈ N : En( f ; K ) ≤ k‖ f ‖Kλ(1 + υλ)−n} .

Moreover, for each k ∈ N, Vk(K , υ, λ) is closed in H∞(Kλ) and C · Vk(K , υ, λ) =
Vk(K , υ, λ). Therefore, the assumptions (1) and (2) of Lemma 2.1 are satisfied (as
the Banach space X we take H∞(Kλ)). We will now check that the assumption (3) is
fulfilled as well.

To this end, fix j ∈ N, h0 ∈ Vj (K , υ, λ), and r > 0. Let μ ∈ N be the smallest
integer such that μ ≥ j (1 + 2r−1‖h0‖Kλ). It is enough to verify that the following
implication

(
h ∈ Vj (K , υ, λ) , ‖h − h0‖Kλ = r

)
�⇒ h − h0 ∈ Vμ(K , υ, λ)

holds true. Assume therefore that h ∈ Vj (K , υ, λ). Note that, for each n ∈ N,

En(h0; K ) ≤ j‖h0‖Kλ(1 + υλ)−n, En(h; K ) ≤ j‖h‖Kλ(1 + υλ)−n .

5 Note that the sets T〈 j〉 are compact and T〈1〉 ⊃ T〈2〉 ⊃ T〈3〉 ⊃ · · · , because K〈1〉 ⊃ K〈2〉 ⊃ K〈3〉 ⊃ · · · .
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Moreover,

‖h0‖Kλ + ‖h‖Kλ ≤ 2‖h0‖Kλ + ‖h − h0‖Kλ = 2‖h0‖Kλ + r ≤ μr

j
.

We obtain therefore, for each n ∈ N,

En(h − h0; K ) ≤ En(h0; K ) + En(h; K ) ≤ μr(1 + υλ)−n

= μ‖h − h0‖Kλ(1 + υλ)−n .

This means that the implication under consideration is true.
We have checked that all the assumptions of Lemma 2.1 are satisfied. Consequently,

there exists k0 = k0(K , υ, λ) ∈ N such that H∞(Kλ) = Vk0(K , υ, λ). We set ϑ(λ) :=
k0, and the proof is complete. ��
Corollary 4.1 Let K ⊂ R

N be a compact set containing at least two distinct points.
Then, for each λ ∈ (0,+∞), and each holomorphic function f : Kλ −→ C,

lim sup
n→∞

n
√

En( f ; K ) ≤ 1

1 + ς(K )λ
.

Proof The result follows from the proof of Theorem 1.2, namely from the estimate
(3). ��

5 An Example Concerning Corollary 4.1

Remark 5.1 In the estimate from Corollary 4.1, λ is with the exponent 1. We will show
(see the example below) that even for such a simple set as K := [−1, 1] ⊂ R,

• the exponent 1 cannot be replaced by a smaller one,
• the constant ς(K ) cannot be replaced by a bigger one.

To provide an example, we will need some auxiliary lemmas stated below.

Lemma 5.2 For each w ∈ C such that |w| ≥ 1,

�[−1, 1](w) ≥ |w| +
√

|w|2 − 1.

Proof Set u := |w| + √|w|2 − 1, v := w + √
w2 − 1, where the square root is so

chosen that |v| ≥ 1. Note that

|v| + 1

|v| ≥
∣
∣
∣
∣v + 1

v

∣
∣
∣
∣ = 2|w| = u + 1

u
.

Since the function [1,+∞) � t 
−→ t + t−1 ∈ R is increasing, it follows that |v| ≥ u.
This completes the proof. ��
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Lemma 5.3 For each w ∈ C such that |Re(w)| ≥ 1,

�[−1, 1](w) ≥ |w| + |w − c| ≥ 1 + |w − c|,

where c := 1 if Re(w) ≥ 1 and c := −1 if Re(w) ≤ −1.

Proof Apply Lemma 5.2 along with the obvious estimate: |w|2 ≥ 1 + |w − c|2. ��
Lemma 5.4 For each w ∈ C,

�[−1, 1](w) ≥ 1 + |Im(w)|.

Proof Set v := w+√
w2 − 1, where the square root is as before. Since v+v−1 = 2w,

it follows easily that 2Im(w) = Im(v)
(
1 − |v|−2). Therefore,

|v| ≥ 1 + |v|
2

(
1 − |v|−2

)
≥ 1 + |Im(w)|.

��
Corollary 5.5 For each w ∈ C,

�[−1, 1](w) ≥ 1 + dist (w; [−1, 1]) .

Proof Apply Lemmas 5.3 and 5.4. ��
Example Set K := [−1, 1] ⊂ R. For each λ ∈ (0,+∞), let

Rλ := �[−1, 1](iλ) = λ +
√

λ2 + 1.

Note that

lim
λ→0+

Rλ − 1

λ
= lim

λ→0+
λ − 1 + √

λ2 + 1

λ
= 1. (5)

Therefore, ς(K ) ≤ 1. By Corollary 5.5, ς(K ) ≥ 1. Consequently, ς(K ) = 1. Con-
sider the following function:

fλ : Kλ � w 
−→ 1

w − iλ
∈ C.

For R > 1, let D(R) := {w ∈ C : |w + √
w2 − 1| < R}, where the square root

is chosen as before.6 Note that iλ /∈ D(Rλ) and fλ|K has no holomorphic extension
to D(R ′), for any R ′ > Rλ. By a classical result in approximation theory (due to
Bernstein),

lim sup
n→∞

n
√

En( fλ; K ) = 1

Rλ

6 We easily see that, for example, D(Rλ) is an ellipse with the major and minor semiaxes equal to
√

λ2 + 1
and λ, respectively.
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(see Theorem 13.4 in [28] or Corollary 6.2 in the next section). This along with (5)
proves the two claims in Remark 5.1. ��

6 A Lower Bound Counterpart of Corollary 4.1 for Subanalytic Sets

A subset A ⊂ R
N is said to be semianalytic if, for each point in R

N , we can find a
neighborhood U such that A ∩ U is a finite union of sets of the form

{x ∈ U : ξ(x) = 0, ξ1(x) > 0, . . . , ξq(x) > 0},

where ξ, ξ1, . . . , ξq are (real) analytic functions inU (cf. [17]). A set A ⊂ R
N is called

subanalytic if, for each point in R
N , there exists a neighborhood U such that A ∩ U

is the projection of some relatively compact semianalytic set in R
N+N ′ = R

N × R
N ′

(cf. [3,12,13]).
The following is a generalization of the classical result of Bernstein (stated by

Bernstein for K := [−1, 1] ⊂ R).

Theorem 6.1 (Siciak) Assume that a nonempty compact set K ⊂ C
N is L-regular.

Suppose that ζ > 1 and h : K −→ C has no holomorphic extension to D(ζ ), where
D(ζ ) := {z ∈ C

N : �K (z) < ζ }. Then,

lim sup
n→∞

n
√

En(h; K ) >
1

ζ
.

Proof Cf. [33], Theorem 8.5, and Corollary 8.6. ��
Corollary 6.2 Assume that a nonempty compact set K ⊂ C

N is L-regular. Suppose
that R > 1 and f : D(R) −→ C is a holomorphic function such that f |K has no
holomorphic extension to D(R ′), for any R ′ > R.7 Then,

lim sup
n→∞

n
√

En( f ; K ) = 1

R
.

Proof It follows from Theorems 3.1 and 6.1. ��
Theorem 6.3 Assume that a nonempty compact set K ⊂ R

N is fat 8 and subanalytic.9

Suppose that λ0 > 0. Then, there exists κ > 0, � > 0 such that, for each t ∈ (0, λ0]
and each h : K −→ C which has no holomorphic extension to Kt ,10

lim sup
n→∞

n
√

En(h; K ) >
1

1 + � tκ
.

7 D(R) is as in the previous theorem.
8 We say that a set A is fat if A = Int A.
9 See Remark 6.5 (the assumption that K is subanalytic can be significantly weakened).
10 Recall that Kt := {z ∈ C

N : dist(z; K ) < t}.
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Proof By Theorems 4.1 and 6.4 in [18], there exists κ = κ(λ0) > 0, � = �(λ0) > 0
such that

�K (z) ≤ 1 + � (dist(z; K ))κ

for z ∈ Kλ0 (also see Appendix). In particular, K is L-regular. If t ∈ (0, λ0], then
Kt ⊂ D(1 + � tκ). Now, it is enough to apply Theorem 6.1. ��
Corollary 6.4 Assume that a nonempty compact set K ⊂ R

N is fat and subanalytic.11

Suppose that λ0 > 0. Then, there exists κ > 0, � > 0 such that, for each λ ∈ (0, λ0)

and each holomorphic function f : Kλ −→ C which has no holomorphic extension
to Kλ′ for any λ′ > λ,

1

1 + � λκ
≤ lim sup

n→∞
n
√

En( f ; K ) ≤ 1

1 + ς(K )λ
.

Proof Fix λ ∈ (0, λ0) and a holomorphic function f : Kλ −→ C which has no
holomorphic extension to Kλ′ , for any λ′ > λ. Note first that f |K has no holomorphic
extension to Kλ′ , for any λ′ > λ. Indeed, assume that this is not the case and take
λ′ > λ and f̃ : Kλ′ −→ C being a holomorphic extension of f |K . If C is a connected
component of Kλ, then

• C ∩ K �= ∅ (because, if a ∈ Kλ, then [a, b] ⊂ Kλ, where |a − b| = dist(a; K ) and
b ∈ K );

• C ∩ K ⊂ {z ∈ C : f (z) − f̃ (z) = 0}.
It follows that f = f̃ in C . By the arbitrary character of C , f = f̃ in Kλ, which is a
contradiction. Now, it is enough to apply Corollary 4.1 and Theorem 6.3. ��
Remark 6.5 Theorem 6.3 and Corollary 6.4 hold true in a much more general setting
thanks to the main results obtained by the author in [19] and [21] (see Appendix).
However, it is not presented above to make the paper as accessible as possible.

Remark 6.6 In the estimate of Corollary 6.4, we have λκ on the left-hand side and
λ = λ1 on the right-hand side. The example presented in the previous section shows
that the exponent 1 (on the right-hand side) is optimal for K := [−1, 1]. We will show
below that, in the same situation, it is impossible to have the exponent κ > 1/2.

Example Set K := [−1, 1] ⊂ R. For each λ ∈ (0,+∞), consider the following
function

gλ : Kλ � w 
−→ 1

w − λ − 1
∈ C.

It is holomorphic in Kλ and has no holomorphic extension to Kλ′ , for any λ′ > λ. Set
Rλ := λ + 1 + √

λ2 + 2λ. For R > 1, let D(R) := {w ∈ C : |w + √
w2 − 1| < R},

11 See Remark 6.5 (the assumption that K is subanalytic can be significantly weakened).
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where the square root is chosen as in the previous section. Note that λ+1 /∈ D(Rλ) and
gλ|K has no holomorphic extension to D(R ′), for any R ′ > Rλ. By Corollary 6.2,

lim sup
n→∞

n
√

En(gλ; K ) = 1

Rλ

.

This equality follows independently from the following fact: for each c > 1 and
n ∈ N,

En

(
1

c − w
; [−1, 1]

)
= 1

(
c2 − 1

) (
c + √

c2 − 1
)n ,

(see [34], p. 76). Note that

lim
λ→0+

Rλ − 1√
2λ

= lim
λ→0+

λ + √
λ2 + 2λ√
2λ

= 1.

Therefore, the estimate in Corollary 6.4 cannot hold, in the case under consideration,
with κ > 1/2. ��

7 Addendum to Theorem 6.3

In Theorem 6.3, the assumption that K is fat and subanalytic cannot be replaced by a
weaker assumption that K is fat and L-regular. Even if K has a very simple geometry,
for example is definable in an o-minimal structure.12 It is a consequence of Corollary
7.5 stated below and of the following fact: there are L-regular cusps in R

N (even
definable in some o-minimal structures) which do not satisfy the condition (T4) of
Theorem 7.4 with any λ0 > 0. A simple example is the set

E := {(x, y) ∈ R
2 : 0 < x ≤ 1, 0 ≤ y ≤ exp(−x−1)} ∪ {(0, 0)}

(cf. [18]).
Recall the following concept:

Definition 7.1 A set E ⊂ C
N is said to be pluripolar if for each a ∈ E , there is an

open neighborhood U of a and a plurisubharmonic function ϕ : U −→ [−∞,∞)

such that E ∩ U ⊂ {ϕ = −∞}.
Moreover, it is convenient for us to introduce the following notation:

Definition 7.2 Let E ⊂ C
N be nonempty.

• E is called a (npl)-set if for each open set U ⊂ C
N such that E ⊂ U , the following

implication holds true: W is a connected component of U such that W ∩ E �= ∅
�⇒ W ∩ E is not pluripolar.

12 Knowledge of o-minimal structures is not necessary to follow the present section.
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• E is called a (nan)-set if for each open set U ⊂ C
N such that E ⊂ U , the following

implication holds true: W is a connected component of U such that W ∩ E �= ∅
�⇒ W ∩ E is not a subset of a locally analytic set in C

N with empty interior.

Remark 7.3 Let E ⊂ C
N be nonempty. Then:

• each connected component of E is not pluripolar �⇒ E is a (npl)-set �⇒ E is
a (nan)-set. Moreover, the set E := {0} ∪ ⋃

n∈N

[
4−n, 2 · 4−n

] ⊂ C is a (npl)-set,
but it has a pluripolar connected component.

• for each open set D ⊂ C
N , the set D ∩ E is empty or nonpluripolar �⇒ E

is a (npl)-set �⇒ E is a (nan)-set. Moreover, note that, for example, the set
E := [−1, 1]2 ∪ ([1, 2] × {0}) ⊂ C

2 is a (npl)-set, but for each sufficiently small
neighborhood D of (2, 0), the set D ∩ E is nonempty and pluripolar.

Theorem 7.4 Assume that a nonempty set K ⊂ C
N is compact. Suppose that λ0 > 0.

Consider the following conditions:

(T1) The set K is L-regular and the following condition (J ) holds:
There exists κ > 0, � > 0 such that, for each t ∈ (0, λ0] and each h : K −→ C

which has no holomorphic extension to Kt ,

lim sup
n→∞

n
√

En(h; K ) >
1

1 + � tκ
.

(T2) The set K is a (npl)-set and the condition (J ) holds.
(T3) The set K is a (nan)-set and the condition (J ) holds.
(T4) There exists κ > 0, � > 0 such that

�K (z) ≤ 1 + � (dist(z; K ))κ

for z ∈ Kλ0 .13

Then, (T2) �⇒ (T3) �⇒ (T4) �⇒ (T1). If moreover K is polynomially convex, then
(T1) �⇒ (T2).

Corollary 7.5 Assume that a nonempty set K ⊂ R
N is compact. Suppose that λ0 > 0.

Then, the conditions (T1), (T2), (T3), and (T4) are equivalent.

Proof It follows from Theorem 7.4 and from the fact that compact subsets of R
N ⊂ C

N

are polynomially convex in C
N (cf. [14], Lemma 5.4.1). ��

Remark 7.6 In Theorem 7.4, the implication (T1) �⇒ (T2) does not hold without the
additional assumption that K is polynomially convex.

Example Set K := {|z| = 1} ∪ {0} ⊂ C. By the maximum principle,

• K̂ = {|z| ≤ 1},
• �K (z) = �K̂ (z) = max{1, |z|} for z ∈ C.

13 This condition is called the (HCP) property and was investigated in many papers.
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Therefore,

�K (z) = �K̂ (z) = 1 + dist(z; K̂ ) ≤ 1 + dist(z; K )

for z ∈ C. It follows that (for each λ0 > 0) the condition (T4) of Theorem 7.4 holds.
This theorem implies that the condition (T1) is also satisfied. However, the conditions
(T2), (T3) do not hold, because K is not a (npl)-set and is not a (nan)-set. ��
Remark 7.7 For each λ0 > 0, consider the condition:

(T2’) The set K is not a pluripolar set and the condition (J ) of Theorem 7.4 holds.

Clearly, (T2) �⇒ (T2’). One may ask whether in Theorem 7.4 the condition (T2)
can be replaced by this simpler condition (T2’). We will show below that the answer
is negative. More precisely, there exists a nonempty compact set K ⊂ C such that

• K is polynomially convex,
• the condition (T2’) is satisfied,
• the conditions (T3), (T4), and (T1) are not satisfied.

Example Set K := B ∪ {2}, where B := {|z| ≤ 1} ⊂ C. Fix λ0 ∈ (0, 1/2]. Note that
K is polynomially convex, because C\ K is connected. Moreover, K is not pluripolar.

The set B satisfies the condition (T4) (see the previous example). By Theorem 7.4,
B satisfies the condition (T1) as well and let κ > 0, � > 0 be of (J ) for B.

Fix t ∈ (0, λ0] and h : K −→ C which has no holomorphic extension to Kt . We
will show that

lim sup
n→∞

n
√

En(h; K ) >
1

1 + � tκ
. (6)

Note that

• Kt = Bt ∪ {|z − 2| < t},
• Bt ∩ {|z − 2| < t} = ∅,
• h|{2} has a trivial holomorphic extension to {|z − 2| < t}.
It follows that h|B has no holomorphic extension to Bt . Since B satisfies the condition
(T1), we have

lim sup
n→∞

n
√

En(h; K ) ≥ lim sup
n→∞

n
√

En(h; B) >
1

1 + � tκ
,

and the proof of (6) is complete. Consequently, K satisfies (T2’). It is clear that it does
not satisfy the conditions (T2), (T3). Theorem 7.4 and the polynomial convexity of K
imply that the conditions (T1) and (T4) are not satisfied either (for the set K ).

The last assertion can also be proved directly as follows. By Proposition 3.11 in
[33],

�∗
K (2) = �∗

B(2) = �B(2) = 2 > 1 = �K (2)
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(see the previous example).14 Since �∗
K (2) > �K (2), it follows that �K is not

continuous at the point 2. In particular, the conditions (T1) and (T4) are not satisfied
for K . ��

8 A Proof of Theorem 7.4

Proof that (T2) �⇒ (T3). It follows from the fact that a locally analytic subset of
C

N with empty interior is pluripolar. ��
Proof that (T4) �⇒ (T1). It is enough to apply Theorem 6.1 (see also the proof of
Theorem 6.3). ��
Proof that (T1) �⇒ (T2) for K being polynomially convex. It suffices to prove the
following assertion: Suppose that a nonempty compact set K ⊂ C

N is polynomially
convex and L-regular. Then, K is a (npl)-set.

Let U ⊂ C
N be an open set such that K ⊂ U . Suppose that W is a connected

component of U such that W ∩ K �= ∅. We need to show that W ∩ K is not pluripolar.
Suppose that, on the contrary, it is pluripolar.

Case 1: K ⊂ W . Then, V ∗
K ≡ +∞ (see Corollary 3.9 and Theorem 3.10 in [33]).

This is however impossible, because VK is continuous.
Case 2: K \ W �= ∅. Consider the function f : U −→ C defined by

f (z) :=
{

0 if z ∈ U \ W,

1 if z ∈ W.

Clearly, this is a holomorphic function. By the Oka–Weil theorem, there exists a
polynomial P ∈ C[z1, . . . , zN ] such that ‖ f − P‖K < 1/2. Obviously, P is not
constant. Take c ∈ W ∩ K . Since |P| < 1/2 in K \ W , it follows by Theorem 3.10
and Proposition 3.11 in [33] that

0 = VK (c) = V ∗
K (c) = V ∗

(K\W )∪(K∩W )(c) = V ∗
K\W (c)

≥ VK\W (c) ≥ 1

degP
log 2|P(c)| > 0,

which is a contradiction. ��
Proof that (T3) �⇒ (T4). Let a ∈ Kλ0 . Fix a nonconstant polynomial P ∈
C[z1, . . . , zN ] such that ‖P‖K ≤ 1. We will show that

|P(a)|1/ deg P ≤ 1 + �λκ,

where λ := dist(a; K ) and κ, � are of the condition (J ) in (T3). By the arbitrary
character of P , we will get then �K (a) ≤ 1 + �λκ and so (T4) will be proved.
Clearly, it suffices to show that, for each ε > 0,

14 Recall that φ∗ denotes the upper semicontinuous regularization of φ.
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|P(a)|1/ deg P ≤ (1 + ε)(1 + ε + �λκ). (7)

To this end, fix ε > 0. There exists a compact set K ′ ⊂ C
N such that

• K ⊂ K ′ ⊂ {z ∈ C
N : |P(z)| < (1 + ε)deg P },

• K ′ is L-regular.

For example, as K ′ we can take a finite union of compact balls of sufficiently small
radii and covering the set K . From the definition of the Siciak extremal function we
easily obtain the estimate

|P(a)|1/ deg P ≤ (1 + ε)�K ′(a). (8)

Case 1: �K ′(a) ≤ 1 + ε. Then (7) follows from (8).
Case 2: �K ′(a) > 1 + ε. Fix λ′ ∈ (λ, λ0]. Take a nonconstant polynomial

Q ∈ C[z1, . . . , zN ] such that ‖Q‖K ′ ≤ 1 and |Q(a)| ≥ (�K ′(a) − ε)deg Q . Set

� := {z ∈ C
N : �K ′(z) < �K ′(a) − ε}.

Clearly, � is open in C
N and K ′ ⊂ �. Moreover, for each z ∈ �, we have

|Q(z)| ≤ �K ′(z)deg Q < (�K ′(a) − ε)deg Q ≤ |Q(a)|.

Consequently, |Q(z)| < |Q(a)| for each z ∈ �, and hence

f : � � z 
−→ 1

Q(z) − Q(a)
∈ C

is a well-defined holomorphic function in �.
Let W be a connected component of Kλ′ such that a ∈ W . Take y ∈ K such that

|a − y| = dist(a; K ) = λ. Since a ∈ W and [a, y] ⊂ Kλ′ , it follows that [a, y] ⊂ W .
In particular, W ∩ K �= ∅. Moreover, W ∩ K is not contained in any locally analytic
set in C

N with empty interior, because K is a (nan)-set.
Note that f |K∩W has no holomorphic extension to W .15 Therefore f |K has no

holomorphic extension to Kλ′ . By the assumption (T3), we have

lim sup
n→∞

n
√

En( f ; K ′) ≥ lim sup
n→∞

n
√

En( f ; K ) >
1

1 + � (λ′)κ
. (9)

15 We use here the following simple observation. Assume that H : W −→ C is a holomorphic function,
where W ⊂ C

N is open and connected. Suppose moreover that H−1(0) �= ∅, E ⊂ W , E ∩ H−1(0) = ∅
and E is not contained in any locally analytic subset of C

N with empty interior. Then, the map

g : E � z 
−→ 1

H(z)
∈ C

has no holomorphic extension to W.
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By Theorem 3.1,

lim sup
n→∞

n
√

En( f ; K ′) ≤ 1

�K ′(a) − ε
. (10)

Combining (8), (9), and (10), we obtain

|P(a)|1/ deg P ≤ (1 + ε)�K ′(a) ≤ (1 + ε)(1 + ε + �(λ′)κ).

The estimate (7) follows by the arbitrary character of λ′ ∈ (λ, λ0]. ��
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9 Appendix

To make the article accessible to a broad audience we decided not to use the notion
of an o-minimal structure. O-minimal structures can be regarded as a far-reaching
generalization of (globally) subanalytic sets (see [35,36]). Some results in this paper
stated for subanalytic sets are true in a more general setting. For example, in Theorem
6.3 or Corollary 6.4, it is sufficient to assume that K ⊂ R

N is compact, fat, and
definable in one of the o-minimal structures considered in [19,21]. The reason is that
such a set satisfies, by the main results in [19,21], the (HCP) property. That is, there
exists κ > 0, � > 0 such that

�K (z) ≤ 1 + � (dist(z; K ))κ (HCP)

as dist(z; K ) ≤ 1.16 The condition of being a set with the (HCP) property is of very
delicate nature. While the problem of checking the L-regularity of a set is difficult,
the problem of verifying the (HCP) property is incomparably more difficult.
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2. Białas-Cież, L., Kosek, M.: Iterated function systems and Łojasiewicz–Siciak condition of Green’s

function. Potential Anal. 34(3), 207–221 (2011)
3. Bierstone, E., Milman, P.: Semianalytic and subanalytic sets. Publ. Math. Inst. Hautes Études Sci. 67,

5–42 (1988)
4. Bloom, T.: Some applications of the Robin function to multivariable approximation theory. J. Approx.

Theory 92, 1–21 (1998)
5. Bloom, T., Bos, L.P., Calvi, J.-P., Levenberg, N.: Polynomial interpolation and approximation in C

d .
Ann. Polon. Math. 106, 53–81 (2012)

16 See also the condition (T4) of Theorem 7.4.

123



154 Constr Approx (2015) 41:133–155

6. Bloom, T., Bos, L., Christensen, C., Levenberg, N.: Polynomial interpolation of holomorphic functions
in C and C

n . Rocky Mt. J. Math. 22, 441–470 (1992)
7. Bloom, T., Calvi, J.-P.: A convergence problem for Kergin interpolation II. Approx. Theory VIII 1,

79–86 (1995)
8. Bloom, T., Calvi, J.-P.: Kergin interpolants of holomorphic functions. Constr. Approx. 13, 569–583

(1997)
9. Bloom, T., Calvi, J.-P.: The distribution of extremal points for Kergin interpolations: real case. Ann.

Inst. Fourier 48(1), 205–222 (1998)
10. Calvi, J.-P., Levenberg, N.: Uniform approximation by discrete least squares polynomials. J. Approx.

Theory 152, 82–100 (2008)
11. Davis, P.J.: Interpolation and Approximation. Dover Publications, New York (1975)
12. Denkowska, Z., Stasica, J.: Ensembles Sous-Analytiques à la Polonaise. Hermann, Paris (2007)
13. Hironaka, H.: Introduction to Real-Analytic Sets and Real-Analytic Maps. Istituto Matematico “L.

Tonelli”, Pisa (1973)
14. Klimek, M.: Pluripotential Theory. Oxford University Press, New York (1991)
15. Kosek, M.: Hölder continuity property of filled-in Julia sets in C

n . Proc. Am. Math. Soc. 125, 2029–
2032 (1997)

16. Levenberg, N.: Approximation in C
N . Surv. Approx. Theory 2, 92–140 (2006)

17. Łojasiewicz, S.: Ensembles semi-analytiques. Lecture Notes, IHES, Bures-sur-Yvette (1965)
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