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1 Introduction

The most important pieces of data of a conformal field theory are its central charge, the

spectrum of primaries and three point coefficients. Crossing symmetry of 4-point functions

imposes severe restrictions on this data. This circle of ideas form the core of the conformal

bootstrap programme, which has seen a lot of development over the recent years [2–4].

In (1+1) dimensions, additional constraints can be obtained from modular invariance on

the torus. This has proven to be useful in deriving a number of strong and universal

results [5–11]. Amongst its many uses, this plays an important role in the context of the

AdS/CFT correspondence. It can enable us to derive some universal features which are

relevant for holographic CFTs. One can thereby hope to understand holography and gain

better insights into the information paradox.

Not only does modular invariance impose constraints on 2d CFTs, it also relates low

energy data to high energy data. The celebrated exemplar of the holographic manifestation

of a CFT is that of the Cardy formula [12, 13]. This universal formula captures the black

hole entropy, given by the area of the horizon. Since the advent of the AdS/CFT correspon-

dence, a number of similar relations have been reaped which display the interplay between

various quantities of the CFT and geometric objects in the bulk. The noteworthy laurels

in this list include: entanglement entropy (related to minimal surfaces in the bulk) [14]

and conformal blocks (related to geodesics/Witten diagrams) [15–18], to name a few.

A very recent development along these lines, has been to derive the averaged three

point coefficient, i.e. of two heavy and one light operator, using modular properties of
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one-point functions on the torus [1]. In a sense, this goes beyond the Cardy formula, since

the partition function itself is given by the one-point function of the identity operator. In

this paper, we generalize the analysis of [1] to the case when the CFT has a global u(1)

symmetry and a non-zero chemical potential for the same. That is, we are interested in

theories whose partition function has a u(1) grading. In other words, this is the grand

canonical partition function, given by

Z(τ, ν) = Tr
[

qL0−c/24yJ0 q̄ L̄0−c/24ȳJ̄0

]
.

Owing to the presence of chemical potentials, such partition functions transform as weak

Jacobi forms. We shall make use of these modular transformation properties to attain an

analogous formula for the three-point coefficients.

Most of our results cover the large class of CFTs which contain Virasoro× u(1) Kac-

Moody as their chiral algebra. These include, most importantly N = 2 SCFTs and also

theories with W1+∞ symmetry. We shall make very few assumputions on the spectrum;

however, our results are valid for any value of the central charge. We also provide fur-

ther refinements of the formula for three-point coefficients of three primaries in N = 2

SCFTs. The resulting expression displays precise shifts in the central charge which has

been observed earlier in the exact formula for thermal entropy [19].

The three-point coefficients also admit a description in terms of geodesics in the AdS

dual. The dual background for our CFT setup is that of the BTZ black hole charged

with u(1) hair. This is a solution of the Einstein-Chern-Simons theory. We shall be able

to reproduce the structure constants by evaluating the length of an appropriate geodesic

network. Furthermore, since the black hole is charged, we shall see that bulk Wilson loops

are also necessary in order to reproduce CFT result in its entirety. It has been discussed

in [1] that these CFT results combined with the matching from holographic calculations in

the black hole geometry hints at the notion of the black hole geometry being an averaged

version of heavy microstates. The result of the present work therefore extends this picture

to case when the black hole has additional charged hairs.

Summary of main results. For the convenience of the readers, we provide the main

findings of our analysis here. We are interested in the three-point coefficient of an uncharged

light operator O with two other heavy operators (denoted by Υ) with conformal dimension

∆ and charge (Q, Q̄). The mean value of this quantity shall be denoted by CΥ†OΥ and is

defined by the ratio of the spectral density weighted with the 3-point coefficient and the

spectral density itself. In the limit ∆→∞, we have

CΥ†OΥ ≈ NO cχ†Oχ

(
∆− Q2 + Q̄2

2k
− c

12

)∆O/2

× exp

[
− πc

3

√
12

c

(
∆− Q2 + Q̄2

2k

)
− 1

{
1−

√
1− 12

c

(
∆χ −

q2
χ + q̄2

χ

2k

)}]
e−

2πi
k

(qχQ−q̄χQ̄).

Here, χ is the lightest charged primary — with conformal dimension ∆χ and u(1) charge

(qχ, q̄χ). NO is a constant independent of (∆, Q, Q̄). Here, k is the level of the u(1) Kac-

Moody algebra. In case of the N = 2 superconformal algebra, the standard convention
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relates the level to the central charge by k = c/3. It is useful to contrast C
Υ†OΥ

with the

uncharged result of [1]

CΥ†OΥ ≈ NO cχ†Oχ

(
∆− c

12

)∆O/2

exp

[
− πc

3

√
12∆

c
− 1

{
1−

√
1− 12∆χ

c

}]
.

We notice that, in addition to the spectral flow shifts of the conformal dimensions of the

charged primaries, the charged structure constants also possess additional phase which

is of the form e−2πi(qχQ−q̄χQ̄)/k. The ‘holographic’ large c limit (c � ∆χ, c � ∆O) of

this formula shall be reproduced from AdS3 gravity; the dual background being that of a

charged BTZ black hole.1

It is also possible to make further refinements to the above formula, for the case of

three-point coefficient of three primaries in N = 2 SCFTs. The derivation uses asymptotic

properties of N = 2 torus blocks. The resultant expression for the average three point

function has the central charge shifted to c 7→ c − 3. This precise shift has been observed

earlier in [19] for the Cardy formula for the entropy in N = 2 theories and can be holo-

graphically understood as one-loop renormalization of the effective central charge due to

dressing caused by gravitons, gravitini and the spin-1 gauge field. This is analogous to the

shift to the shift c 7→ c− 1, for the non-supersymmetric case, derived in [1].

Outline. This paper is organised as follows. In section 2 we discuss the relevant modular

transformation properties of one-point functions in presence of u(1) charge. Section 3

contains the derivation of the asymptotics of the charged structure constants. We specialize

to N = 2 SCFTs in section 4. The large central charge limit of the CFT results are

reproduced from gravity in section 5. We conclude in section 6. Appendices A and B

provide some of the technical details of our analysis. We discuss the relevance of Tauberian

theorems which is relevant to our present context in appendix C.

2 Modular properties of charged CFTs

For a 2d CFT with a global abelian symmetry, the torus partition function in the grand

canonical ensemble (i.e. for the non-vanishing chemical potential, ν, for the u(1) current)

can be written as,

Z(τ, ν) = Tr
[

qL0− c
24 q̄ L̄0− c

24 yJ0 ȳJ̄0

]
. (2.1)

Here, the nome and the fugacity are given by q = e2πiτ and y = e2πiν respectively.2 J0 is

the zero-mode of the u(1) current. The modular parameter of the torus given in terms of

the inverse temperature β and the circumference of the spatial circle, L

τ = iβ/L.

The modular transformation on ν takes real ν to imaginary ν and vice versa. Therefore,

ν is chosen to be complex µR + iµI to keep things general. This means that the chemical

1In a related context, heavy light conformal blocks in presence of u(1) charge has been studied in [20].
2It is rather unfortunate that the usual q will be used to denote the u(1) charge in due course.
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potentials for both the u(1) charge (J0 + J̄0) and the fermion number (J0 − J̄0) are turned

on. It is known that under a modular transformation, γ · τ = aτ+b
cτ+d , the partition function

transforms as [21, 22]3

Z(τ, ν) 7→ Z
(
aτ + b

cτ + d
,

ν

cτ + d

)
= exp

(
icπkν2

cτ + d
− icπkν̄2

cτ̄ + d

)
Z(τ, ν). (2.2)

Here, k is the level of the u(1) Kac-Moody algebra. We also need to consider how a primary

operator, O, transforms under modular transformations. The operator O is located at the

complex elliptic coordinates of the torus, w and w̄. Under the modular group PSL(2,Z),

the elliptic coordinate transforms as [24]

γ · w =
w

cτ + d
. (2.3)

Consider a primary operator O obeying [Ln>0,O] = 0 and [Jn≥0,O] = 0. Under modular

transformations, it transforms as

O(w, w̄)|τ =

[
∂(γ · w)

∂w

]h [∂(γ · w̄)

∂w̄

]h̄
O(γ · w, γ · w̄)

= (cτ + d)−h(cτ̄ + d)−h̄O(γ · w, γ · w̄)
∣∣
aτ+b
cτ+d

.

(2.4)

The one-point function of the operator O on the torus is given by

〈O(w, w̄)〉τ,ν ≡ Tr
[
O(w, w̄)qL0−c/24yJ0 q̄ L̄0−c/24ȳJ̄0

]
. (2.5)

Combining (2.2) and (2.4), we are led to the following transformation property for one-point

function of primaries on the torus (see also [25])

〈O(γ ·w, γ · w̄)〉τ,ν = (cτ + d)h(cτ̄ + d)h̄ exp

(
icπkν2

cτ + d
− icπkν̄2

cτ̄ + d

)
〈O(w, w̄)〉aτ+b

cτ+d
, ν
cτ+d

. (2.6)

This property will play a key role in determining the asymptotics of the charged structure

constants. Note that, the one-point function does not have position dependence, owing

to translation symmetry on the torus. Moreover, the chiral half of the transformation

formula (2.6) is that of a weakly holomorphic Jacobi form of weight h and index k [26].

3 Derivation of the asymptotic formula

We start with the one-point function of a neutral primary on the torus with modular

parameter, τ = iβ/L and chemical potential ν = µR + iµI . The trace in equation (2.5) can

be rewritten as sum of states as

〈O〉 =
∑
α

〈Υα|O|Υα〉 q∆α− c
24 q̄∆α− c

24 yQα ȳQ̄α . (3.1)

3See also appendix A of [23] for an example.
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where, the state |Υα〉 has the following eigenvalues

(L0 + L̄0)|Υα〉 = ∆α|Υα〉, J0|Υα〉 = Qα|Υα〉, J̄0|Υα〉 = Q̄α|Υα〉. (3.2)

It is worthwhile to mention here that we are working with the unnormalized one-point

function; in the sense that we do not divide out by the partition function. This convention

has its advantages; namely, the one-point function of the identity operator is then the

partition function itself. In the low temperature regime, β/L→∞, using the q-expansion

of the sum above, we can write

〈O〉low-temp ' 〈χ|O|χ〉e−2πβ/L(∆χ− c
12

)e2πiµRq−e−2πµIq+ + · · · . (3.3)

where, χ is the lightest primary with cχ†Oχ 6= 04 and we have defined q± = qχ ± q̄χ in

terms of the charges of χ. The following analysis is also valid even when χ is neutral,

i.e. qχ = q̄χ = 0. However, more interestingly one can indeed find theories in which the

lightest state is charged. For example in N = 2 super-Virasoro minimal models, the lightest

state, χ, has the quantum numbers

hχ =
1

2(k + 2)
, qχ = ± 1

k + 2
. (3.4)

In this specific case, χ is additionally BPS, satisfying h = ± q/2.

The light operators χ and χ† carry opposite u(1) charges. The presence of the terms

in the OPE

χ†χ ∼ I + O + · · · . (3.5)

are consistent with charge conservation, i.e. the operators appearing on the right hand side

are neutral under the u(1). We also require that χ falls within the bound of [21].

From the low temperature expansion (3.3), we can get the expansion in the high

temperature regime by performing the S-modular transformation. This is tantamount to

choosing a = d = 0; c = −b = 1,5 which takes τ → −1/τ and ν → ν/τ . Hence, using

equations (2.6) and (3.3) we have,

〈O〉high-temp ' i−SO〈χ|O|χ〉e−
2πLk
β

(µ2
R−µ

2
I)
(
L

β

)∆O

e
− 2πL

β
(∆χ− c

12
)
e

2πLq+
β

µRe
2πiLq−

β
µI . (3.6)

Let us now rewrite the summation over states in the grand canonical expectation value (3.1)

as an integral

〈O〉 =

∫
d∆dQ+dQ− TO(∆, Q±)

(
2π

L

)∆O

i−SOe−
2πβ
L

(∆− c
12

)e2πiµRQ−e−2πµIQ+ , (3.7)

where we have used Q± = Q ± Q̄ which are eigenvalues of the operators J0 and J̄0.

TO(∆, Q±) is the ‘weighted spectral density’ — i.e. the density of states weighted by the

three-point coefficient — and is defined as

TO(∆, Q±) =
∑
α

c
Υ†αOΥα

δ(∆−∆α)δ(Q± −Qα,±) , (3.8)

4We assume that χ is non-degenerate and cχ†Oχ is not exponential in the conformal weight.
5This can also be achieved via b = −c = 1. However, this results in a different representation of O under

the modular group, PSL(2,Z).
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where, ρ(∆, Q±) is the density of states at conformal dimension ∆ and charges Q± (this is

the ‘unweighted spectral density’)

ρ(∆, Q±) =
∑
α

δ(∆−∆α)δ(Q± −Qα,±) (3.9)

In the above equations and the ones to follow, δ(Q± − Qα,±) refers to the product of the

δ-functions δ(Q+ −Qα,+)δ(Q− −Qα,−). The notion of the weighted spectral density also

appears in the discussion of OPE convergence in [27]. However, the discussion there deals

with the spectral density weighted by the square of the OPE coefficients.

The weighted spectral density (3.8) also defines the average three point function,

CΥ†OΥ , the key object we are interested in this paper.

CΥ†OΥ ≡ TO(∆, Q±)

ρ(∆, Q±)
(3.10)

The average is taken over operators in the CFT with the fixed scaling dimension ∆ and

u(1) charge Q±.

The integral (3.7) can be inverted to find T (∆, Q±). This is similar to procedure

followed in [1]. However, now the inversions involve one inverse Fourier transform and two

inverse Laplace transforms, (due to the additional chemical potentials present)

TO(∆, Q±) =
1

L

∮
dβ

∫ ∞
−∞

dµR

∮
dµI

(
2π

L

)−∆O

iSO〈O〉e
2πβ
L

(∆− c
12

)e−2πiµRQ−e2πµIQ+ .

(3.11)

We also note that it is clear that in β/L→ 0 regime, the integral (3.7) will be dominated

by large ∆. Since we are interested in the asymptotic behavior of three point coefficients of

the type heavy-light-heavy, we should then use the high temperature expansion of the torus

grand canonical one point function. This is given by equation (3.6) which we substitute

in (3.11). It turns out that the µR and µI integrals can be done explicitly and the results

are as follows:∫ ∞
−∞

dµR e
− 2πLk

β
µ2
Re

2πLq+
β

µRe−2πiµRQ−=

√
β

2Lk
exp

[
πL

2kβ
q2

+−
πβ

2Lk
Q2
−

]
e−

πi
k
q+Q− ,

1

i

∫ i∞

−i∞
dµI e

2πLk
β

µ2
Ie

2πıLq−
β

µIe2πµIQ+ =

√
β

2Lk
exp

[
πL

2kβ
q2
−−

πβ

2Lk
Q2

+

]
e−

πi
k
q−Q+ .

(3.12)

The first integral is a Fourier transform of a Gaussian, which yields another Gaussian. The

second integral is a Gaussian integral in itself. We finally collect the β dependent factors

from equations (3.12) and (3.11), which leave us with the following integral.∮
dβ β1−∆O exp

[
2πβ

L

{(
∆− c

12

)
− 1

4k
(Q2

++Q2
−)

}
− 2πL

β

{(
∆χ −

c

12

)
− 1

4k
(q2

++q2
−)

}]
.

(3.13)

We shall be interested in the high energy asymptotics, i.e. limit of large ∆. The above

integral can hence be evaluated using the saddle point approximation. The saddle point is
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located at,

βs = L

√
c

12 − [∆χ − 1
4k (q2

+ + q2
−)]

[∆− 1
4k (Q2

+ +Q2
−)]− c

12

+
L

4π

∆O − 1

[∆− 1
4k (Q2

+ +Q2
−)]− c

12

+ O(∆−3/2). (3.14)

We note that ∆O shifts the saddle in the sub-leading order in the 1/∆ expansion. This

saddle needs to be real and consistent with the high temperature expansion. The relevant

condition (to investigate the large ∆ asymptotics) for the reality of the saddle is

∆−
Q2

+ +Q2
−

4k
>

c

12
, ∆χ −

q2
+ + q2

−
4k

<
c

12
. (3.15)

The above inequalities have a satisfying interpretation in the bulk dual which we shall

consider in section 5. The zero-mass BTZ black hole is given by c/12. The first inequality

implies that the asymptotic energy regime is above the charged BTZ black hole threshold,

whilst the scalar corresponding to the light operator χ is below the same.6 χ can therefore

be considered as a perturbative bulk scalar or a massive point particle.

We shall now adopt the following definitions for clarity of our expressions

∆Q ≡ ∆− 1

4k
(Q2

+ +Q2
−) = ∆− Q2 + Q̄2

2k
, ∆χ,q ≡ ∆χ −

1

4k
(q2

+ + q2
−) = ∆χ −

q2
χ + q̄2

χ

2k
.

(3.16)

These quantities are none other than the spectral flow invariants in the charged CFT. See

appendix A for a short review of the relevant details. Including quadratic fluctuations

around the saddle point, we have,

1

i

∫ i∞

−i∞
dβ ef(β) ≈ ef(βs)

√
2π

f ′′(βs)
.

The final expression for TO(∆, Q±) then reads

TO(∆, Q±) =
i−SOcχ†Oχ

2k

1√
2

(
c

12
−∆χ,q

)3/4−∆O/2
(

∆Q −
c

12

)∆O/2−5/4

× exp

{
4π

√
c

12
−∆χ,q

√
∆Q −

c

12

}
exp

{
− 2πi

k

(
qχQ− q̄χQ̄

)}
.

(3.17)

One can also carry out the derivation for the density of states for the charged case retaining

the quadratic saddle fluctuations. This is the same calculation as the above with the

operator O being the vacuum/identity. This boils down to setting ∆χ,q = 0 = ∆I = ∆Q,

Q = 0 = q and using the normalization convention cIII = 1. The density of states then reads

ρ(∆, Q±) =
1

2k

(
c

12

)3/4 1√
2

(
∆Q −

c

12

)−5/4

exp

{
4π

√
c

12

(
∆Q −

c

12

)}
. (3.18)

6This suggests the existence of light charged particles in AdS3 in the spirit of the Weak Gravity Con-

jecture [28, 29].
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We can get the asymptotics of the mean charged three point coefficient from (3.8) in the

limit ∆→∞ and respecting inequalities (3.15). From the definition of CΥ†OΥ in terms of

the ratio given in (3.10), this is

CΥ†OΥ ≈ i−SO

(
c

12
−∆χ −

q2
χ + q̄2

χ

2k

)3/4−∆O/2( c

12

)−3/4(
∆− Q2 + Q̄2

2k
− c

12

)∆O/2

cχ†Oχ

× exp

[
− πc

3

√
12

c

(
∆− Q2 + Q̄2

2k

)
− 1 (3.19)

×
{

1−

√
1− 12

c

(
∆χ −

q2
χ + q̄2

χ

2k

)}]
e−

2πi
k

(qχQ−q̄χQ̄).

This is the central result of our work. The quadratic shifts by the u(1) charges are consis-

tent with expectations from spectral flow. It is also worthwhile to note that the expression

above exhibits a phase, e−
2πi
k

(qχQ−q̄χQ̄), due to the presence of the u(1) charge.

In the holographic (large c) limit, i.e, c� ∆χ, c� ∆O the above simplifies to,

CΥ†OΥ ≈ NO

(
12

c

(
∆− Q2 + Q̄2

2k

)
− 1

)∆O/2

(3.20)

× cχ†Oχ e
−2π(∆χ−

q2χ+q̄2χ
2k

)

√
12
c

(∆−Q2+Q̄2

2k
)−1e−

2πi
k

(qχQ−q̄χQ̄).

Here, NO absorbs the piece independent of ∆, Q, Q̄. In section 5, this expression will be

reproduced from the AdS3 dual.

It deserves mention that one can alternatively state and derive the Cardy formula [12]

for density of states, the formula for average heavy-heavy-light coefficient [1] and the for-

mula (3.19) presented in this work, using the mathematical machinery of Tauberian the-

ory [30]. This line of approach has also been utilized in [27] in the context of OPE conver-

gence. We refer the reader to appendix C for a brief review of Tauberian theory, followed

by a discussion of its relevance and usefulness in the present context.

4 Asymptotics in N = 2 SCFTs

The u(1) current can be naturally embedded as the R-symmetry of the N = 2 supercon-

formal algbera (see appendix A). We shall focus on the three point coefficient of three

primary operators in N = 2 SCFTs. This will enable us to provide further refinements

to the asymptotic formula (3.19). The notion of ‘heavy’ operators is not clear for CFTs

with small values of central charge and the analysis of this section does not include the

N = 2 super-Virasoro minimal models (with central charge c = 3k
k+2). Since, these are

the only possible N = 2 SCFTs with c ≤ 3 [31], we shall be concerned only with SCFTs

complementary to this range.
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The one-point function on the torus (of an operator O with weights (H, H̄)) can be

expanded in terms of torus conformal blocks (FHα (q , y), F H̄ᾱ (q̄ , ȳ)) as follows.7

〈O〉 =
∑
i

q∆i−c/24q̄∆i−c/24yqi ȳqi〈i|O|i〉

=
∑
α

〈α|O|α〉q∆α−c/24q̄∆α−c/24yqα ȳqαFHα (q, y)F H̄ᾱ (q̄ , ȳ).
(4.1)

In the second equality the sum is over all primaries, labelled by α. The above equation

generalizes the notion of the partition function (= one-point function of the identity) which

can be written as a sum of characters. For future convenience, we also rewrite the (4.1) as

an integral (similar to the previous section)

〈O〉 =

∫
d∆ dQ+ dQ− T

p
O(∆, Q±) e−β(∆− c

12)e2πiµRQ−e−2πµIQ+FHα (q , y)F H̄ᾱ (q̄ , ȳ), (4.2)

where, the weighted spectral density for primaries, T pO(·), is given by

T pO(∆, Q+, Q−) =
∑
i

〈Υi|O|Υi〉δ(∆−∆i)δ(Q+ −Qi,+)δ(Q− −Qi,−). (4.3)

Here, we have resorted to the same definition of the states Υi as in (3.2). Since they are

primaries in this context, they additionally obey Ln|Υi〉 = 0 for n > 0.

For the one-point function of the identity operator (H = 0), the torus blocks are simply

given by the non-degenerate characters [32]

F0
∆α

(q , y) = q−∆α+ c
24 y−qαχα(q , y).

χα(q , y) = q∆α− c
24 yqα

∞∏
n=1

(1 + yqn−1/2)(1 + y−1qn−1/2)

(1− qn)2
= q∆α− c−3

24 yqα
ϑ3(ν|τ)

η(τ)3
.

(4.4)

The coefficients of the q , y-series count the number of descendant states and their charge

at each level.8 Note that the overall factor of q∆−c/24yqα , which cancels out in F0
∆α

(q , y),

has been accounted for in (4.1).

It has been noted in [1] that in the high-energy regime ∆ → ∞ and ∆| log q|2 � 1,

the torus block for general H is dominated by the character itself. This has been explicitly

shown to be true for Virasoro blocks in [1]; however, it is expected to be true rather

generically. That is, when the intermediate state |α〉 is heavy, the insertion of the light

operator O is a small perturbation to the degenerate character.

FH∆α
(q , y) = F0

∆α
(q , y)

[
1 + O(∆−1

α )
]
. (4.5)

7Recall that the u(1) charge of O is 0. Hence, it suffices to label the torus blocks by (H, H̄) which are

the only non-vanishing quantum numbers.
8Note that (4.4) is the partition function of a theory of a complex boson and a complex fermion with

central charge equaling 3, barring overall factors of q#. This is the contribution from the descendants of

the N = 2 superconformal algebra.
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In order to see the asymptotic behaviour, we need to perform a S-modular transformation.

Using, (4.4) and (4.5) and the well-known properties of the Dedekind-η and Jacobi-theta

functions we have

FH∆α
(q , y) = q1/8 (−iτ)−1/2 e−πiν

2/τ ϑ3(ντ |
−1
τ )

(−iτ)−3/2 η(−1/τ)3
+ O(∆−1

α ),

= e−πiν
2/τ (−iτ)q1/8(q̃)−1/8 + O(∆−1

α ).

(4.6)

In the final step we have retained the leading high temperature behaviour. In terms of β,

the product of the holomorphic and anti-holomorphic torus blocks is9

FH∆α
(q , y)F H̄∆̄α

(q̄ , ȳ) ≈
(
β

L

)2

exp

[
−1

4

(
2πβ

L
− 2πL

β

)
− π(ν2 + ν̄2)L

β

]
. (4.7)

Substituting this in the one-point function (4.2), we have the following expression for the

weighted spectral density in terms of the integral transforms (in the limit ∆α →∞)

T pO(∆, Q±) =
1

L

(
2π

L

)−∆O

iSO

∮
dβ

∫ ∞
−∞

dµR

∮
dµI

〈O〉τ,ν e
2πβ
L

(∆− c
12

)e−2πiµRQ−e2πµIQ+

FH∆α
(q , y)F H̄

∆̄α
(q̄ , ȳ)

.

(4.8)

Here 〈O〉 is given, as before, in terms of the dominant contribution from the lightest charged

primary (and a modular transformation thereof)

〈O〉τ,ν ≈ 〈χ|O|χ〉|τ |−2hO exp

{
− 4π2

β

(
Eχ −

c

12
+
c

6
(ν2 + ν̄2) + νqχ + ν̄q̄χ

)}
. (4.9)

This leads to the same saddle equation as that of (3.13). However, the central charge shifts

consistently all throughout the expression as

c 7→ c− 3 or, k 7→ k − 1. (4.10)

The final expression for the Laplace transform over β reads∮
dβ β1+∆O exp

[
2πβ

L

{(
∆− c− 3

12

)
− 1

4(k − 1)
(Q2

+ +Q2
−)

}
− 2πL

β

{(
∆χ −

c− 3

12

)
− 1

4(k − 1)
(q2

+ + q2
−)

}]
.

(4.11)

With the shifts (4.10), the calculation of the mean structure constant proceeds exactly in

the same manner as that of the previous section. The density of states (3.18) also changes

with the same shifts in the central charge. The refined expression for the average value of

the three-point coefficient of heavy-heavy-light primaries is then given by

C
p

Υ†OΥ
≈ i−SO

(
c−3

12
−∆χ−

q2
χ+q̄2

χ

2(k−1)

) 1
4
−

∆O
2
(
c−3

12

)−3/4(
∆−Q

2+Q̄2

2(k−1)
− c−3

12

)∆O/2

cχ†Oχ

×exp

[
−π(c−3)

3

√
12

c−3

(
∆−Q

2+Q̄2

2(k−1)

)
−1 (4.12)

×
{

1−

√
1− 12

c−3

(
∆χ−

q2
χ+q̄2

χ

2(k−1)

)}]
e−

2πi
k−1

(qχQ−q̄χQ̄).

9This is the analogue to equation (50) of [1].
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This precise shift of the central charge has also been observed in the entropy for N = 2

theories [19]. The non-supersymmetric theories on the other hand show a shift of c to

c− 1 [1, 33]. Although we shall not attempt to do here, it would be interesting to recover

this shift from holography as well. It is tempting to speculate such a shift would be caused

by the dressing of the scalars by the gravitons, gravitini and Chern-Simons u(1) gauge

fields, thereby leading to a renormalization of the central charge.

5 Three-point coefficients from holography

In this section we shall reproduce the 3-point coefficient, in the limit of large central

charge (3.20) from holography. The holographic dual to the thermal state of the CFT at

a non-zero chemical potential is that of a BTZ black hole, with additional u(1) hair (since

we are interested in the energy regime above the charged BTZ threshold (3.15)). A u(1)

Chern-Simons gauge field is also present in the bulk which is dual to the spin-1 conserved

current of the CFT.

The charged BTZ black hole metric is exactly the same as that of the uncharged one;

however, the relation between the mass of black hole and the energy of the CFT gets

modified by the non-vanishing charge of the heavy state. For the non-rotating black hole

the metric is given by

ds2 = −(r2 − r2
+)dt2 +

dr2

r2 − r2
+

+ r2dφ2. (5.1)

In units of `AdS = 1, the radius of the horizon, r+ is given by,

r+ =

√
12

c

(
L+ L̄ − c

12

) 1
2

=

√
12

c

(
∆− Q2 + Q̄2

2k
− c

12

) 1
2

. (5.2)

where L and L̄ are the shifted zero modes of the holographic stress tensor — see equa-

tion (B.8) of appendix B. Note that r+ is real when the condition (3.15) is satisfied. The

flat connections of the u(1) Chern-Simons gauge field have the following non-vanishing

components

Aw =
Q

k
, Āw̄ =

Q̄

k
. (5.3)

Details on the derivation of the above expressions using the standard GKPW prescription

are provided in appendix B.

We shall reproduce the large c limit of the average three-point coefficient, CΥ†OΥ, given

by equation (3.20). We restrict ourselves to the regime in which the primaries O and χ

have ∆O,∆χ,q � c
12 . We shall denote the bulk neutral scalar dual to the CFT probe O

by φO. It has a mass mO which we take to be large. Similarly φχ is the charged scalar

dual to χ of mass mχ, which is also large. In the large mass (bulk) limit the AdS/CFT

prescription gives us,
mO ≈ ∆O

mχ ≈ ∆χ,q = ∆χ −
q2
χ + q̄2

χ

2k
.

(5.4)
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Figure 1. Configuration of geodesics for the holographic calculation of the average three point

coefficient in the constant time slice of the charged BTZ background.

We can use the geodesic approximation in the limit 1� ∆O, ∆χ,q � c
12 . Also note that

since we are interested in ∆Q → ∞ limit, by (5.2) r+ → ∞ as well. For φO, which is the

bulk-to-boundary scalar, the leading amplitude is simply given in terms of its regularized

length (L ≈ log(Λ/r+))

emOL ' const.× rmO
+ (5.5)

This neutral scalar φO can be thought of as arising from the fusion of two oppositely charged

scalars, φχ and φ†χ, that wrap the horizon. This vertex is proportional to 〈χ|O|χ〉. The

amplitude of the charged scalar φχ wrapping the horizon in presence of the background

CS field has two parts, as evident from the relevant classical Euclidean action of a charged

particle of mass mχ and charge (q, q̄) in the curved background:

S
(χ)
geodesic = S(χ)

grav + S
(χ)
CS

S(χ)
grav = mχ

∫
dλ

√
gαβ

dxα

dλ

dxβ

dλ
S

(χ)
CS = iqχ

∮
Aµdx

µ − iq̄χ

∮
Āµdx

µ.
(5.6)

Here Aµ, Āµ are the dual bulk Chern-Simons fields. The above integrals are along the

closed loop around the horizon as shown in figure 1. The gravitational on-shell action

simply picks up the horizon area.

S(χ)
grav|on-shell = 2πmχr+. (5.7)

Using the explicit solutions (B.6) for the gauge fields we can next evaluate the on-shell

Wilson loop terms in S
(χ)
CS ,

S
(χ)
CS |on-shell = iqχ

∫ 2π

0
Aφdφ − iq̄χ

∫ 2π

0
Āφdφ =

2πi

k

(
qχQ− q̄χQ̄

)
. (5.8)

Putting things together, the amplitude for the geodesic configuration is

〈χ|O|χ〉 rmO
+ e−2πr+mχe−

2πi
k

(qχQ−q̄χQ̄).

If we use the identifications (5.2) and (5.4) we recover the large c CFT result (3.20) for

CΥ†OΥ , upto the overall normalization.
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If ∆χ,q is of the order of c, we can proceed following the arguments as presented in [1].

The massive point particle χ backreacts to give rise to a geometry with conical defect.

ds2 = −(1 + r2)dt2 +
dr2

1 + r2
+ r2dφ2, φ ' φ+ 2π − δφ (5.9)

Here δφ is the deficit angle and related to mass mχ. Now, in charged case, ∆χ,q (rather

than Eχ, as is done for the uncharged case in [1]) has to be identified with the ADM mass,

measured at infinity. Thus we obtain

mχ =
c

6

(
1−

√
1− 12∆χ,q

c

)
(5.10)

Plugging in the value of modified mχ leads to the more general result we obtained for

CFT (3.19).

The CFT result can also be reproduced using Witten diagrams, as has been done in [1].

One needs to make appropriate replacements of the conformal dimensions by their spec-

tral flow invariant analogues. The additional phase naturally appears in the bulk-to-bulk

propagator of the charged scalar field φχ due to the presence of the gauge field in the bulk.

We remark that the bulk computation can also be reformulated in the Chern-Simons

description of 3d gravity based two copies of the gauge group sl(2,R) × u(1). The ap-

propriate gauge connections for the charged BTZ black hole can be written down. Such

black holes have already been constructed for the higher-spin charges (in addition to u(1)

charge) in [34]. The relevant background for the present situation can be recovered by

setting these higher-spin charges to zero. The 3-point function can be estimated by using a

network of Wilson lines shown in figure 1 [35–39]. The Wilson loop (in the representation

R) corresponding to the charged scalar, φχ, is

logWR(C) = TrR(2π(λx − λ̄x)P0).

Since the scalar has mass and charge, we choose P0 ∼ L0 + J0. Here, λx and λ̄x are the

eigenvalues of the ax and āx. (The gauge connections are of the form A = b−1ab+ b−1db.)

Evaluating the above Wilson line reproduces (5.8). The radial Wilson line attached to the

boundary (of the uncharged scalar φO) can be incorporated using techniques in [40]. This

requires the Wilson line to be contracted with a chosen state which mimics the insertion of

a primary operator in the CFT. At the trivalent vertex, the Wilson lines are joined using

a suitable intertwiner, which is consistent with the CFT fusion rule (3.5).

6 Conclusions

In this paper, we have been able to extract the mean of the heavy-heavy-light coefficient

for CFTs carrying an u(1) chemical potential conjugate to the conserved current. Our

derivation has relied on modular properties of torus one-point functions in presence of u(1)

chemical potentials. This analysis, therefore, generalizes the one in [1] if chemical poten-

tials corresponding to additional conserved charges are turned on. The main result (3.19)

contains the same structure as that of one of the uncharged result of [1], with conformal

– 13 –



J
H
E
P
1
1
(
2
0
1
7
)
1
8
3

dimensions replaced by their spectral flow invariants. In addition, there is an extra phase

present owing to the u(1) charge. These modifications of the uncharged result are clearly

which one would have expected and it is reassuring to see these explicitly. Furthermore, the

mean 3-point coefficient can also be recovered from the bulk dual. This shows that black

holes with additional hairs can be suitably described as an averaged rendition of heavy

microstates, which carry the additional quantum numbers corresponding to the charge.

It would be tantalizing to understand the applicability the above results and its further

generalizations. For instance, the results here can be straightforwardly generalized to

the case when chemical potentials auxiliary to more spin-1 currents from a non-Abelian

Kac-Moody algebra are turned on. Another natural direction would be investigate the

incarnation of the story here, if higher-spin chemical potentials are turned on. Indeed,

the Cardy formula is known perturbatively in powers of the spin-3 chemical potential [22].

One would like to see what happens for the torus one-point function in such a case. This

would also require the knowledge of the one-point functions under modular transformations.

Moreover, one may hope that the average 3-point coefficient can be possibly reproduced

by a suitable network of Wilson lines in the bulk [39].

The formula (3.19) is valid for all ranges of central charge. It will hold true for all

CFTs as long as the required assumptions about the spectrum are made. These results

may have a broader applicability in systems where additional u(1) currents are present

e.g. Luttinger liquids.

A major motivation behind this work arose from studying the Eigenstate Thermaliza-

tion Hypothesis in CFTs. It was found in [41] that the heavy-heavy-light coefficient plays a

role in non-universal deviations of the thermal reduced density matrix and its hypothesized

approximation in terms of a single heavy eigenstate. Clearly, a better understanding of ETH

would require an investigation in terms of the Generalized Gibbs Ensemble (GGE), which

has chemical potentials for all conserved quantities turned on. It is therefore necessary to

know the heavy-heavy-light coefficients in presence of additional chemical potentials. The

result in this paper treats the simple possible case and thereby provides a small step in

that direction.

In the context of holography, the three point function contains information of bulk

interaction of scalar fields. This requires bulk probes like the one considered here which

are sensitive to the entire spacetime geometry. In this line of thinking, entanglement has

been used as a tool to reconstruct the bulk geometry, by utilizing its formulation in terms of

the Ryu-Takayanagi surface. However entanglement entropy is a highly dynamic quantity

and is susceptible to UV divergences. In contrast, the mean structure constant is not UV

divergent. The infinities appearing in the lengths of the bulk geodesics which determine

the three point function can thus be unambiguously removed. It would be interesting to

explore this holographic relationship further and to see to what extent bulk geometry can

be constrained using the average OPE coefficient.

Finally, the growth of spectral density has played a crucial role in determining whether

CFTs fall within the ‘universality class’ of being holographic. In order to admit a stringy

dual, CFTs should have a sparse light spectrum and a Hagedorn growth in the density

of primaries at high energies [42–44]. For N = 2 SCFTs, the properties of the elliptic
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genus also serve as a diagnostic for determining whether they can admit a putative gravity

dual [45, 46]. It is an exciting avenue to explore the mean values of the OPE coefficient

further and turn their behaviours both at the heavy and light regimes into constraints for

holographic CFTs. We hope that recently developed techniques from higher genus modular

bootstrap will prove to useful in this context [10, 33, 47].
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A Properties of Virasoro × u(1) algebras

The commutation relations of the Virasoro×u(1) generators are given by

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0

[Jm, Jn] =
c

3
mδm+n,0, [Lm, Jn] = −nJm+n.

(A.1)

The OPEs involving T and J are

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
,

J(z)J(w) ∼ c/3

(z − w)2
,

T (z)J(w) ∼ J(w)

(z − w)2
+

∂J(w)

(z − w)
.

(A.2)

It is well known that this algebra enjoys a spectral flow automorphism — under this

the J0 and L0 modes specifically transform as (k = c/3)

L′0 = L0 + δL0 = L0 + ηJ0 +
c

6
η2 J ′0 = J0 +

c

3
η, (A.3)

(see (B.21-23) of [48]). We can now tune η to kill the eigenvalue of the J0 charge, J . This

happens at

η = −3

c
J .

Consequently, the J0 and L0 eigenvalues become

h′ = h− 3

2c
J 2, J ′ = 0. (A.4)
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One can then work with these new charges for which the partition function is

Z(τ, ν) = Tr[qL0− c
24
− 3

2c
J2

0 q̄ L̄0− c
24
− 3

2c
J̄2

0 ] (A.5)

Hence, the spectrum gets shifted by the square of the charge on both on the holomorphic

and anti-holomorphic sides.

We remark that the N = 2 superconformal algebra (A.1) has additional commutation

relations, given by

[Lm, G
±
r ] =

(m
2
− r
)
G±m+r [Jm, G

±
r ] = ±G±m+r

{G+
r , G

−
s } = 2Lr+s + (r − s)Jr+s +

c

3

(
r2 − 1

4
δr+s,0

)
{G±r , G±s } = 0.

(A.6)

Unitarity bound. We shall restrict our attention to CFTs having just Virasoro× u(1)-

Kac-Moody as their chiral algebra. In order to obtain the unitarity constraint, we consider

the Kac determinant at level 1. For a given highest weight state |h, q〉, characterized by

the conformal dimension h and charge q, the descendant states at level one are L−1|h, q〉
and J−1|h, q〉. The Gram matrix of these states is

M(1) =

(
〈h, q|J1

〈h, q|L1

)(
J−1|h, q〉 L−1|h, q〉

)
=

(
k −q
−q 2h

)
. (A.7)

In a unitary CFT, the Kac determinant should be non-negative. This gives the constraint

det[M(1)] = 2kh− q2 ≥ 0 =⇒ h− 1

2k
q2 ≥ 0, for k > 0. (A.8)

B Chern-Simons bulk u(1) gauge field

The Chern-Simons action with boundary term is given by

SCS =
ik

4π

∫
M

(
A ∧ dA− Ā ∧ dĀ

)
− k

8π

∫
∂M

d2x
(
hαβAαAβ + hαβĀαĀβ

)
. (B.1)

The normalisation is chosen so that k appears as a level in the current algebra i.e [Jm, Jn] =

kmδm+n,0. Using the AdS/CFT prescription [49, 50], we obtain the CFT current from the

on-shell boundary variation of the bulk action [51]

δSCS =
i

2π

∫
∂M

d2w
√
h
(
J w̄ δAw̄ − J̄w δĀw

)
(B.2)

where we use complex Euclidean coordinates w = φ + it and w̄ = φ − it. Varying (B.1)

and comparing with the above equation, we arrive at

Jw =
1

2
J w̄ = ıkAw J̄w̄ =

1

2
J̄w = −ıkĀw̄. (B.3)

It is important to realize that one can either vary Aw or Aw̄, but not both. In our case,

we are following the convention of [51] and varying Aw̄, this leads to Jw̄ = 0. Similarly,
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for the anti-holomorphic cases, we are varying Āw whilst keeping Āw̄ fixed. Subsequently,

from eq. (B.3), we have

J0 =

∮
dw

1

2πı
Jw =

∮
dw

k

2π
Aw = kAw, (B.4)

J̄0 = −
∮
dw̄

1

2πı
J̄w̄ =

∮
dw̄

k

2π
Āw̄ = kĀw̄. (B.5)

This implies that the components of the u(1)× u(1) gauge field in the bulk are

Aw =
Q

k
, Āw̄ =

Q̄

k
. (B.6)

The components of the stress-tensor can be obtained by variation of hµν of (B.1). We have

T gauge
ww =

k

4π
A2
w =

Q2

4πk
T̄ gauge
w̄w̄ =

k

4π
Ā2
w̄ =

Q̄2

4πk
(B.7)

Now, this contributes to shift in L0 and L̄0 in following manner, leading to spectral flow

invariant combinations, equation (A.3).

δL0 = −
∮

dwTww = −
∮

dw
Q2

4πk
= −Q

2

2k

δL̄0 = −
∮

dw̄T̄w̄w̄ = −
∮

dw̄
Q̄2

4πk
= −Q̄

2

2k

(B.8)

C Applying Tauberian theorems

The relation between asymptotic form of a function and its Laplace transform falls naturally

under the umbrella of a broad class of theorems known as Tauberian Theorems. This branch

of mathematics deals with defining infinite sums, which are otherwise not summable in the

usual sense (i.e. the partial sum upto nth term does not converge as n→∞). In Tauberian

theory, one forms a hierarchy of the notion of summability. As one goes further up the

hierarchy, one can sum series which are not summable in the lower hierarchy. The following

example (see chapter 1 of [30] for a detailed introduction) elucidates the scenario.

Consider the sum
∑

k=0(−1)k(k + 1). Evidently, this is not summable in the normal

sense. But one can define

f(β) ≡
∑
k=0

(−1)k(k + 1)e−nβ (C.1)

For β > 0, however, this is summable in normal sense and we find

f(β) =
e2β

(eβ + 1)
2 (C.2)

It’s easy to see, e2β/
(
eβ + 1

)2
is well defined at β = 0 and equals to 1/4. Thus, one can

say f(β) goes to 1/4 as β goes to 0. Now one defines,∑
k=0

(−1)k(k + 1) =︸︷︷︸
New notion of sum

1

4
. (C.3)
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This notion of sum is called Abel sum. It’s easy to see that if a series is summable in

normal sense, it is summable in Abel sense, but not the other way around. The Tauberian

theorems specify the conditions under which the higher notion of summability (e.g. Abel

summability) implies the lower notion of summability (e.g. normal summability). In its

generalized version, one can deduce the asymptotic behavior of normal sum if one knows

the asymptotic behavior of Abel sum. At this point, it deserves mention that the continuous

version of Abel sum is precisely the Laplace transform.

The notion of Abel sum (or Laplace transform as its continuous avatar) becomes rele-

vant, in the present context, since we are looking at quantities of the form

f(β) =
∑
k=0

ake
−nβ , (C.4)

and trying to find out the behavior of
∑

k=0 ak asymptotically. To make the analogy more

precise, we note that the partition function of a CFT on a torus is given by,

Z(β) =

∫
d∆ ρ(∆) e−(∆−c/12)β , ρ(∆) =

∑
k

δ(∆−∆k), (C.5)

where β is the inverse temperature and length of one of the cycles of torus. Now, knowing

the form of Z(β) as β goes to 0 enables us to deduce the asymptotic form of
∫ ∆
c/12 d∆′ρ(∆′)

as ∆ goes to∞. The power of Tauberian theory comes from the fact that one does not have

to impose any regularity condition on ρ(∆). It can be seen that deducing the Cardy formula

for density of states of a CFT is equivalent to the following theorem (for more details, see

Theorem 21.1 (chapter 4) and its immediate application in Example 21.2 of [30]).

Theorem 1 Let S(v) be a non decreasing function and S(v) = 0 for v < 0. Let F (β) be

defined as

F (β) =

∫ ∞
0

e−βv dS(v) = β

∫ ∞
0

S(v)e−βvdv, for Re(β) > 0, (C.6)

and

e−f(β)F (β)→ 1, as β → 0 (C.7)

uniformly in every angle |arg(β)| ≤ β0 <
π
2 . Furthermore, if f(ξ) satisfies the following

conditions as ξ ∈ R and ξ ↘ 0, in which we have 0 < δ(ξ) ≤ ξ
2 ,

• f(ξ) is real and positive,

• −ξf ′(ξ)↗∞,

•
√
f ′′(ξ)

|f ′(ξ)| = O
(
δ(ξ)
ξ

)
,

• f ′′(ξ + z) = O (f ′′(ξ)) uniformly for |z| ≤ δ(ξ).

Then,

S(v) ∼ S0(v) =
evh(v)+f(h(v))

h(v)
√

2πf ′′(h(v))
, as v →∞ (C.8)
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To derive the Cardy formula [12], we make following identifications10

F (β) = Z(β), f(β) =
π2c

3β
, v → ∆− c

12
, S(v)→

∫ ∆

c/12
d∆′ ρ(∆′), (C.9)

and concretely, this yields∫ ∆

c/12
d∆′ ρ(∆′) ∼

∆→∞

1

2
√
π

(
π2c

3

)−1/4(
∆− c

12

)−1/4

exp

(
4π

√
c

12

(
∆− c

12

))
. (C.10)

Now, one can argue that heavy excited states lie very closely to each other so that

density of states becomes almost continuous, which allows us to take a derivative with

respect to ∆ and deduce the Cardy formula [12] for density of states of a CFT

ρ(∆) ∼
∆→∞

1√
2

( c
12

)1/4
(

∆− c

12

)−3/4

exp

(
4π

√
c

12

(
∆− c

12

))
(C.11)

Similarly, one can justify the result of [1] by appealing to same theorem provided the

quantity estimated i.e.
∫ ∆
c/12 d∆′ TO(∆′) is a non decreasing function of ∆. This requirement

can be however relaxed by observing that if all the cΥ†OΥ comes with same phase, one can

then define a new quantity T̃O by absorbing the phase. This ensures that
∫ ∆
c/12 d∆′ T̃O(∆′)

is a non decreasing function of ∆. The more general scenario without this caveat can be

explored by using the Tauberian theory of more general function S(v). For now, with this

caveat in mind,
∫ ∆
c/12 d∆′ TO(∆′) and

∫ ∆
c/12 d∆′ ρ(∆′) are obtained. Once again, going from

integral to integrand requires taking derivative and is justified by appealing to the extra

input that at heavy excited states TO becomes a smooth function of ∆. Hence, this justifies

the definition

CΥ†OΥ =
TO(∆)

ρ(∆)
. (C.12)

It is worthwhile to note that one can define following cumulative average as well

C
c-avg
Υ†OΥ

=

∫ ∆
c/12 d∆′ TO(∆′)∫ ∆
c/12 d∆′ ρ(∆′)

. (C.13)

In the large ∆ limit, the above quantity has exactly the same exponential behavior as

CΥ†OΥ . It deserves mention that in order to apply the above theorem for the OPE coef-

ficient, one needs to ensure f(β) is real and positive in the limit β ↘ 0. Since, f(β) goes

like −∆O log(β) + 4π2

β

(
c

12 −∆χ

)
, the positivity is guaranteed assuming existence of state

χ such that ∆χ <
c

12 . (Note that, log(β) < 0 for β < 1 and ∆O > 0 by unitarity bound.)

In fact, ∆χ < c
12 becomes a necessary condition as −βf ′(β) > 0 as β ↘ 0 is required

for the above theorem to hold. Furthermore, one can extend the prescription and use the

Tauberian machinery to the charged case which we have studied here. In the charged case,

where χ carries charge (q, q̄), we have ∆χ replaced by ∆χ,q = ∆χ − 1
2k

(
q2
χ + q̄2

χ

)
and the

requirement becomes ∆χ,q <
c

12 .

10In terms of ∆, the theorem requires that F (β) =
∫∞
c/12

d∆ ρ(∆)e−β(∆−c/12). The partition function,

Z(β) =
∫∞

0
d∆ ρ(∆)e−β(∆−c/12)), however differs from F (β). Nonetheless, in β → 0 limit, the dominant

contribution to Z(β) arises from large β. Hence, the fact Z(β) differs from F (β), does not affect this result.

In the β → 0 regime, we indeed have F (β) = Z(β).
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