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Current research concerned with the aerodynamic insta-
bility of compressors aims at an extension of the operat-
ing range of the compressor towards decreased massflow. In
practice, a safety margin is maintained between operating
point and stability limit to prevent the compressor from go-
ing into stall and surge. In this article, we analyze the behav-
ior of a 4-stage transonic axial compressor before entering
the unstable range and present an approach to identifying in-
cipient surge and stall using artificial neural networks. This
method is based on measurements of the unsteady static wall
pressure in front of the first rotor.

Analyzing the static pressure signals by using the Fast
Fourier Transform shows that peripheral disturbances
(modal waves) can only be identified in a small range close
to nominal speed (at 95%). At lower speeds (60 to 80% of
nominal speed), the investigated compressor flow enters in-
stability by spike-type stall.

Monitoring stability over the entire speed range of the
compressor relies on artificial neural networks using the un-
steady wall pressure signal. In the present case, artificial
neural networks show to be the most useful tool to indi-
cate approaching instability. The method works reliably for
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both types of instabilities, spike-type stall as well as modal
waves.
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INTRODUCTION
In a compressor performance map the surge line is the limit

of aerodynamic stability towards low massflow. The different
forms of those aerodynamic instabilities are rotating stall and
surge. Rotating stall defines a situation where regions of re-
versed flow occur locally. Surge is characterized by a system
instability with periodic backflow over the entire cross section
involving violent oscillations in the ducts and piping throughout
the compression system. Surge can be divided into two different
forms: the so-called classic surge when the mass flow decreases
intermittently, and deep surge in which the mass flow becomes
negative. The different forms are described in detail by Day
(1996a) and Rippl (1995).

Figure 1 shows the schematic view of the performance map of
a compressor for the purpose of discussing forms of instability.

All of those forms of instability are stressing the engine heav-
ily, and may lead to mechanical failure. Strain gauge measure-
ments in the literature report of bending stress in vanes exceeding
stable operation by a factor of two during surge and by five un-
der conditions of rotating stall (Rippl, 1995). For this reason,
numerous investigations are under way to find reliable means
for monitoring an eventual approach to the stability limit while
running the machine (Ludwig and Nenni, 1978; Day et al., 1997;
Höss et al., 1998; Walbaum and Rieß, 1998). Ways for alerts
have been identified for individual test beds but a reliable warn-
ing of general validity also for foreign compressor designs is
still unattained (Ludwig and Nenni, 1980; Schulze et al., 1998;
Regnery, 1998; Grauer, 1998a, b), therefore the quest for proof of
reliability initiates additional research. Different concepts have
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FIGURE 1
Compressor performance during stall and surge.

been devised to prevent the compressor from entering unstable
operation by increasing the distance to the surge line as soon as a
critical approach is detected. This may be done by opening blow-
off valves, adjusting guide vanes, or reducing fuel in gas turbines.
Another concept describes attempts to move the surge line ac-
tively towards lower throughflow and higher pressures by the
influence of actuators, e.g., the “modal” control (Murray, 2001)
with pulsed air injection. Doing this enables the maintaining of
the speed line and the shifting of the surge line to provide for in-
creased operating range (Day, 1996b; Paduano, 2000). No matter
what the approach to avoid stall and surge will be, however, it is
first necessary to detect upcoming unstable conditions reliably.

FIGURE 2
4-stage compressor.

The following sections present investigations about the onset
of rotating stall in a high-speed axial compressor of 4 stages by
using high resolution wall pressure measurements. Results of
data analyses are presented that aim to deliver a reliable tech-
nique to detecting the approach to the unstable range.

EXPERIMENTAL SETUP

Compressor Test Rig
The 4-stage test compressor at the lab of the University of

Hannover (Figure 2) is equipped with controlled diffusion air-
foils (CDA). Its specifications are listed in Table 1.
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TABLE 1
Compressor data

Nominal speed (100%) 18000 min−1 Number of blades and vanes
Corrected massflow 14,1 kg/s IGV 26
Inlet pressure 0,5 . . . 1,0 bar Stage 1 Rotor 1 23
Isentropic efficiency 0,88 Stator 1 30
Pressure ratio 2,95 Stage 2 Rotor 2 27
No. of stages 4 Stator 2 32
Tip diameter (const.) 340 mm Stage 3 Rotor 3 28
Blade height 90 . . . 45 mm Stator 3 34
Axial velocity 189 . . . 150 m/s Stage 4 Rotor 4 31
Circumferential velocity 320 m/s Stator 4 36

The compressor inlet mass flow can be throttled to limit the
power consumption and blade stresses. All tests are taken with
an inlet pressure of 0.6 bar. The instability is caused by throt-
tling downstream. Due to the downstream volume enclosed by
the throttle, the compressor even remains in rotating stall as a
steady-state operation without going into surge, independent of
the compressor speed.

Instrumentation
Unsteady flow data are acquired from wall-mounted probes

for static-pressure. Figure 3 shows the circumferential positions
of pressure probes in front of the first rotor. At position “3”
(162◦), the probe is positioned behind the first blade row. Another

FIGURE 3
Circumferential (left) and axial (right) positions of pressure probes in front of the first rotor of flow.

sensor (not given in Figure 3) is positioned above the blading of
the first rotor. In axial direction one probe is mounted in front
of each cascade at position “4” (255◦) (see Figure 3 (right)).

The pressure transducers enable the resolving of very high
frequencies. All measurements that are presented here were
taken at a sampling rate of 50 kHz with a low pass filter of
20 kHz corresponding to the Nyquist criterion.

Database
The performance map of the compressor and the database for

the analysis is given in Figure 4.
The investigations mentioned here are based on two indepen-

dent tests for each marked operating point to compare the results.
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FIGURE 4
Compressor performance map and database.

The static pressure was recorded at the different circumfer-
ential positions referred to before: four in front of rotor 1, one
above rotor 1, and one in front of each rotor and stator as shown
in Figure 3. The results of the analysis are given in the following
sections.

FIGURE 5
Distribution of wall pressure at different axial positions vs. time (revs) at 60% of nominal rotor speed.

RESULTS OF UNSTEADY MEASUREMENTS
The unsteady behavior of the compressor was measured at

the relative speeds of 60%, 80% and 95%. The instability was
introduced by downstream throttling. At each compressor speed
the instability started at the front end of the compressor, i.e., the
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FIGURE 6
Distribution of wall pressure at different axial positions vs. time (revs) at 80% of nominal rotor speed.

probes in stages #1 and #2 detected the emerging spike first (see
Figures 5–7).

Figure 8 shows the signals as acquired from the measurement
beginning about four revolutions ahead of the stall event. The
rotational speed of the emerging spike is about 54% of the rotor

FIGURE 7
Distribution of wall pressure at different axial positions vs. time (revs) at 95% of nominal rotor speed.

speed when going into rotating stall. The rotating stall is of the
type of a one-cell configuration with a rotational speed of 43.5%
of the blade speed.

When approaching the situation of stall, it is not easily possi-
ble to recognize the appearance of precursor wave patterns at a
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FIGURE 8
Distribution of wall pressure at different circumferential positions in front of rotor #1 vs. time (revs) at 80% of nominal rotor

speed.

time sufficiently large to allow for preventive action. The emerg-
ing spike increases to stall within less than two revolutions. A
precursor wave information serving as a stall detector cannot be
discerned sufficiently early.

Precursors such as modal waves cannot be detected from
the measured data without any further analysis. As mentioned
above, first it is necessary to detect the approach of the compres-
sor operating condition to the unstable range before developing
a control system to avoid this. Therefore, different methods of
analyses were developed and tested at the University of Bochum
which aim at a reliable detection of reaching the unstable range
of the compressor performance map.

RESULTS OF THE DATA ANALYSIS
The Fourier transform of a signal provides information about

the amplitudes of different oscillations with respect to the ro-
tor revolutions. Due to the different types of stall inception
described, for example, by Day, 1996a in which modal waves
are as large-scale disturbances and spikes as short-scale distur-
bances, the Fourier transform is able to identify those distur-
bances in their band of frequency relative to the rotor speed.

In this article only the results of Fourier transforms of single
sensor signals will be given. The analyzed data was acquired by a
sensor ahead of the first rotor. Another technique first described
by Tryfonidis (1994) is not used here because of the sensor
positions. The circumferential Fourier transform uses evenly
spaced pressure transducers. In this case only a sector of 176◦ of

the circumference is covered by 4 sensors. Due to these periph-
eral positions, a circumferential Fourier transform will deliver
incorrect results because of aliasing effects.

The results of the Fourier transform of a single sensor signal
are given for the different compressor speeds in Figures 9 (60%),
10 (80%), and 11 (95%) over a time of 500 revolutions prior to
instability. In the lower part of each figure the frequency vs. time
(revs) and the amplitude (contour) are displayed; in the upper
part, the integration of amplitudes in the frequency range of 0.1
to 1.0 is given. Former investigations have shown that it might
be possible to detect the approach of a compression system to
unstable conditions by observing the integration of amplitudes
over a defined band of frequencies at one instant of time (Grauer,
1998a; Methling, 2000).

At 60 and 80% compressor speed, there are no frequency
ranges where the amplitudes grow when the working line ap-
proaches the stability limit. At 60% (Figure 9), the sensor signal
is noisy over the whole range of frequencies between 0 and
100% of rotor frequency. The signal of the 80% relative com-
pressor speed (Figure 10) is very noisy in a range from 0 to 35%
of the rotor frequency, but there is no range of an increasing
amplitude.

Another result can be observed from the measurements at
95% rotor speed (Figure 11). At the frequency band less than
25% of the rotor frequency, the amplitudes grow when the work-
ing line approaches the stability limit. The integration of ampli-
tudes begins to increase 120 revolutions prior to stall. The results
of this analysis show, that only for the compressor speed of 95%,
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FIGURE 9
Fourier transform at 60% speed.

there exist frequency ranges where the amplitudes grow gradu-
ally prior to unstable conditions.

A criterion for a stall warning cannot be figured out by ob-
serving a special frequency or integrating the amplitudes within
a frequency band in the case of this compressor.

FIGURE 10
Fourier transform at 80% speed.

As well as it is impossible to use this analysis as a precursor
detection, it is impossible to identify the stable operation of the
compressor from operation near the surge line (see Figure 12).

Figure 12 displays the integration of amplitudes at the last
stable operating point (see Figure 4) at left and over a range of
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FIGURE 11
Fourier transform at 95% speed.

75 revolutions prior to stall at right for the different compressor
speeds of 60% (top), 80% (middle), and 95% (bottom).

The result given in Figure 12 is the sum of amplitudes calcu-
lated by the Fourier transform at each timestep in the frequency
band between f/fRot = 0.1 and 1.0.

FIGURE 12
Comparison of integrated amplitudes at stable conditions (left) and near stall (right).

In the upper speed ranges (80 and 95%) of the compres-
sor, the integrated amplitudes show a higher level and an in-
crease of fluctuations near the stability limit compared to the
stable operation. At 60% compressor speed a distinction is
impossible.
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The described signal treatment cannot easily yield a criterion
for a stall warning, but they give a deeper insight into the charac-
teristics of the signal during the stall inception process. Another
technique, which centers on the observation of the disturbances
specific for the rotor speed, is based on artificial neural networks.
This technique was first described by Grauer (1998a, b) and was
adjusted to the present set of data as described in the following
section.

MONITORING BASED ON NEURAL NETWORKS
Artificial neural networks attempt to imitate the biological

brain in technical applications as there are the fields of pattern
recognition and control. They can be adapted to a variety of
problems and are able to extract information submerged in noise
of a signal. Their capability goes beyond a simple analysis of
the data as they can also serve for purposes of control. Figure 13
shows the basic elements of a neural network.

A neural network consists of many nonlinear computational
elements called nodes (represented by rectangles in Figure 13)
which are connected by links of variable weights. Data that have
to be processed by the network reach the net via an input layer
and are transmitted to the following layers by the weighted links.
Basics about neural networks can be found in the literature (e.g.,
Ritter et al., 1991; Zell, 1994). Working with a neural network
requires initial adaptation of the net to the special problem. This
is done during a separate process called the learning or training

FIGURE 13
Basic elements of neural networks.

phase. One of the methods most frequently used is called su-
pervised learning, which means that representative data, which
describe the problem as detailed as possible, are presented to the
net together with the respective output. The learning process is
finished, if the calculated error between the network output and
the teaching output reaches a prescribed tolerance margin.

The results presented were obtained by the Stuttgart Neural
Network Simulator (SNNS) which is developed at the Institute
for Parallel and Distributed High Performance Systems (IPVR)
of the University of Stuttgart, Germany. The simulator consists
of various types of networks and a huge number of specific
parameters. In the following, a feedforward net and the cascade
correlation learning algorithm was used (Zell, 1994), as this
combination yielded the best results.

Each neural network will work as well as the data, which
were presented during the learning period, to describe the
problem to be handled. Therefore, apart from a good choice
of network models, connection types, and learning rules, which
all have a significant influence on the network’s performance,
the most important step is to extract adequate sets of data
(called input pattern). Measured data can be improved by appro-
priate preprocessing, which can be achieved by various analysis
techniques. As described in the former section, different peri-
odic disturbances and increasing fluctuations were found in the
pressure signal that changed during stall inception.

Several analysis techniques gave insight into the structure of
the pressure fluctuations. Referring to Figure 10, the distinc-
tion between stable operation and those operating points near
stall was clearly indicated for example by the Fourier transform
followed by the integration of amplitudes for the 80 and 95%
speed line but not at 60% speed as described in the former
section. As these differences also should be visible in the un-
treated pressure signals, they were observed in detail to find out
comparable structures. Furthermore, the possibility of finding
a criterion that enables one to distinguish between stable op-
eration on the one hand and operation near surge line on the
other hand for all the different compressor speed lines should
be investigated. As described above, this was not possible by
an analysis technique using the Fourier transform, therefore
the neural network approach was chosen as described in the
following.

The input to the network was generated by using wall static
pressure signals. These pressure signals show specific charac-
teristics which can be related to the actual operating point by
using a neural network. The generation of the input pattern for
the training as well as for the validation of the neural network
has been done in the following steps:

1. Treatment of the measurement data to achieve a sampling
rate of 10 kHz, i.e., each rotor revolution is represented by
35 samples at 95% relative speed and up to 55 samples at
60% relative speed.

2. The once-per-rev signal was used to start the recording of
each input pattern. The length of the generated pattern covers



396 F.-O. METHLING ET AL.

an interval of 30 samples which means nearly one rotor rev-
olution (depending on the rotor speed). By using the once-
per-rev signal, the beginning of the record of each
pattern always starts at the same relative rotor position,
i.e., the same peripheral sector of a revolution for each
pattern.

3. Each of these pressure patterns (= set of 30 samples) was then
normalized into an interval of [0,1] for each throttle setting
in order to level the signal by using (Equation 1).

p̄(t) = p(t) − min(p)

max(p) − min(p)
∀t ∈ [1; 30] [1]

applied to each pattern, i.e., revolution, where

p(t) = measured value,

p̄(t) = normalized value,

max/min = maximum/minimum value of each pattern

The way of input pattern generation from the pressure sig-
nal is given in Figure 14. By using this way of pattern gen-
eration each rotor revolution yields one pressure signature for
the network input. This approach was chosen because in some
cases only few data for the network training were available
and the pattern generation suggested by Grauer (1998b), which
is based on an additional ensemble averaging of this single-
rev pattern, would further reduce the available training
data.

This generation of input pattern for the neural network has
been done for all the selected speed lines of the compressor.

FIGURE 14
Generation of input pattern.

TABLE 2
Number of Pattern, i.e., Training Database

Nominal speed Stable operation Operation near surge line

60% 30 92
80% 237 82
95% 94 138

As mentioned above, the database includes two independent
measurements at each operating point. The network was trained
with the data of one sensor of the first campaign and was then
tested with the signals of the same sensor of the second set of
measurements. Table 2 provides the number of generated pattern
(= number of measured revolutions) for each operating range
used for the training of the neural network.

The network generated with those data is given in Figure 15.
The teaching output of the network was defined as 0.3

for regions of stable operation and as 1.0 for operating points
that are approaching the surge line. Figures 16 to 18 display
the results of data classification using the network shown
above (Figure 15) with the “unknown” testdata put into the
network.

Figures 16 to 18 show the averaged network output for each
compressor speed. Each dataset consists of the pattern from the
stable operating range as well as from a dataset approaching the
surge line. As it can be seen, the network output does not exactly
correspond to the teaching output (defined before as 0.3 or 1.0)
but such an artificial neural network can clearly decide between
stable and unstable compressor operation.

Due to the high-speed data acquisition of transient data, this
behavior of the network output is expected and an averaging of
the network output is necessary. In the case of the results given
here, the network output was averaged over a number of ten sets
of pattern.

It is impossible to eliminate all the fluctuations by ensemble
averaging caused by the fluctuations in the signal. Nevertheless,
the network output is unambiguous if the result is considered,
e.g., by a decision as “less than 0.7” or “greater than 0.7”, for
the stable and unstable range.

By analyzing the averaged network output in this way it can
be stated that with the exception of some input patterns at rated
speed of 60% and one input pattern at rated speed of 95%, all
input patterns are classified correctly, i.e., the system is highly
reliable. In all cases the operation near the surge line is classified
correctly. Due to the database given in Table 3, the quality of the
provided results depends on the number and length of available
measurements.

The described method centers on the observation of the distur-
bances being periodic with the rotor speed. Those disturbances
can be found in compressors with a spike-type stall and in those
with modal waves (Day et al., 1997). It should be possible to
apply this method to both types of onset of instability. This will
be a subject for future investigations.
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FIGURE 15
Neural network after training.

FIGURE 16
Network output, rotor speed 60%.

FIGURE 17
Network output, rotor speed 80%.
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FIGURE 18
Network output, rotor speed 95%.

This and former investigations suggested that a monitoring
system using neural networks could be useful. A disadvantage
could be that each compressor type needs his “own” neural net-
work and a measured database for the training of the network.
The transfer of a network to another compressor of the same
type is not yet investigated.

CONCLUSIONS
Unsteady measurements of wall pressures in the casing in

front of each rotor and stator of the four stages and at the exit
are considered in the investigations.

The inception of instability is of a spike-type stall. The ro-
tational speed of the emerging spike is about 54% of the rotor
speed going into stall with a single-cell configuration at a rela-
tive speed of 43% during a time of less than 2 rotor revolutions.
In the case of 60 and 80% relative rotor speed, no precursor
waves were detected. At 95% rotor speed the amplitudes in a
frequency band up to 25% of the rotor speed begin to increase
120 revolutions prior to instability.

The integration of the amplitudes over the frequencies alone
as a criterion for a stall warning is not able to cover the whole
speed range. At 80 and 95% compressor speed there is a clear
difference in variation and level of the integrated amplitudes.
However, it is not possible at 60% speed to decide in this way
between stable operation and an approach towards the surge line.

Artificial neural networks proved to be a useful tool to detect
the actual compressor operation directly from the acquired data
without any extensive preprocessing, i.e., deciding reliably be-
tween stable operation and operation near the surge line for all
the different compressor speeds. The efficiency of this method
depends on the availability of measured data to describe the tech-
nical problem. Consequently, the quality of the achieved results
increased from 60% over 95% to 80% due to the number of
available measurements at each compressor speedline. A mon-
itoring system based on neural networks proved to be able to
cover the whole range of the compressor operation if adequate
training data are available.

REFERENCES
Day, I. J. 1996a. The fundamentals of stall and surge in axial compres-

sors. VKI Lecture Series 1996-05, Unsteady Flow in Turbomachin-
ery, Von Karman Institute for Fluid Dynamics Brussels, Rhode-St-
Genese, Belgium.

Day, I. J. 1996b. Stall and surge in high speed compressors and the
prospect for active control. VKI Lecture Series 1996-05, Unsteady
Flow in Turbomachinery, Von Karman Institute for Fluid Dynamics
Brussels, Rhode-St-Genese, Belgium.

Day, I. J. et al. 1997. Stall inception and the prospects for active con-
trol in four high speed compressors. ASME 97-GT-281, Journal of
Turbomachinery 121(1):18–27.

Grauer, F. et al. 1998a. Detection of precursor waves announcing stall
in two 3-stage axial compressors. ASME 98-GT-520.

Grauer, F. 1998b. Entwicklung einer pumpgrenzwarnung für mehrstu-
fige, hochbelastete axialverdichter. Fortschr.-Ber. VDI-Reihe 7 Nr.
355.
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