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Abstract. Winter storms are the most costly natural hazard

for European residential property. We compare four distinct

storm damage functions with respect to their forecast accu-

racy and variability, with particular regard to the most severe

winter storms. The analysis focuses on daily loss estimates

under differing spatial aggregation, ranging from district to

country level. We discuss the broad and heavily skewed dis-

tribution of insured losses posing difficulties for both the cal-

ibration and the evaluation of damage functions. From the-

oretical considerations, we provide a synthesis between the

frequently discussed cubic wind–damage relationship and re-

cent studies that report much steeper damage functions for

European winter storms. The performance of the storm loss

models is evaluated for two sources of wind gust data, di-

rect observations by the German Weather Service and ERA-

Interim reanalysis data. While the choice of gust data has

little impact on the evaluation of German storm loss, spa-

tially resolved coefficients of variation reveal dependence be-

tween model and data choice. The comparison shows that the

probabilistic models by Heneka et al. (2006) and Prahl et al.

(2012) both provide accurate loss predictions for moderate to

extreme losses, with generally small coefficients of variation.

We favour the latter model in terms of model applicability.

Application of the versatile deterministic model by Klawa

and Ulbrich (2003) should be restricted to extreme loss, for

which it shows the least bias and errors comparable to the

probabilistic model by Prahl et al. (2012).

1 Introduction

As a major contribution to natural-hazard damages, wind-

storms are responsible for an average of 39 % of world-

wide economic losses during 1980–2011 (Munich Re, 2013).

Across Europe, losses from meteorological events are mainly

caused by winter storms and comprise 68 % of total insured

loss from natural catastrophes. The largest event so far, win-

ter storm Daria in 1990, totalled USD 8.6 billion of insured

loss in 2013 values (Swiss Re, 2014).

Recent climatological studies by Schwierz et al. (2010)

and Held et al. (2013) indicate that the severity of winter

storm-related loss is likely to increase markedly in the course

of the 21st century. While there is no consensus on changes

of winter storm frequency, a growing body of research sup-

ports a future increase in storm intensity (Feser et al., 2015).

With this development in mind, it is questionable whether

the anticipated damages will remain within the limits of in-

surability. Even though Held et al. (2013) come to a posi-

tive conclusion for the German insurance market, such anal-

yses hinge on the choice and quality of the employed damage

function.

A storm damage function describes the relation between

the intensity of a storm and the typical monetary damage

caused. While on the continental scale storm intensity can be

best described by complex storm severity indices (Deroche

et al., 2014; Roberts et al., 2014), local losses are ultimately

caused by surface winds. As the magnitude of storm loss is

highly sensitive to changes in wind speed, even small varia-

tions between potential damage functions could have severe

implications for the reliability of loss estimates and their va-

lidity for economic and political decision making.
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The work in hand tackles this issue by providing a model

intercomparison of storm damage functions for the residen-

tial sector in the context of European winter storms.

In the discussion of storm damage functions, it is often

assumed that loss should increase as the square or cube of the

maximum wind (gust) speed. These presumptions originate

from the following:

– the consideration of wind loads, which are approxi-

mately proportional to the exerted pressure and, hence,

to the square of the wind speed (e.g. Simiu and Scanlan,

1996);

– the concept of proportionality between structural dam-

age and the dissipation rate of the wind kinetic energy

that scales with the third power of wind speed (recently:

Emanuel, 2005; Powell and Reinhold, 2007; Kantha,

2008).

In particular, the notion of a cubic relationship is backed by

empirical analysis of insurance records, which appear to ex-

hibit cubic or quartic behaviour depending on the storms un-

der scrutiny (Munich Re, 1993, 2001). However, recent liter-

ature provides evidence for a much stronger increase of in-

sured storm loss with wind gust speed (Huang et al., 2001;

Heneka and Ruck, 2008). For the insurance data set that we

employ here, Prahl et al. (2012) found a power law with

regionally varying exponents that approximately range be-

tween 8 and 12.

We reason that the apparent contradiction results from the

negligence of a potential loss threshold due to insurance de-

ductibles or similar economic effects. Thus, we schemati-

cally demonstrate the transition from very steep loss increase

to a more modest cubic power-law.

The comparison of storm damage models is generally im-

peded by inconsistencies for reasons of (i) differing tempo-

ral or spatial resolution of meteorological data, (ii) deviating

building codes and enforcement practices, and (iii) differing

insurance policies and claims settlement practices (Walker,

2011).

In order to circumvent such inconsistencies, three recently

developed damage functions (Klawa and Ulbrich, 2003;

Heneka and Ruck, 2008; Prahl et al., 2012) are applied to

a common data set of wind gusts and insurance loss data for

Germany. These damage functions are complemented by a

simple exponential model inspired by recent US hurricane

loss models (Huang et al., 2001; Murnane and Elsner, 2012),

yielding four mathematically distinct modelling approaches.

For simple referencing, we assign the acronyms X and K to

the deterministic exponential model and the model by Klawa

and Ulbrich (2003), respectively. The probabilistic models

by Prahl et al. (2012) and by Heneka and Ruck (2008) are

referred to via the letters P and H , respectively.

The theoretical foundations and the implications of each

model are discussed in order to mainstream terminology and

conceptual structure of storm damage functions. Quantita-

tive results are obtained from numerical estimation and al-

low a direct comparison of model performance under varied

spatial aggregation, relating to either daily loss or particu-

lar major storms. During summer months, the employed loss

data inseparably includes both wind and hail damages. Since

the employed damage functions concern wind damage only,

we limit the work in hand to days within the winter half-

year (abbreviated as WH), comprising the months October

through March.

We address the validation of countrywide loss estimates

by applying a novel pairwise binomial test metric in conjunc-

tion with the relative metrics mean percentage error (MPE)

and mean absolute percentage error (MAPE). Furthermore, a

coefficient of variation is employed to assess the predictive

uncertainty on district level at daily resolution.

The overall model estimation is based on annual cross val-

idation, an iterative procedure for the sampling of the train-

ing data, safeguarding that loss estimates within any given

year are obtained from independent training samples. We

furthermore assess model robustness by employing a jack-

knife method for the systematic resampling of training data.

Selectively excluding parts of the training sample, the jack-

knife method allows us to assess the dependence of model

estimates on the training data. Probabilistic model results are

obtained from a Monte Carlo simulation with a sample size

of 1000.

In the following section, we give overviews of the em-

ployed wind gust and insurance data sets and of the model

estimation procedure. In Sect. 3 a brief introduction of storm

damage functions is followed by a detailed view on each of

the compared models. The numerical modelling results are

discussed in Sect. 4. In Sect. 5 we attempt a synthesis be-

tween a cubic wind–damage relation and the considerably

steeper damage functions reported for German winter storms.

The concluding synopsis and discussion of the theoretical

and numerical aspects of the impact model intercomparison

are given in Sect. 6.

2 Data and methods

2.1 Insurance data

In this work, the employed damage functions are calibrated

against detailed insurance loss data obtained for storm dam-

ages to residential buildings. The German Insurance Asso-

ciation (GDV) provided loss data relating to the “compre-

hensive insurance on buildings” line of business resolved for

439 German administrative districts (as of 2006).

The data set comprises the magnitude of absolute losses

and insured values as well as the number of claims for the

years 1997 to 2007 on a daily basis. With its high spatiotem-

poral resolution and countrywide coverage, the GDV data set

has been successfully applied for the calibration of different
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Table 1. The three loss classes defined for the winter half-year.

Given are the number of observations, the related quantiles, and the

accumulated loss share for the period 1997 to 2007.

Loss class Description No. Quantiles of Loss

daily losses share

I Extreme 6 0.997–1.000 54.9 %

II Large 34 0.980–0.997 23.4 %

III Moderate 160 0.900–0.980 15.0 %

damage functions (e.g. Donat et al., 2011b; Prahl et al., 2012;

Gerstengarbe et al., 2013).

In order to eliminate price effects and time-varying insur-

ance market penetration, we consider relative figures for the

amount of loss and claims throughout. The following defini-

tions are applied:

– loss ratio (LR): the amount of insured loss per day and

district, divided by the corresponding sum of insured

value;

– claim ratio (CR): the number of affected insurance con-

tracts per day and district, divided by the corresponding

total number of insurance contracts.

These definitions are based on the assumption that insured

buildings are randomly distributed in each district and are

representative of the overall residential building stock. With

data coverage of up to 13.4 million insured buildings and in

excess of 90 % market coverage (GDV, 2013) we expect the

assumptions to hold.

The highly skewed and heavy-tailed distribution of daily

losses during the winter half-year is illustrated in Fig. 1.

More than 50 % of total loss is recorded for the top 6 out of

2000 loss days. The shaded area in Fig. 1 highlights the up-

per 10 % of loss days, comprising in excess of 90 % of total

loss. For economic relevance, our work focusses on this loss

segment, with a sub-division into three distinct loss classes,

as shown in Table 1.

The vast number of days exhibiting negligible insured loss

appears to be due to a random scattering of small losses

across time and districts. Supporting the attribution to noise,

Prahl et al. (2012) found a direct proportionality between the

magnitude of the temporally scattered losses and the number

of insured contracts in a given district.

2.2 Wind gust data

Two sets of meteorological data were employed. The first

set comprises daily maxima of the 3 s wind gust measured

by the German weather service DWD1 (Deutscher Wetterdi-

enst). Applicable meteorological stations were selected ac-

cording to the following criteria:

1Data available at: http://www.dwd.de/webwerdis.

1. Missing values may not exceed 20 days for each year.

2. Average missing days per year may not exceed 10 for

the period 1996 to 2008.

3. Stations should exclude mountainous stations above

1400 m a.s.l.

Based on the selection criteria, 85 meteorological sta-

tions were selected. Measurements obtained at anemometer

heights other than 10 m were adjusted using the simple wind-

profile power law

v(10)=

(
10

h

)λ
v(h), (1)

with wind velocity v, anemometer height h, and an exponent

λ= 1/7 as discussed in Wan et al. (2010).

Inhomogeneities in meteorological times-series can be

identified by finding an optimal solution to the multiple

breakpoint problem. Standard methods are available, in par-

ticular, for finding inhomogeneities in monthly climatic time

series (Venema et al., 2012). Application to daily time se-

ries is however subject to ongoing research (e.g. Wang, 2008;

Mestre et al., 2011).

In the case of daily block maxima of climatic data, the

relatively small change at the breakpoint as compared to the

data’s variance and the presence of long-term persistence ad-

versely affect the capacity to identify breakpoints correctly.

With a low signal-to-noise ratio, the presence of long-term

correlation can lead to false identification of breakpoints

(Rybski and Neumann, 2011; Bernaola-Galván et al., 2012).

We attempt to avoid over-detection by applying a conser-

vative testing scheme based on multiple cross-comparison

of neighbouring stations and the examination of metadata,

e.g. about relocation of stations. The testing scheme employs

the R implementation of the PMFred algorithm developed by

Wang (2008) to identify potential breakpoints in time series

of differences between daily gust maxima of any pair of me-

teorological stations. We reduced the skew of the distribution

of gust speeds by applying a logarithmic transformation and

hence improved the normality of the data, which constitutes

a basic assumption of the PMFred algorithm.

To begin with, we chose a control group of 39 stations

whose individual time series showed no significant inhomo-

geneities in the test algorithm. Subsequently, we paired each

of the 85 stations with the 10 closest of the control group and

performed the PMFred algorithm on the time series of their

differences. If, within a 60 day window, at least three pair-

wise tests indicated a breakpoint that could be backed by

metadata, the inhomogeneity was corrected. Furthermore, if

all 10 pairwise comparisons suggested a significant and oth-

erwise undocumented breakpoint it was also corrected. All

corrections were performed using a quantile-matching algo-

rithm (Wang et al., 2010).

Overall, we took a conservative stance on artificial manip-

ulations of the raw time series and corrected only three sig-
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Figure 1. (a) shows the empirical cumulative distribution function of loss days in Germany during the winter half-year. The observations

comprise 2000 loss days, which exhibit a steep increase of loss at the upper end of their distribution. The shaded area indicates the days

within the upper 0.1 quantile, subdivided into the three loss classes defined in Table 1. The top scale shows the share of total loss that is

accumulated for all losses smaller than or equal to a specific loss ratio. (b) shows the spatial distribution of the employed DWD stations and

the ERA-Interim grid cell resolution.

nificant breakpoints in total, two of which were documented

in metadata.

The second wind gust data set was obtained from the ERA-

Interim reanalysis project2 (Dee et al., 2011). We use the

daily maxima of the 3-hourly values of the 10 m wind gust.

Both sets of wind gust data, DWD and ERA-Interim, re-

quire a downscaling to match the resolution of the insurance

data. Prahl et al. (2012) demonstrate that wind gust obser-

vations from neighbouring meteorological stations provide

sufficient information for the calibration of a storm dam-

age function. Higher precision may be attained via the use

of mesoscale climate models for the computation of detailed

and physically valid wind fields from reanalysis or observa-

tional data (Heneka et al., 2006; Huttenlau and Stötter, 2011).

As this is clearly beyond the scope of our work, we limit our-

selves to a simple inverse-distance interpolation scheme ap-

plied to both DWD and ERA-Interim data sources. The wind

field was interpolated at the centroids of each district, taking

into account all locations (stations or grid points) within a

certain radius of interaction. Employing leave-one-out cross

validation, i.e. iteratively excluding each individual location

from the interpolated data set, we calculated the average cor-

relation between empirical and interpolated values at vary-

ing radii of interaction. The optimal radius of interaction was

chosen as the value at which the average correlation reached

its maximum. The estimated radii were 130 and 60 km for

DWD and ERA-Interim, respectively.

2ERA-Interim data were obtained from: http://data-portal.

ecmwf.int/data/d/interim_full_daily.

2.3 Model calibration

The analysis of daily insurance loss data of the winter half-

year reveals an extremely broad and strongly skewed loss

distribution. Relating loss and wind gust data, a pronounced

heteroscedasticity is revealed (cf. Fig. 6 in Heneka and Ruck,

2008), with uncertainty resembling a log-normal error (Prahl

et al., 2012). In conjunction with such pronounced het-

eroscedasticity, the scarcity of extreme events in the tail of

the distribution may cause a bias of traditional regression

methods, such as least squares, towards singular extremes

present in the training data. While a data transformation, such

as the logarithm, may reduce skew and heteroscedasticity, it

would put stronger weight on smaller loss events and hence

counteract the focus on extremes. In practice, potential data

transformation and curve fitting methods are dependent on

the specific damage model and are hence discussed in con-

junction. Calibration issues that arise from the properties of

the loss distribution are discussed alongside the mathemati-

cal model concepts in Appendix A.

2.4 Model estimation procedure

Since damage functions are typically employed as predictive

models, it is of key importance how accurately they perform

in practice. In addition to choosing the optimal model, there

is the risk of overfitting to a training data which may not

represent the high variability of weather extremes. In order to

assess the predictive performance of the employed models, a

k-fold cross validation scheme (Kohavi, 1995) is employed

in conjunction with a jackknife procedure (Miller, 1974).

For annual cross validation, the 11-year data set is par-

titioned into annual subsamples. Iteratively, each individ-
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ual subsample is retained for evaluation, while the model is

trained in the 10 years remaining. This process ensures that

each year is used exactly once for evaluation.

The employed cross validation enables out-of-sample pre-

diction for each day and allows for the assessment of the

model fit with regard to the range of frequently occurring

losses.

However, for very scarce extreme events the evaluation of

model robustness requires additional resampling of the train-

ing data. The resampling is performed via a jackknife pro-

cedure, where each individual annual subsample is excluded

consecutively from the 10-year training sample.

For the joint analysis of deterministic and probabilistic

models, two different schemes for loss aggregation are em-

ployed. Generally, we consider the daily district-wise loss es-

timates as independent random variables dependent only on

the maximum gust speed. In the case of deterministic models,

the model estimates are interpreted as expected values and

were simply summed up over time or space. For the proba-

bilistic models, we employed a Monte Carlo approach, where

results of 1000 independent random realisations were aggre-

gated. The expected value and distribution quantiles were

then calculated from the distribution of Monte Carlo esti-

mates at the desired level of aggregation.

2.5 Validation metrics

The broadness and skew of the loss distribution also play a

role for the validation of model estimates, as they have sig-

nificant impact on the applicability of evaluation metrics.

Heteroscedastic dependence between prediction error and

loss magnitude invalidates traditional moment-based met-

rics, such as R2 or, equivalently, Pearson’s ρ. In particu-

lar, very extreme events may attain the character of singu-

larities and dominate absolute performance metrics. Alterna-

tively, relative metrics such as mean percentage error (MPE)

or mean absolute percentage error (MAPE) may be employed

over well-defined loss ranges (Hyndman and Koehler, 2006).

However, these metrics fail if predictions comprise both days

with and days without loss, which is often the case for daily

resolved data. Moreover, such zero values prevent the use

of common transformations (e.g. power transformations such

as Box–Cox Transformation, see Box and Cox, 1964) to in-

crease the normality of the loss distribution required for most

statistical metrics.

In order to eliminate the effects of scale of the loss dis-

tribution for model comparison, we propose a simple pair-

wise statistical test based on binomial statistics. The null-

hypothesis is that both models have equal predictive skill

and, hence, that their predictions are equally likely to be clos-

est to the true observations. Successes (i.e. closer prediction)

can be represented by independent Bernoulli trials with prob-

ability 0.5. In a one-tailed test, the binomial distribution then

expresses the probability for a given success rate.

In order to apply the binomial test, the share of predictions

where one or the other comes closer to the observation is es-

timated for each pairing of models. Significance is obtained

from the binomial distribution with probability 0.5 and n in-

dependent trials, where n equals the total number of loss days

for each loss class.

As the binomial test itself does not disclose why any spe-

cific model outperforms a competitor, we interpret the re-

sults of each model in conjunction with traditional relative

metrics relating to a multiplicative error. For the employed

data, Prahl et al. (2012) found a variability that is approxi-

mately symmetric on the log-scale, such that the assumption

of a multiplicative error seems viable.

The employed multiplicative metrics are the mean abso-

lute percentage error (MAPE, i.e. the mean of the moduli of

deviations between model estimates and observations in per-

cent) and the mean percentage error (MPE, i.e. the mean of

the deviations between model estimates and observations in

percent). While MAPE gives an estimate of the variability

of model results, MPE provides an indication for systematic

bias.

3 Storm-damage models

A damage function describes the relation between the inten-

sity of a specific hazard and the typical monetary damage

caused with respect to either a single structure (microscale)

or a portfolio of structures (macroscale).

Microscale models can be empirical (i.e. statistically de-

rived from data), engineering-based, or a mixture of both.

On the macro scale, damages may be either aggregated from

microscale models or obtained from statistical relationships

based on empirical data (cf. Merz et al., 2010).

Due to the minimum resolution of our data (i.e. districts),

our analysis is constrained to the macroscale models of the

latter kind. Nonetheless, some of the damage functions un-

der scrutiny contain assumptions on the nature of microscale

damage. As there are no publicly available engineering-

based models for our region of interest, only statistical mod-

els are considered.

For a general overview of modelling approaches, both sta-

tistical and engineering-based, we refer the reader to Walker

(2011) and, with a focus on hurricane damage, to Pita et al.

(2013). In the following, we present each of the four em-

ployed damage functions.

3.1 Generic exponential damage function [X]

The choice for an exponential damage function is motivated

by empirical observation, showing quasi-linear increase of

the logarithm of the loss ratio versus maximum wind (gust)

speed over a wide range (e.g. Prettenthaler et al., 2012; Mur-

nane and Elsner, 2012).

www.nat-hazards-earth-syst-sci.net/15/769/2015/ Nat. Hazards Earth Syst. Sci., 15, 769–788, 2015
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It is a non-physical damage function in the sense that it

does not saturate with increasing wind gust speed and thus

ignores an upper limit of physical damage. However, average

loss levels reached during European winter storms typically

range below or around a few tenths of a percent of insured

value, such that loss saturation does not become an issue.

The damage function relates the loss ratio L to the expo-

nential of the gust speed v,

LX ∝ e
X1v. (2)

The absolute gust speed is rescaled via a linear transforma-

tion governed by parameter X1. Primarily, the parameter re-

flects the particular vulnerability to wind damage. Addition-

ally, rescaling of wind gust observations may be required for

reasons such as

– variations of scale due to mismatches in altitude or lo-

cation of the geographical reference of the gust data and

the building portfolio

– loss being dependent on a differing wind predictor with

approximate proportionality to the maximum gust speed

– systematic bias caused by the interpolation of wind gust

data.

The exponential damage functions focuses on wind-

dependent losses only. Typically, these are large losses within

the upper tail of the loss distribution. For the employed insur-

ance data, small losses that occurred at days with maximum

gust speed beneath the 95th percentile show a predominantly

random behaviour not captured by Eq. (2) and were hence

neglected during calibration. This aspect is also seen exem-

plarily in Fig. 2, showing the independently trained damage

function in the context of empirical loss data.

Further details about the calibration of the damage func-

tion are given in Sect. A1.

3.2 Probabilistic power law damage function [P ]

In the literature, there are several proponents for power-law-

based storm damage functions (e.g. Dorland et al., 1999;

Nordhaus, 2010; Bouwer and Wouter Botzen, 2011.

For winter storms affecting Germany, Prahl et al. (2012)

developed a macroscopic damage function based on the pre-

sumption of a power-law-based sigmoid curve. Considering

the typical loss range of winter storms, the sigmoid curve can

be approximated by a simple power law term. For the general

case, their damage function comprises two key components.

The first component describes the probability for the occur-

rence of damage within the portfolio, while the second com-

ponent models the intensity of loss if a damage has occurred.

In conjunction with the introduction of a noise constant, this

two-part structure enables the modelling of the entire range

of damages, thus not excluding information from the bulk of

small losses that may provide additional support for the cali-

bration of the damage function.

For an arbitrary district, Fig. 2 shows the curve fits for both

components of the damage function as well as the resulting

expected value for storm loss. The left-hand panel demon-

strates that the predicted 95 % confidence bounds encompass

the majority of loss observations and the right-hand panel

shows how the probability of occurrence is inferred from the

empirical occurrence rate (training data).

The model can be simplified for large wind gust speeds.

In this case, the expected value of loss L is approximately

proportional to the gust speed v raised to the power P1,

E [LP ]∝ vP1 . (3)

The exponent P1 is the key parameter and expresses the

vulnerability of the building portfolio. Additional important

parameters adjust the scale of the employed wind gust data

and control the spread of the loss probability distribution (see

Sect. A2 for details). Concerning the scale of the employed

gust data, the observations may require a rescaling to relative

values (cf. Sect. 3.1).

The original model published by Prahl et al. (2012) in-

corporates correlations between district losses caused by the

same storm event. Due to the complexity of the employed

modelling scheme, it was not feasible to include these cor-

relations in this paper. However, the effect of correlations is

perceived as minor to the overall performance of the damage

function and their inclusion would lead primarily to a widen-

ing of confidence intervals.

Please refer to Sect. A2 for further details of the mathe-

matical derivations and of the fitting procedure.

3.3 Cubic excess-over-threshold damage function [K]

Klawa and Ulbrich (2003) proposed a macroscopic damage

function for German storm loss based on the hypothesis that

storm damages grow with wind gust speed in excess of a

specific threshold. The approach has since been applied to

other European locations (e.g. Leckebusch et al., 2007; Eti-

enne and Beniston, 2012; Cusack, 2013) and was recently re-

fined to the scale of German districts by Donat et al. (2011b).

At the core of the damage function is the definition of a

damage proxy D based on the regional wind gust speed v

and its 98th percentile,

D =

{ (
v−v98

v98

)3

if v ≥ v
98

0 if v < v
98

. (4)

The damage function is calibrated by performing a lin-

ear regression of loss observations against the damage proxy,

thus involving two regression parameters (a scaling coeffi-

cient and an offset). In the upper limit, the damage function

increases without bounds and hence ignores damage satura-

tion at high gust speed.

The scaled damage proxy is shown exemplarily for an ar-

bitrary district in Fig. 2. Since the additive offset parameter

rather describes the bulk of loss that may occur below the
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Figure 2. Example of model predictions for a single district obtained from DWD data for the training period 1997–2006 and set in contrast

to year 2007 empirical data, all limited to the winter half-year. (a)–(d) show the expectation values of the loss ratio versus wind gust speed

on a log–log scale, circles denote observed losses during 2007. For probabilistic models P and H , the median and 95 % confidence bounds

are given. Additionally, we show for model P the median and confidence bounds of the curve fit to actual loss days and for model H an

analogous but implied curve. (e) and (f) show the fitted and implied occurrence rate probability for models P and H , respectively. Year 2007

observed occurrence rates are indicated by blue bars. For model P , training data (shaded bars) is displayed as reference.

98th wind gust percentile, it is not directly attributable to any

specific event and hence indicated via a dotted line in Fig. 2.

The employed wind gust percentile was empirically found

by Klawa and Ulbrich (2003) and may be considered as

a third parameter. Since the introduction of the European

Standard EN 1991-1-4 describing the wind action on land

structures, the 98th wind gust percentile has become a cru-

cial factor for the reinforcement of buildings against wind

damage. Even before its legal implementation during the first

decade of the 21st century, it may be reasonable to presume

an autonomous adaptation3 to the wind climate and hence ar-

gue for the applicability of a wind percentile as a proxy for

such adaptation.

The cubic relationship of the damage function has been re-

peatedly put into context with the advection of kinetic energy

(Leckebusch et al., 2007; Pinto et al., 2007; Cusack, 2013).

As a matter of fact, this line of reasoning is problematic due

3I.e. structures are reinforced to withstand frequent low-impact

events, while adapting to the rare extremes may be too costly. A

balance between the individually perceived (monetary) risk and tol-

erable adaptation cost is maintained.

to the subtraction of the 98th percentile threshold, and hence

the resulting damage function is inconsistent with the purely

cubic dependence on gust speed. As a consequence, the gra-

dient of the damage function is much steeper than that of a

simple cubic gust relationship over the entire range of histor-

ical wind gust speeds. Only in the upper asymptotic limit, as

the gust speed approaches infinity, does the damage function

converge to the simple cubic dependence.

In Sect. A3, we demonstrate that on the basis of the em-

ployed data the increase of the loss curve for extreme winter

storms is comparable to that of a power law with a steep ex-

ponent of approximately 10.

Although Klawa and Ulbrich (2003) developed their dam-

age function for winter storms, the function can be applied

to the entire loss range, in which case the regression offset

parameter serves as baseline loss resulting from wind gusts

beneath the defined percentile threshold. Figure 6 illustrates

that there is a strong relation between loss and gusts below

the 98th wind gust percentile, suggesting that the damage

function could potentially utilise a lower wind percentile.

Further mathematical details and the fitting procedure are de-

scribed in Sect. A3.
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3.4 Probabilistic claim-based damage function [H ]

Heneka et al. (2006) put forward an integrated approach for

modelling storm loss, combining a probabilistic description

of affected buildings with a microscale damage relationship.

Within their theoretical framework, a building damage oc-

curs if a critical wind gust speed, particular to that build-

ing, is exceeded. A continuous probability density function is

employed to describe the probability of critical gust speeds

within the overall building stock. For modelling purposes,

Heneka et al. (2006) assumed a Gaussian distribution for crit-

ical gust speeds, which is non-physical in a sense as it yields

finite probability for negative wind gust speeds. The claim ra-

tio follows naturally as the cumulative distribution function

of critical gust speeds, describing the fraction of buildings

for which wind gust speed exceeds the critical threshold.

If an individual building i is affected, the damage Di is

assumed to rise as the square of the gust exceedance above

threshold until complete destruction is reached at maximum

exceedance level H1. Heneka et al. (2006) (see also Heneka

and Ruck, 2008; Heneka and Hofherr, 2011) argue that the

square term of their microscale damage relationship,

Di =

(
v− vc

H1

)2

, (5)

corresponds to proportionality between damage and wind

force. Repeating the reasoning given in Sect. 3.3, we argue

that such proportionality is violated due to the inclusion of

the critical threshold vc, which is inconsistent with the wind

force being proportional to the square of the untranslated

wind gust speed (e.g. Simiu and Scanlan, 1996).

In contrast to the other discussed damage functions, model

fitting and loss estimation requires numerical integration,

which makes the application of the damage function com-

putationally more demanding. It was found that the model

could not be reliably calibrated on loss data only, necessi-

tating the use of additional data for the number of claims per

region and day. Given the additional information from claims

data, the damage function would be expected to perform as

well or better than the competing models.

Due to its probabilistic description of the building stock,

the damage function naturally incorporates an upper limit to

the claim and loss ratio and may be applicable to a wide range

of losses.

The model requires the calibration of four parameters, de-

scribing the wind gust speed at which half of the building

stock is damaged and its associated standard deviation, the

standard deviation of critical wind gust speeds, and the gust

range over which building damages reach complete destruc-

tion. Further description of the mathematical details and the

three-step calibration procedure is given in Sect. A4.

For an exemplary district, Fig. 2 shows the expected value

and 95 % confidence bounds of the damage function. For

better comparison with the probabilistic power law damage

function, we further decomposed the damage function into

the implied components for the occurrence probability and

the loss intensity, both shown in Fig. 2.

4 Comparison results

Bringing together the four different models, the two wind

gust data sources, and the modelling procedure (Sect. 2.4),

model predictions were obtained for 2004 days (consisting

of the winter halves of 11 years) and for each of the 439 ad-

ministrative districts.

Due to the high level of detail, the presentation of results is

focused on three distinct aggregation levels: (i) daily loss per

district, (ii) daily countrywide losses, and (iii) countrywide

losses caused by the six most severe storm events during their

entire passage duration.

In case of modelsK andH , different setups for model cal-

ibration were possible (cf. Appendix A). For greater clarity,

only those results that relate to the best-performing setup are

reported, while additional results are provided in the Supple-

ment.

The circumstances of comparing two deterministic and

two probabilistic models require the choice of a common

metric. The output of the deterministic models is hence con-

sidered equivalent to an expected value obtained from the

probabilistic models and forms the basis of the model inter-

comparison.

4.1 Daily loss per district

While temporal or spatial aggregation generally leads to a

convergence of model estimates and observations, strong

variability is expected for daily storm loss estimates on the

fine district scale.

On the basis of root-mean-square error, we define a coef-

ficient of variation

CVRMSE =
1

x

(
1

n

n∑
i=1

(
xi − x̂i

)2) 1
2

, (6)

where, for n samples, x and x̂ denote the observations and

estimates of the expected value, respectively. Values are nor-

malised to the mean of the observations x.

Table 2 shows regional averages of CVRMS for each of

the four competing models. These results highlight the in-

terdependence between model and wind gust choice. While

model H mostly outperforms the competing models for

DWD wind gust data, it appears less suited for ERA-Interim

wind gust data, whose distribution properties are distinctly

different from those of the DWD data. Of particular inter-

est is the fact that, irrespective of the wind gust data source,

model H performs best across southern Germany. With rel-

atively complex terrain and less frequent storm events, this

region poses the greatest challenge to the damage models, re-

sulting in a wide spread of coefficient values between differ-

ent models. In contrast, model K appears to be least reliable
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Figure 3. Coefficients of variation of the root mean squared error

per district, evaluated for the entire 11-year modelling period. De-

picted is the minimum value of CVRMSE found for any of the four

models. (a) and (b) show results obtained from DWD and ERA-

Interim wind gust data, respectively.

in the south. While the exponential modelX fares worst over-

all, it scores best for DWD wind gust data over northern Ger-

many. It may be assumed that in this region the probability

distribution of the DWD wind gust data are most favourable

for the steep exponential model. Overall, models H and P

show the least variation throughout. While model K per-

forms well, with the exception of southern Germany, the ex-

ponential model consistently generates the largest amount of

variation and, hence, modelling error.

Due to the fact that the district resolution exceeds the res-

olution of sampling points of the wind field, a strong influ-

ence of the choice of gust data are expected. Figure 3 shows

a baseline CVRMSE estimated as the minimum value found

for any of the four competing models. The DWD-based val-

ues show relatively small variation across north-western Ger-

many, while exhibiting stronger variation in southern Ger-

many. In contrast to the DWD-based values, ERA-Interim-

based CVRMSE estimates show a marked increase of varia-

tion from east to west. The origin of this effect, however,

remains unclear.

4.2 Countrywide daily loss

Our second appraisal of the model performance is based

upon countrywide daily losses. The spatial aggregation has

the beneficial effects of reducing loss variability and yielding

a high number of otherwise spatially separated loss events.

Figure 4 shows the model predictions for the countrywide

loss ratio plotted against the observations from insurance

data. Focusing the initial examination onto results based on

Table 2. Spatial averages of the coefficient of variation (RMSE) for

each model. For ease of comparison, values are sorted in ascending

order. The respective model is indicated by the colour code. The

spatial extent is defined by the four geographic regions (north, east,

south, west) depicted in the map inset.

Table 2. Spatial averages of the coefficient of variation (RMSE) for each model. For ease of comparison, values

are sorted in ascending order. The respective model is indicated by the color code. The spatial extent is defined

by the four geographic regions (north, east, south, west) depicted in the map inset.

Table 2. Spatial averages of the coefficient of variation (RMSE) for each model. For ease of comparison, values

are sorted in ascending order. The respective model is indicated by the color code. The spatial extent is defined

by the four geographic regions (north, east, south, west) depicted in the map inset.

North East South West All

D
W

D

231 342 436 228 331

248 384 580 255 385

266 403 911 290 508

290 552 997 352 578

E
R

A
In

t.

356 327 417 286 376

401 333 469 299 387

515 342 738 305 458

842 580 745 527 665

Model color code

X H P K

N

W
E

S

Table 3. Results from a binomial test for prediction accuracy of the different models based on daily loss

estimates calculated from DWD wind data. The model of each column is tested against each row of competing

models and across loss classes (as defined in Tab. 1). Bold results indicate superiority of the tested model with

statistical significance greater than 95%.

Loss

class

Test

against

Share of closest loss estimates in % (p-value)

X P K H

I

X – 83 (0.02) 67 (0.11) 50 (0.34)

P 17 (0.89) – 17 (0.89) 67 (0.11)

K 33 (0.66) 83 (0.02) – 50 (0.34)

H 50 (0.34) 33 (0.66) 50 (0.34) –

II

X – 68 (0.01) 24 (1.00) 62 (0.06)

P 32 (0.97) – 24 (1.00) 35 (0.94)

K 76 (0.00) 76 (0.00) – 76 (0.00)

H 38 (0.89) 65 (0.03) 24 (1.00) –

III

X – 53 (0.24) 25 (1.00) 35 (1.00)

P 48 (0.71) – 35 (1.00) 47 (0.76)

K 75 (0.00) 65 (0.00) – 71 (0.00)

H 65 (0.00) 53 (0.19) 29 (1.00) –

36

32

DWD wind gust observations (Fig. 4a), several important as-

pects are revealed.

First of all, the loss predictions from all models exhibit

a very high variability in the range of few orders of magni-

tude. Since the variability cannot be significantly reduced by

model choice, it may be a consequence of other aspects, such

as the stochastic nature of the building damage, measurement

error of gust speed, or the omission of further explanatory

parameters. Secondly, the model variability appears nearly

symmetric on the log-scale, indicating a strongly skewed dis-

tribution. In this case, expected values may be significantly

lower than loss observations that fall into the upper tail of the

uncertainty distribution.

Two models, K and P , show a lower bound for the ex-

pected value of predicted loss. In the case of K , this is a

direct consequence of model design, which involves a con-

stant baseline loss that accounts for any loss beneath the lo-

cal 98th wind gust percentile. For model P , a similar lower

bound exists, which reflects the expected value of the noise

level present in the loss data at any wind gust speed.

When considering the binned loss ratios (black circles) in

Fig. 4a, both models X and H exhibit an underestimation

of small losses, which is more pronounced for model H . A

comparison with Fig. 2 shows that this behaviour is in line

with the rapid convergence to zero of the damage curve for

model H . Unsurprisingly, model P shows good agreement

of binned loss ratios over a wide range of loss due to the

fact that this model is the only one specifically designed to

match also the low and medium loss ranges. In comparison,
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Figure 4. On country level, the predicted daily loss ratio (expected value) for each model is plotted versus observed losses using a double-

logarithmic scale. (a) shows results based on DWD wind-gust data, ERA-Interim wind-gust data are used in (b). The colours indicate the

2-D histogram count. The black circles represent (linear) averages of 100 losses each, binned by descending order of predicted loss. Black

dashed lines have unity slope and indicate equality of observation and prediction.

model K maps a considerably larger fraction of losses onto

its lower bound (baseline loss) and seems to underestimate

losses especially in the region around 10−6. This behaviour

is a likely outcome of the wind gust threshold fixed to the

98th percentile. Losses near or below this threshold may be

strongly underestimated, an effect that plays a larger role for

small-scale storms than for extreme large-scale storm events.

For ERA-Interim-driven simulations, Fig. 4b shows a sim-

ilar overall behaviour as for DWD wind gust data. Compari-

son indicates a stronger variability of model results for ERA-

Interim. Likely causes for this effect are the reduced spatial

resolution of ERA-Interim grid cells compared to the spatial

distribution of DWD climate stations and the lack of precise

geographical allocation of wind gust values attributable only

to entire grid cells.

The similarity of results drawn from DWD and ERA-

Interim wind gust data prevails for all further model results

and we hence focus the subsequent discussion on DWD-

based model estimates. The quality (performance) of wind

gust data in the context of storm damages is beyond the scope

of the work in hand. For special interest we provide results

corresponding to ERA-Interim in the Supplement.

It is evident from an economic (or insurance) point of

view that the performance for small and mid-range damages

should be disregarded in case better performance is achieved

for large loss events. In our further analysis we accommo-

date for this aspect by applying the loss categories defined in

Table 1.

In order to compare model results over different loss

ranges, we apply a simple scale-independent pairwise statis-

tical test based on binomial statistics. For each pair of mod-

els, Table 3 provides the share of predictions where one or

the other comes closer to the observation. Values with a sta-

tistical significance greater than 95 % are set in bold.

As the binomial test itself does not disclose why any spe-

cific model outperforms a competitor, we interpret the results

of each model in conjunction with the MAPE (mean absolute

percentage error) and the MPE (mean percentage error). Ta-

ble 4 summarises the results both for MAPE and MPE.

For extreme losses in loss class I the binomial test gives

prevalence to the model P , whose estimates exhibit the low-

est MAPE. There appears to be indifference between mod-

els H and P , although MPE shows that model H tends to

overestimate extreme losses, while model P shows a small

downward bias. Model K exhibits the least bias and yields

the lowest MPE.

Considering loss class II, all models show a strong ten-

dency to overestimate large losses. Here, the smallest bias is

produced byH with an MPE of 16 %. Results from P exhibit

the least variability of the four models, so that the model can

outperform the competitors in the binomial test.
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Table 3. Results from a binomial test for prediction accuracy of

the different models based on daily loss estimates calculated from

DWD wind gust data. The model of each column is tested against

each row of competing models and across loss classes (as defined in

Table 1). Bold results indicate superiority of the tested model with

statistical significance greater than 95 %.

Loss Tested Share of closest loss estimates in % (p value)

class against

X P K H

I

X – 83 (0.02) 67 (0.11) 50 (0.34)

P 17 (0.89) – 17 (0.89) 67 (0.11)

K 33 (0.66) 83 (0.02) – 50 (0.34)

H 50 (0.34) 33 (0.66) 50 (0.34) –

II

X – 68 (0.01) 24 (1.00) 62 (0.06)

P 32 (0.97) – 24 (1.00) 35 (0.94)

K 76 (0.00) 76 (0.00) – 76 (0.00)

H 38 (0.89) 65 (0.03) 24 (1.00) –

III

X – 53 (0.24) 25 (1.00) 35 (1.00)

P 48 (0.71) – 35 (1.00) 47 (0.76)

K 75 (0.00) 65 (0.00) – 71 (0.00)

H 65 (0.00) 53 (0.19) 29 (1.00) –

Table 4. Estimates of the mean absolute percentage error (MAPE)

and mean percentage error (MPE) for each of the competing models

and across loss classes (as defined in Table 1) based on DWD wind

gust data. Best values for each class are emphasized in bold.

Loss class
Model MAPE (MPE) both in %

X P K H

I 56 (49) 17 (−5) 27 (–1) 26 (11)

II 67 (27) 51 (27) 79 (33) 55 (16)

III 75 (6) 97 (43) 85 (−51) 75 (–6)

In contrast, moderate losses in class III illustrate a com-

pletely different behaviour. The biggest change arises for K ,

which converts from significant overestimation to strong un-

derestimation indicated by a negative bias of −51 %. While

the upward bias of P increases for moderate losses, mod-

els X and H exhibit only small bias and generally the small-

est MAPE.

All above metrics were based on model estimates obtained

from DWD wind gusts (cf. Fig. 4a). Tables related to ERA-

Interim wind gusts generally show the same tendencies and

are given in the Supplement. There, we also provide an addi-

tional diagram showing results of the binomial test for small

and minor losses below the 0.9 quantile.

4.3 Most severe storm events

Having so far considered only single loss days, Fig. 5 shows

the aggregated loss ratios for the six most severe (in terms of

loss) winter storms during the observation period. The daily

Table 5. Dates of the six most severe winter storms during the pe-

riod 1997–2007 (Donat et al., 2011b).

Storm Start date End date

Anatol 2 Dec 1999 5 Dec 1999

Lothar 24 Dec 1999 27 Dec 1999

Jennifer 25 Jan 2002 30 Jan 2002

Anna 25 Feb 2002 1 Mar 2002

Jeanett 26 Oct 2002 29 Oct 2002

Kyrill 17 Jan 2007 19 Jan 2007

loss estimates were accumulated for the entire passage dura-

tion of the respective cyclones, whose start and end dates are

given in Table 5.

In addition to the expected value obtained from the full

training sample, estimates of the expected value obtained

from the jackknife resampling give an indication of the ro-

bustness of the model fit. A large spread of jackknife esti-

mates, e.g. as seen for the model X, indicates a strong de-

pendence on the training sample.

Robustness is of particular concern, since the short train-

ing period may not always contain very severe storms, and,

hence, the storm damage function must reliably extrapolate

beyond its support. Empirically, this aspect is illustrated most

prominently for winter storms Jeanett and Kyrill, both affect-

ing approximately the same geographical region.

In the case of model K , the outliers of the jackknife esti-

mates for these storms relate to a training sample containing

neither one as benchmark. It becomes apparent that the linear

regression employed for modelK straps the otherwise highly

constrained damage function to the maximum level of losses

present in the training sample.

With the exception of winter storm Lothar, model P ex-

hibits the least spread of expected values. Even though there

are no constraints on the exponent of the damage function as

for model K , the model demonstrates robustness due to its

larger support from the entire range of observed losses.

A similarly robust behaviour is shown by model H , albeit

there appears to be some sensitivity to the training sample for

winter storms Jeanett and Kyrill. In contrast to model P , the

robustness of model H is likely to originate from the strong

constraints imposed on the damage function by the choice of

distribution function for the critical gust speed.

The least constrained model X appears not only to be sen-

sitive to the training sample used, but also generates signifi-

cant overestimation for the three most severe winter storms.

Although a verdict may not be based on three events only, the

exponential approach appears less reliable for extreme winter

storms than the competing models.

Finally, Fig. 5 also shows the probability density contours

for the probabilistic models P and H derived from Monte

Carlo calculations, convolving all 10 jackknife model fits

with 1000 realizations each. While a judgement on the ade-
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Figure 5. Model estimates for the six most severe winter storms

in the period 1997–2007 based on DWD data. Red circles indicate

the expected value obtained from models trained on the full 10-

year data, while the red dots represent expected values from the 9-

year resampled (jackknife) training periods. For models P and H ,

the black contours represent the probability distribution of predicted

storm loss for the 10-year training data. Empirical insured loss is

marked by green dashed lines.

quacy of the distributions cannot be made due to the scarcity

of extreme events, some observations can be made. Model P ,

which assumes a log-normal uncertainty distribution with

constant scale parameter generates heavily skewed loss dis-

tributions that by inspection seem too wide. In contrast, the

less-skewed loss distribution produced by H appears more

reasonable. In general, both models yield loss distributions

that encompass empirical observations.

5 Towards a synthesis of storm damage functions

All of the four different damage functions discussed herein

exhibit a loss increase that is much more rapid than a cubic

power law derived from physical considerations about the ki-

netic energy of the wind mass. In this section, we propose a

simple mechanism to reconcile the steep loss increase with

a cubic power law. With our hypothesis we intend to expe-

dite the discussion on the overall shape of the damage curve,

since its behaviour beyond the support has strong implica-

tions for the extrapolation of loss.

Figure 6a shows the average loss increase obtained when

superimposing data from all German districts. Visual com-

parison with the power law guiding lines suggests that both

the LR and the CR curves increase significantly faster than

the 3rd power of wind gust speed. Moreover, the average LR

of affected buildings (i.e. those for which an insurance claim

was filed) remains approximately constant over a wide range

of wind gust speed. This implies a minimum loss threshold

for damage compensation to be claimed. Such a threshold

could be caused by insurance deductibles, but may also arise

from small damages that either go unnoticed or are fixed au-

tonomously.

We make the hypothesis that the steep loss increase that

is observed from the GDV data may be a consequence of

the presence of such a loss threshold. Mathematically, when

applying a threshold T the expected loss ratio LRall is given

by

LRall =

∞∫
T

Lfv(L)dL, (7)

where fv(L) denotes the probability distribution of the loss

ratio L at gust speed v. The claim ratio CR follows from the

respective cumulative distributive function, Fv(L), as

CR= 1−Fv(T ). (8)

The loss ratio of affected buildings LRaffected is then simply

given by

LRaffected =
LRall

CR
. (9)

Assuming a log-normal uncertainty distribution, Fig. 6b

illustrates the effect of a loss threshold on the expected LR

obtained from a simple cubic loss–wind relationship. As a

result, for low wind gust speed LRaffected remains close to

the threshold value, while LRall steeply increases. The noise

level of the GDV data however entails a minimum loss level,

approximately corresponding to a single damaged building

per district portfolio.

To be consistent, both LR curves given in Fig. 6a must

converge as gust speed increases. However, at these gust lev-

els damages are unlikely to follow an idealized square or

cubic relationship, especially with cascading effects in case
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Figure 6. (a) shows the overall DWD gust dependence of the loss and claim ratio for all buildings and the loss ratio only of affected

(i.e. damaged) buildings. Shown on a log–log scale, the solid curves represent expected values across all available districts and loss days,

while the shaded areas indicate an 80 % uncertainty interval for observations. The dashed line provides a guide to the eye representing a

power laws with exponent 3. The upper scale indicates the respective wind gust quantiles. (b) shows schematically the decomposition of the

loss ratio of a cubic loss–wind relationship subject to a minimum loss threshold. With a lognormal uncertainty distribution, indicated by the

shaded 80 % uncertainty bounds, a picture similar to (a) arises.

of a breach of the building envelope and additional dam-

age caused by flying debris. Sparks and Bhinderwala (1994)

show that at extreme wind speeds a minor fraction of overall

loss is comprised by direct wind damage, while the majority

of loss results from interior or non-wind damage that are not

captured by the physical considerations above.

6 Discussion and concluding remarks

The non-linear processes behind wind and non-wind dam-

age, as well as the effects of cascading failure of struc-

tural components, entail that reduced-form approaches as

discussed here may only approximate the actual storm dam-

age characteristics. In order to assess the robustness and qual-

ity of macroscale storm damage functions, we have analysed

and compared the results of four different models applicable

to the European winter storm season. As a growing body of

climatological research indicates, an increase in future storm

intensity (see e.g. the review article by Feser et al., 2015)

could lead to the emergence of new hazard profiles. Condi-

tional on the accurate reproduction of local wind characteris-

tics, gust-based damage functions can provide a flexible tool

to assess these changes.

Before we discuss the detailed results of the comparison, it

is important to acknowledge the effect of deductibles on the

shape of damage functions derived from insurance data. Care

must be taken as to what extent physical damage concepts,

such as a cubic wind–damage relationship, may be applied

to insured storm loss. In this regard, all four compared dam-

age functions exhibit a much stronger increase of loss, which

is in good agreement with the GDV data employed herein.

However, by introducing a simple loss threshold we could

demonstrate how such a steep damage function for winter

storm loss could be reconciled with a purely cubic wind–

damage relationship. If, as climatological research suggests,

future storm intensities increase beyond current levels, the

overall shape of the damage function plays a crucial role for

the extrapolation of future losses. With our threshold hypoth-

esis we intend to expedite the discussion on the validity of

damage functions beyond their original data support.

Storm-related insured losses generally exhibit a very broad

distribution with a high dynamic range that spans several or-

ders of magnitude. The loss distribution is highly skewed

with very few extreme loss events dominating total annual

loss. These two aspects pose severe difficulties for both the

calibration and the evaluation of damage functions.

With a focus on the level of extreme losses, least-squares

curve fitting has often been employed to calibrate damage

curves to loss data. The combination of skewed loss distribu-

tion and heteroscedastic variance seen for the case of GDV

data suggests a violation of the basic assumption for least-
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Table 6. Ranking of the four damage functions according to their prediction quality, variability, and applicability.

Criteria Rank Model Description

1. P least error, small bias

Extreme loss predictions 1. K small error, least bias

(loss class I) 3. H slightly worse error, moderate positive bias

4. X strong error and strong positive bias

1. H good prediction, positive bias for ERA, smallest bias for DWD)

Moderate to large loss predictions 2. P good prediction for large loss, positive bias

(loss classes III and II) 3. X decent prediction for large loss, smallest error and least bias for moderate loss

4. K reasonable prediction, strong bias flipping from negative to positive

Variability on district level

1. H best for DWD, overall good for ERA-Interim

1. P very good for both gust data sources

3. K better for ERA-Interim; best in north-eastern, worst in southern Germany

4. X worst for DWD, large variability for ERA-Interim

Model applicability

1. K simple calibration, also on extreme losses only

2. P requires data for all sizes of loss

2. X requires large training data set

4. H both number of claims and loss data required

squares fitting and potentially leads to biased results. Due to

the high dynamic range even temporally or spatially aggre-

gated loss figures, as used in the cubic excess-over-threshold

damage function by Klawa and Ulbrich (2003) (model K),

are subject to this effect as they are still dominated by ex-

treme losses.

The optimal curve fitting procedure remains a matter of

discussion. Relying on the assumption of general damage re-

lation valid for a large range of losses, the probabilistic power

law damage function by Prahl et al. (2012) (model P ) puts

equal weight on all data points. In contrast, the fitting pro-

cedure for the probabilistic claim-based damage function by

Heneka and Ruck (2008) (modelH ) has given greater weight

to extremes by using averages of binned losses. The compar-

ison between model H and the simple exponential damage

function (model X), both of which are calibrated in the same

manner, shows that effective calibration relies on a combina-

tion of model constraints and curve fitting.

As was seen in Fig. 5, model H attains greater robustness

against jackknife variations of the training sample due to the

presumption of a specific claims distribution. Following a

different philosophy, model P achieves robustness by root-

ing the damage function in the entire range of loss.

Transferability is one of the biggest challenges of empiri-

cal damage functions. All of the discussed damage functions

require substantial calibration to loss data. On the one hand,

Heneka and Hofherr (2011) applied their damage function

to Germany by employing a static parametrisation originally

obtained for the federal state of Baden-Württemberg. Donat

et al. (2011a), on the other hand, assume the same vulner-

ability for nation-wide building stock. In both cases, spatial

extension of the model comes at cost of blurring regional vul-

nerability.

From a practical point of view, modelKis most easily cal-

ibrated since only a scaling of an otherwise robust raw dam-

age term is required. More elaborate are the calibration pro-

cedures for models X and P , which both require detailed

loss data. Mathematically, calibration of model H is most

demanding and also requires additional data for the number

of loss claims.

In order to assess the countrywide performance of the dif-

ferent models, a simple binomial test was devised. In con-

junction with the more traditional metrics MAPE and MPE,

it was shown that models H and P generally perform best,

with some advantage for model P in the large loss class.

Most interestingly, the behaviour for extreme losses is indeci-

sive. Model P shows the least variability in terms of MAPE,

while model K exhibits the least bias. In terms of the clos-

est model predictions, the binomial test is indecisive between

models H and P , whereas both are preferred to models K

and X. A summary of the results is given in Table 6.

The applicability of model K appears to be focused on

extreme losses. Its further behaviour turns from a positive

bias for large losses into a strong negative bias for the mod-

erate loss class. In Sect. A3 we showed that for extreme

gust speeds, model K exhibits steepness similar to model P .

However the model reaches a lower bound at the 98th wind

gust percentile and hence appears to understate losses at

speeds in the proximity of this threshold.

Overall, similar behaviour is found for ERA-Interim-based

results which are given in the Supplement. A peculiar differ-

ence is that for the class of extreme loss days model K per-

forms best in terms of deviation and bias, but fares worse

when regarding the losses accumulated for the six largest

storms. These contradictory findings can be explained by
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the imprecise representation of major storms in ERA-Interim

data, especially with regard to the temporal wind profile.

Generally, the obtained results were irrespective of ei-

ther DWD or ERA-Interim wind gust data. Not surpris-

ingly, ERA-Interim-based results showed greater variance

than those based on direct wind gust observations. Interest-

ingly, on district level, the estimated coefficients of variation

reveal a marked increase of model variance from the west to

the east of Germany.

Further analysis of the coefficient of variation empha-

sized the importance of the interplay between damage func-

tion and the particular wind gust distribution (from either

DWD or ERA-Interim). Strong interdependence was seen

for model H , performing best with DWD data, and for

model K , which showed best results for ERA-Interim data.

While model P showed low variability throughout and ap-

peared most flexible to the different data sources, model X

showed the greatest error variance overall.

It is worthwhile to note that the coefficient of variation

indicates a strong level of residual error variance even for

the best-performing model. The advantage of DWD over

ERA-Interim gust data (cf. Fig. 3) suggests a strong influ-

ence of uncertainty in wind gust data. However, there are

also a number of potential uncertainty sources connected to

the employed insurance data. Uncertainties may arise from

gradual damage accumulation masking the effect of individ-

ual storms, from incentives for insurance holders (e.g. de-

ductibles), and from wealth levels that affect both building

quality and insurance taken. While the employed data does

not allow a stratification of losses along socioeconomic di-

mensions, our regional calibration implicitly accounts for

spatial variations due to regionally differing vulnerability and

wealth patterns. An altogether different situation would arise

for models calibrated on a national scale, where such effects

must be considered explicitly.

In our comparison, it would not be meaningful to draw a

unique conclusion on the suitability of each model as the per-

formance may crucially depend on the purpose for which it is

applied. In the light of this limitation, the exponential mod-

elling approach was found less adequate for the modelling of

extremes. In contrast, modelK showed its best results for ex-

treme losses, albeit with a calibration procedure that appears

less robust than those of the probabilistic models H and P .

Both probabilistic models provided good results over a

wide range of loss (moderate to extreme), with their model

differences being much smaller than the general variability

of losses. On the regional level, they yielded smaller coeffi-

cients of variation than the two deterministic models. While

models H and P exhibited comparable results, a slight pref-

erence could be given to model P in terms of robustness and

applicability. With regard to the broadly skewed uncertainty

of estimates, probabilistic models can give a better picture

of potential loss and should generally be preferred. However,

uncertainty estimates for extreme loss remain a concern and

should be subject to further research.
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Appendix A: Mathematical model description and

calibration setup

A1 Generic exponential damage function [X]

The assumption of an exponential damage relationship is not

uncommon in the related literature (Huang et al., 2001; Pret-

tenthaler et al., 2012; Murnane and Elsner, 2012) and such

models are characterized by a steeper increase than compa-

rable power law models.

Mathematically, the damage function is comprised of a

simple exponential term for the loss ratio,

LX(v)= e
X1(v−X2), (A1)

where coefficient X1 re-scales the wind gust, and offset X2

adjusts the estimates of the exponential term to the observed

loss figures.

Due to the high dynamic range of the loss data and their

inherent heteroscedasticity, the damage function cannot be

calibrated directly via least-squares. Similarly to the ap-

proach for model H , training data were truncated below the

95th wind gust percentile in order to discard the noisy lower

end of the loss spectrum that would otherwise distort the

damage function. Using gust speed, the remaining loss data

were averaged in 10 equally spaced bins with a minimum of

five losses each. Thus the relative weight of the few extremes

compared to the abundance of small losses was increased. Fi-

nally, a logarithmic transformation of the loss averages was

employed to reduce the dynamic range of loss and Eq. (A1)

was fitted via least squares regression.

A2 Probabilistic power law damage function [P ]

Prahl et al. (2012) advocate a probabilistic damage function

based on a power law approximation to a more general sig-

moid curve. The backbone of the damage function is given

by the relationship for the median of the loss magnitude M

(i.e. the loss ratio, given at least one loss claim),

M̃v ≈

(
v

P2

)P1

+P3, (A2)

where in addition to the power law scaling P2 and exponent

P1 a constant noise level P3 is included. Based on the ob-

servation that for given wind gust speed v the dispersion of

insured losses approximately followed a log-normal distribu-

tion, LN(µ, σ ), the stochastic loss magnitude is described as

a random variable

Mv ∼ LN
(
ln
(
M̃v

)
,P4

)
. (A3)

The location parameter of the log-normal distribution is re-

lated to the median by µ= ln(M̃v). The scale parameter

σ =P4 describes both the variability due to imprecise gust

observation and the aleatory uncertainty regarding the dam-

age caused.

Complementary to the loss magnitude, the probability of

loss occurrence (i.e. of receiving one or more loss claims) is

given by the relationship

p(v)= 1−
P5

1+ eP7(v−P6)
. (A4)

The turning point P6 relates to the transition from the noisy

regime to the regime of physically driven damages. P7 deter-

mines the sharpness of the transition and P5 the noise level.

Loss occurrence is described stochastically as a random vari-

able

Ov =

{
1 if P ≤ p(v)

0 if P > p(v)
, (A5)

where random variable P is drawn from the standard uniform

distribution, P ∼U(0, 1).

In conjunction, loss occurrence and loss magnitude yield

the stochastic expression for the loss ratio

LP =OvMv, (A6)

with an expected value given by

E[LP ]v = E [Ov]E [Mv]

= p(v)eµ+
σ2

2

= p(v)e
P2

4
2 M̃v. (A7)

For high wind gust speeds v�P6, e.g. beyond the 95th

percentile, the noise level becomes negligible and the expres-

sion for the expected value of loss simplifies to

E[LP ](v�P6) ≈ e
P2

4
2

(
v

P2

)P1

. (A8)

Equation (A8) demonstrates that for high wind gust speeds

the expected value of the damage function is approximately

proportional to the gust speed raised to the power P1.

Both components of the damage function are calibrated

separately. The log-normally distributed loss magnitude is

fitted via maximum likelihood to the empirical loss. A least-

squares approach is used to fit the loss occurrence term

against empirical occurrence rates derived from binned data,

enforcing parameter constraints such that the loss occurrence

probability is bound within the interval [0, 1].

A3 Cubic excess-over-threshold damage function [K]

Klawa and Ulbrich (2003) developed a simple storm damage

function that was subsequently refined for regional applica-

tion and calibrated to GDV data (Donat et al., 2011a, b). At

the heart of the damage function is a cubed power law term

as a proxy for storm damage,
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D(v)=

{ (
v−v98

v98

)3

if v ≥ v
98

0 if v < v
98

. (A9)

The damage function

LK(v)=K1D(v)+K2 (A10)

is calibrated against loss data via linear regression, where

constants K1 and K2 are the regression coefficients.

Keeping in mind the high dynamic range of loss claims

with few dominating extreme losses, the linear regression

implicitly puts a strong emphasis on extreme losses ensur-

ing that these are closely matched (cf. Fig. 2).

The shape of the damage function is determined by the

power law term, which is influenced only by the 98th wind

gust percentile. We chose to determine the 98th percentile

from the same training sample as used for calibration of the

remaining parameters.

The value of this threshold is of particular interest, as it

controls the shape and with it the steepness of the damage

function. To clarify this statement, we relate the cubed power

law term of the damage function with a tangent based on a

simple power law without threshold. For every gust speed v,

the tangency condition requires equality of the function val-

ues

c1

(
v

v98

− 1

)3

=

(
v

c2

)γ
(A11)

and equality of the first derivatives

3c1

v98

(
v

v98

− 1

)2

=
γ

c
γ

2

vγ−1. (A12)

Solving Eqs. (A11) and (A12) for the exponent γ yields the

simple relationship

γ = 3
v

v98

(
v

v98

− 1

)−1

≡
3η

η− 1
. (A13)

Equation (A13) shows that the local steepness of the cubed

excess-over-threshold term depends on the ratio η= v/v98 of

the gust speed to its 98th percentile. For the employed DWD

data, the average ratio over all districts of the maximum mea-

sured gust speed to the 98th percentile is ηmax≈ 1.50, im-

plying that for extreme losses the damage curve increases

approximately as a power law with exponent γ ≈ 9.0. Re-

peating the calculation for ERA-Interim data, we estimated

ηmax≈ 1.41 and a local power law exponent γ ≈ 10.3.

Hence, the steepness of the model is dependent on the

wind gust data source, which may have a potential impact

on the portability of the damage function. Additionally, the

high local exponents around 10 indicate a similarity with

other models that report exponents of a similar magnitude,

e.g. Prahl et al. (2012). In physical terms, the two regression

coefficientsK1 andK2 are interpreted, respectively, as a scal-

ing constant and a base loss for losses occurring at wind gusts

beneath the threshold. As such,K2 must be constrained to be

strictly non-negative.

For data-scarce applications, it may be opportune to re-

solve regional portfolio differences via population density as

a proxy for (insured) value and obtain a global parametri-

sation via regression on the national level (e.g. Donat et al.,

2011a). In contrast, the finely resolved loss data for our study

allowed a local parametrisation and the simple summation of

loss to the national level.

Finally, Donat et al. (2011a) perform the regression against

annual loss aggregates, while Donat et al. (2011b) demon-

strate calibration against a selected sample of the 34 most

loss-intensive storm passages. We find that the former cali-

bration method produces better results. However, for refer-

ence, results from both calibration methods are given in the

Supplement.

A4 Probabilistic claim-based damage function [H ]

Heneka et al. (2006) provide a theoretical framework for the

modelling of storm loss. Their model was applied first to

the federal state of Baden-Württemberg and subsequently to

Germany (Heneka and Hofherr, 2011). Maintaining the key

assumptions made by Heneka et al. (2006) as far as possible,

the intercomparison was based on the following considera-

tions for model design and calibration.

The fundamental concept of model H is the idea that

buildings sustain damage only above a critical wind gust

threshold vc. The damage sustained by individual buildings is

hence dependent on the specific value of the critical thresh-

old and is formalized by a microscale damage relationship

for the fractional damage g,

g (v,vc)=


0, v < vc(
v−vc

H1

)2

, vc ≤ v ≤ (vc+H1)

1, v > (vc+H1)

, (A14)

reaching complete destruction at a wind gust increase of H1

above the critical threshold.

For a portfolio of buildings, each with individual critical

threshold, a specific density distribution for vc may be as-

sumed or otherwise estimated. For simplicity, Heneka et al.

(2006) idealized the density distribution of vc by the density

of the normal distribution f (vc, µc, H2), with mean µc and

standard deviation H2. It follows that the claim ratio CH (v),

i.e. the relative share of affected buildings, is given by the

integral

CH (v)=

v∫
−∞

f (vc,µc,H2)dvc. (A15)
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Table A1. Comparison of the parameter values obtained for the fed-

eral state of Baden-Württemberg with those published by Heneka

and Ruck (2008). Accordingly, relative wind gust speed was nor-

malised by its 98th percentile. For easier comparison, the values in

brackets are rescaled to match the published value ofH4.

Source H4 H3 H2 H1

A
b

so
lu

te
g

u
st Heneka and Ruck 50.5 2.5 7.8 70.0

DWD 42.3 2.0 6.2 49.7

(50.5) (2.4) (7.4) (59.4)

ERA-Interim 41.6 1.8 5.6 45.5

(50.5) (2.2) (6.8) (55.3)

R
el

at
iv

e
g

u
st Heneka and Ruck 1.31 0.04 0.20 1.85

DWD 2.28 0.09 0.32 2.67

(1.31) (0.05) (0.19) (1.54)

ERA-Interim 2.17 0.10 0.29 2.43

(1.31) (0.06) (0.18) (1.47)

The loss ratio LH (v) is then obtained by solving the con-

volution integral

LH (v)=

v∫
−∞

g (v,vc)f (vc,µc,H2)dvc, (A16)

combining the density distribution of vc with the microscale

damage function g(v, vc).

Finally, uncertainty is introduced by assuming a Gaussian

distribution f (µc, H4, H3) for the mean critical wind gust

speed µc, with mean H4 and standard deviation H3. Putting

all components together, we obtain an expression for the ex-

pected value of the loss ratio

E [LH ]=

1∫
0

Lf (µ(L),H4,H3)
dµ(L)

dL
dL, (A17)

where we define µc=µ(L) as the inverse function of

Eq. (A16) with respect to µc.

For calibration, Heneka et al. (2006) used least-squares

fitting of claims and loss data that was pooled for the en-

tire state of Baden-Württemberg. However, fitting the dam-

age function to individual districts, it was found that least-

squares curve fitting was yielding poor results due to frequent

overfitting to the few number of “outlying” extreme events

and the generally high dynamic range of the data. Further-

more, the model was developed on strong winds and could

not deal with the noise present in the GDV data at low wind

gust speeds.

For the work in hand, these problems were solved via a

three-step fitting procedure. In order to exclude the effect

of noise, data below the 95th wind gust percentile were dis-

carded during the fitting procedure.

In the first step, Eq. (A15) was fitted to claims data. To

overcome the problem of the high dynamic range, claims

data were logarithmically transformed. To counteract the

downside of the transformation, namely the increased weight

of the abundant small damages as compared to the few ex-

tremes, the data were binned into 10 equally spaced bins,

each containing a minimum of five data points. Using the

method of least squares the curve was fitted to the mean val-

ues of each bin. In this step, we made the implicit assump-

tion of a multiplicative error term, relating to a symmetric

distribution around the mean of the log-transformed claims

data (i.e. the geometric mean of the absolute numbers). This

assumption is backed by actuarial practice for describing in-

surance damage claim distributions by log-symmetric distri-

bution such as the log-normal distribution (Lawrence, 1988).

In the second step, the above described fitting procedure is

used to calibrate Eq. (A16) to the loss ratio data.

Thirdly, the parameters of the normal distribution describ-

ing the random fluctuation of µc are determined via log-

likelihood optimization based on loss data at full detail.

Due to the strong deviation from the original least-squares

fitting employed by Heneka et al. (2006), it was necessary

to validate the parameters obtained from the GDV data set.

For this purpose, we pooled the GDV data for all districts

in the state of Baden-Württemberg and compared the ob-

tained model parameters against those values published by

Heneka and Ruck (2008). The results presented in Table A1

show good agreement of the individual parameters across the

different sources. As the wind gust data sources are not di-

rectly comparable, the parameters shown in brackets were

rescaled according to H4. Regarding these values, only H2,

which represents the wind gust range from beginning to total

destruction, shows a significant difference of approximately

−15 % as compared to the original values.

While we report only those results that relate to the best

performing model setup, results from applying the Baden-

Württemberg calibration to entire Germany (similarly to

Heneka and Hofherr, 2011) are included in the Supplement

for special interest.
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The Supplement related to this article is available online

at doi:10.5194/nhess-15-769-2015-supplement.
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