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Abstract. Using an analogy method the frequencies of new
modes of the electromagnetic planetary-scale waves (with
a wavelength of 103 km or more), having a weather form-
ing nature, are found at different ionospheric altitudes. This
method gives the possibility to determine spectra of iono-
spheric electromagnetic perturbations directly from the dy-
namic equations without solving the general dispersion equa-
tion. It is shown that the permanently acting factor-latitude
variation of the geomagnetic field generates fast and slow
weakly damping planetary electromagnetic waves in both the
E- and F-layers of the ionosphere. The waves propagate
eastward and westward along the parallels. The fast waves
have phase velocities (1–5) km s−1 and frequencies (10−1–
10−4), and the slow waves propagate with velocities of the
local winds with frequencies (10−4–10−6) s−1 and are gen-
erated in the E-region of the ionosphere. Fast waves hav-
ing phase velocities (10–1500) km s−1 and frequencies (1–
10−3) s−1 are generated in the F-region of the ionosphere.
The waves generate the geomagnetic pulsations of the or-
der of one hundred nanoTesla by magnitude. The properties
and parameters of the theoretically studied electromagnetic
waves agree with those of large-scale ultra-low frequency
perturbations observed experimentally in the ionosphere.

Key words. Ionosphere (ionospheric disturbances; waves
propagation; ionosphere atmosphere interactions)

1 Introduction

Numerous ground-based and satellite observations show that
the background global planetary-scale electromagnetic wavy
perturbations (≥103 km) regularly exist in the ionosphere at
any season of the year. The observations verify (Sharadze
et al., 1989; Cavalieri et al., 1974) the presence of slow
(with phase velocities equal to local winds velocities), long-
period (a few days and more) and large-scale waves (with
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wavelengthλ∼103–104 km) in the E-layer of the ionosphere.
Different from the usual weather forming planetary Rossby
waves, they cause substantial disturbances of the geomag-
netic field (up to ten nanotesla (nT)). Ionospheric observa-
tions at the middle latitudes of the E-layer verify the exis-
tence of fast, large-scale electromagnetic perturbations, too
(Bauer et al., 1995; Sharadze et al., 1988). They propagate
along the latitude circles of the Earth with velocities from a
few hundred m s−1 to a few tens of km s−1. Their periods
vary in the interval from a few minutes to a few hours, with
a wavelength of the order of a km or more, and an amplitude
of tens of hundred nT. The phase velocities of these pertur-
bations differ by magnitude at daily and nightly conditions in
the E-layer of the ionosphere.

These waves have mainly zonal character and are revealed
especially during magnetic storms and sub-storms (Hajkow-
icz, 1991), earthquakes (Hayakawa, 1999), artificial explo-
sions (Al’perovich et al., 1985) and so on. They play an im-
portant role in the large-scale synoptic processes and give
the possibility of obtaining valuable information about exter-
nal sources and dynamical processes, which take place in the
ionosphere during this period.

Thus, the main problem is to find the factors which gener-
ate the background planetary-scale electromagnetic waves in
the different layers of the ionosphere. It will be shown below
that the weather forming planetary electromagnetic waves
exist due to latitude inhomogeneity of the geomagnetic field
in the ionosphere.

2 Formulation of the problem and basic equations

The ionosphere represents partially ionized triple component
plasma. To describe it we take quasi-hydrodynamic equa-
tions, which differ from hydrodynamic equations by the pres-
ence of “friction force”, caused by a collision of different par-
ticles (Cowling, 1975; Alfv́en and Falthammar 1963; Wait,
1962). Quasi-hydrodynamic equations describe the flows,
electromagnetic currents and all diffusive processes in the
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ionospheric plasma. However, the diffusive processes, com-
pressibility and inhomogeneity of the atmosphere play a sec-
ondary role for considered large-scale ionospheric perturba-
tions (wavelengthλ≥103 km). Thus, we can substantially
simplify these equations and obtain the following set of equa-
tions (Gershman, 1974; Cowling, 1975; Khantadze 1973;
Wait 1962):

ρn

∂Vn

∂t
= Fn − ρiνin(Vn − Vi) − ρeνen(Vn − Ve), (1)

ρe

∂Ve

∂t
= Fe − ρeνen(Ve − Vn)−

ρeνei(Ve − Vi) − eNE −
eN

c
Ve × H0, (2)

ρi

∂Vi

∂t
= Fi − ρiνin(Vi − Vn)−

ρeνei(Vi − Ve) + eNE +
eN

c
Vi × H0, (3)

∇ · Vn = 0, ∇ · Ve = 0, ∇ · Vi = 0. (4)

Here, indicesn, e and i denote molecules (neutral parti-
cles), electrons and ions;V is velocity; ρn=NnM, ρe=Nm,
ρi=NM are densities; m and M are masses of electrons and
ions (molecule), respectively; Nn and N denote concentra-
tions of the neutral particles and plasma; c is a light speed;
νei, νen, νin denote frequencies of collision of electrons with
ions and molecules, of ions with molecules, respectively;E
is the strength of the induced electric field;H0 is the strength
of the geomagnetic field;Fn, Fe, Fi denote the nonelectro-
magnetic forces containing gradients of impulse flux density
tensor in general case;∇(∂/∂x, ∂/∂y, ∂/∂z), is the nabla op-
erator.

Equations (1)–(4), state and thermal equations and
Maxwell’s equations form a close system for each compo-
nent. For simplification of these equations we take into ac-
count the results of experimental observations of the dynam-
ical processes.

In the ionosphere at a height (80–500) km
(η=N/Nn∼10−9–10−4

�1) non-electromagnetic forces
Fn, Fe, Fi are proportional to the densities of medium
components and, hence,η�1, |Fi≤|Fe|�|Fn|. So,Fe and
Fi cannot induce big currents. The inertia of electrons and
ions can be neglected comparing with inertia of the neutral
particles. Taking into account all of these circumstances in
Eqs. (1)–(4), we obtain the equation of ionospheric medium
motion:

ρn

∂Vn

∂t
= Fn +

1

c
j × H0, (5)

wherej=eN(Vi−Ve) is the density of current. Equations (2)
and (3) may be rewritten as

−
νen

ωe

(Ve − Vn) −
νei

ωe

(Ve − Vi) + VD×h0 = Ve×h0, (6)

−
νin

ωi

(Vi − Vn) −
νei

ωe

(Vi − Ve) + Vi×h0 = VD×h0, (7)

where ωe=eH0/mc and ωi=eH0/Mc denote cy-
clotron frequencies of electrons and ions, respectively,
VD=cE×H0/H2

0 is the electron drift velocity;h0=H0/H0 is
the unit vector along the strength of the geomagnetic field.
In the ionosphereωe≈107 s−1, ωi≈(1.5−3)×102 s−1, the
collision frequency reaches its maximal valueνei≈104 s−1,
νin≈104 s−1, νen≈105 s−1 at heights (80–500) km in the
lower layer of the ionosphere and quickly decreases in
proportion to height. Thus, we can conclude thatνei/ωe�1,
νen/ωe�1 in the E- and F-layers of the ionosphere. It means
that the electron component of the ionospheric plasma is
always magnetized in this region of the upper atmosphere.
Taking into account these inequalities, Eqs. (6) and (7) can
be reduced to the following form:

VD×h0 = Ve×h0 ⇒ Ve = VD ⇒ E = −
1

c
Ve×H0, (8)

Vi = Vn + j×H0/(ρcνi), νi = Nνin/Nn. (9)

Therefore, in the E- and F-layers of the ionosphere
electrons move with electron drift velocity (Ve=VD)
and the electrons are frozen into the geomagnetic field
H0(∂h/∂t=∇×Ve×H0), h denotes the perturbation of the
geomagnetic field.

Multiplying the Eq. (8) byH0, we obtain an important
equalityE·H0=0⇒E⊥H0. This means that the strenght vec-
tor E of the generated internal electric field is perpendicular
to the strength vectorH0 of the geomagnetic field. Using
Maxwell’s equations we get closure of the system of Eqs. (5),
(8), (9)

∂h
∂t

= −c∇ × E, j =
c

4π
∇ × h. (10)

Excluding E, j and using Eq. (10) and taking
into account that for considered wavy processes
Fn=−∇P/ρ+ρ′g/ρ+V ×2ω0, dropping index n for
velocity and the density of the neutral particles, we obtain
the system of magneto-hydrodynamic equations for the E-
and F-layers of the ionosphere:

∂V
∂t

= −
1

ρ
∇P′

+
ρ′

ρ
g + V × 2ω0 +

FA

ρ
, (11)

∂h
∂t

= ∇ × Ve × H0 =

∇ × V × H0 − αρ∇ ×
FA

ρ
+ ∇ ×

1

νi

FA

ρ
× H0, (12)

where:

FA

ρ
=

1

ρc
j × H0 =

1

4πρ
∇ × h × H0 ≈

V × 2�i − VD × 2�i = u × 2�i; (13)

σH=e2N[ωe/(m(ω2
e + ν2

e)) − ωi/(M(ω2
i + ν2

in))] is the
Hall’s conductivity; Hall’s parameterα in the general case
is α=c2/(H0σH); P′ and ρ′ are accordingly perturbations
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of gas-kinematic pressure and density of neutral particles;
νe=νei+νen; νi=ηνin, 2�i=ηeH0/(Mc)=ηωi ; g is the free
fall acceleration;ω0 is the angular velocity of the Earth’s
rotation; u=V−VD. In the E-region of the ionosphere we
haveωe�νen, ωi�νin andα=c/(eN) (Hall’s conductivity
disappears higher than 150 kmσH =0). From Eq. (13) it
follows that the Ampere’s electromagnetic forceFA, act-
ing on a unite mass of the mediumFA/ρ=U×2�i , has the
same structure as the Coriolis accelerationV×2ω0. There-
fore, Ampere force must act on the atmospheric-ionospheric
medium similar to Coriolis force. The similarity of the
Ampere and Coriolis forces means that new modes of the
large-scale electromagnetic oscillations must be generated
due to the inhomogeneity of the geomagnetic fieldH as well
as Rossby-type usual planetary waves are generated due to
inhomogeneity of angular velocity of the Earth’s rotation
ω0. In this case, as it will be shown below, the first term
of the electromagnetic forceFA, caused by the velocity of
medium motion (dynamo fieldEd=V×H0/c), generates the
slow Rossby-type electromagnetic waves; the second term of
the electromagnetic force appeared due to the vortex electric
field EV =−VD×H0/c and generates the fast electromag-
netic waves.

Estimations show, that for planetary scale
(L∼(103–104) km, we shall be interested in these per-
turbations) in the E-region of the ionosphere with the
magnetic Reynolds number Rem=ωL2/νH ∼1/α, where
L and α are the characteristic linear scale and frequency
of the perturbations, andνH =c2/(4πσH ), reaches: a
small enough value (Rem∼20). Therefore, it is necessary
to preserve Hall’s term (∼α) of the induction equation,
but the last term of Eq. (12) can be neglected due to the
conditionσH �σ⊥≈σH ωi/νin (whereσ⊥ is the transversal
conductivity). In the F-region of the ionosphere, where
Hall’s effect is not important, the last term of Eq. (12)
can also be neglected for planetary-scale perturbations in
the first approximation as long as the Reynolds number
Re⊥=ωL2/ν⊥(ν⊥=c2/(4πσ⊥)) is of the order of 102.
Observations show that the planetary waves propagate over
great distances in the ionosphere without substantial changes
(Cavalieri et al., 1976, 1974; Bauer et al., 1995; Sharadze
et al., 1989, 1988). For planetary scale waves the latitude
variations of the angular velocity of the Earth’s rotation
ω0(θ) and the geomagnetic fieldH0(θ

′) (where θ , θ ′ are
geographical and geomagnetic colatitudes). Therefore,
for such large-scale perturbations we must use Helmholtz
equation of velocity vortex, which takes into account latitude
effects of vectorsω0 andH0, instead of equation of motion
(11), as well as dynamical meteorology (Gossard and Hooke,
1975; Holton, 1975; Khantadze, 1973). The Helmholtz
equation is obtained from Eq. (11) by utilizing on both sides
the operator curl=∇×. Compressibility and temperature
stratification of the atmosphere, as it is mentioned above,
play a secondary role for such disturbances (Pedlosky, 1979;
Gossard and Hooke, 1975; Khantadze 1973).

Hence, for the E- and F-layers of the ionosphere
magneto-hydrodynamic Eqs. (11)–(13) may be written in the

following form:

∂∇ × V
∂t

= ∇ × V × 2ω0 +
1

4πρ
∇ × ∇ × h × H0, (14)

∂h
∂t

= ∇ × V × H0 −
α

4π
∇ × ∇ × h × H0, (15)

∇·V=0, ∇·h=0 (16)

Here, H0=H0yey+H0zez, H0y=−Hp sinθ ′,
H0z=−2Hp cosθ ′, Hp=3.2×10−5 T is a value of geomag-
netic field strength on the equator; 2ω0=2ω0yey+2ω0zez,
2ω0y=2ω0 sinθ , 2ω0z=2ω0 cosθ , ω0=7.3×10−5 s−1;
θ ′

=π/2−ϕ′, ϕ′ – geomagnetic latitude;θ=π/2−ϕ, ϕ –
geographical latitude;ex, ey, ez denote unit vectors along the
x-, y-, z-axes, respectively.

The closed system of Eqs. (14) and (15) contains six scalar
equations and gives the possibility to calculate six unknown
quantities: Vx , Vy , Vz, hx , hy , hz. After determining the val-
ues ofV andh, pressure P′ will be determined from Eq. (11)
in quadrature (as far asρ′

=0); current density and electric
field are calculated from Maxwell’s Eqs. (10); electron veloc-
ity is determined from the expressionVe=VD, ion velocity
is determined from Eq. (9). Thus, the initial-boundary prob-
lem of large-scale dynamics of triple component plasma for
the E- and F-layers of the ionosphere in linear approximation
is solved completely.

3 Large-scale wavy perturbations

The discussed planetary waves have a wavelength of the or-
der of the Earth’s radius r0. Therefore, it is natural to con-
sider the creation of large-scale perturbations in the Earth’s
atmosphere in a spherical coordinate system. However, the
mathematical difficulties, raised by theoretical investigation
of obtained equations, oblige us to consider the problem in
a “standard” coordinate system (Gill, 1982; Pedlosky, 1979;
Holton, 1975; Khantadze, 1973). In this system the x-axis is
directed to the east towards the parallels, the Y-axis to the
north along the meridian, Z-axis is directed vertically up (lo-
cal Cartesian coordinate system). Length elements dx, dy,
dz are connected with the parameters of the spherical co-
ordinate systemλ, θ , r by the following approached formu-
las: dx=r0 sinθdλ, dy=−r0dθ , dz=dr. Velocities are equal:
Vx=Vλ, −Vy=Vθ , Vz=Vr . Here,λ is the longitude, r0 is
the Earth’s radius, r is the distance from the center of the
Earth along the Earth’s radius. This system is not equiva-
lent to the ordinary Cartesian frame of reference as far as
the directions of the axes vary, with the atmospheric particle
motion from one point to the other. However, for the large-
scale processes in equations of thermo-hydrodynamic atmo-
sphere the terms related to the spatial variations of the coor-
dinate axes may be dropped in the first approximation (Ped-
losky, 1979; Holton, 1975; Thompson, 1961). Therefore,
the equation of motion in the spherical coordinate system
(taking into account the relations between coordinates, men-
tioned above) has the same form as in the Cartesian frame of
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reference. This procedure simplifies the problem and investi-
gation of dynamics of the large-scale processes in the atmo-
sphere (Pedlosky, 1979; Holton, 1975; Thompson, 1961) and
therefore, it will also be used for magnetoactive ionospheric
medium.

The method of “frozen-in” coefficients in dynamic equa-
tions will also be used below. This method is known as
the β-approximation (Gill, 1982; Pedlosky, 1979; Gossard
and Hooke, 1975; Holton, 1975) in spherical hydrodynam-
ics and meteorology. In this approximation the parameters
ω0(θ), ∇ω0(θ), H0(θ

′), ∇H0(θ
′) are constant at integration

of dynamical equations, taking into accountθ=θ0, θ ′
=θ ′

0.
Medium motion is considered nearθ0 andθ ′

0, i.e. average val-
ues of adjunction of the geographicalϕ0 and the geomagnetic
ϕ′

0 latitudes, respectively. In this case, dynamical equations
transform into equations with constant coefficients, which
may be investigated by the plane wave method. Applica-
tion of β-approximation (orβ-plane) leads to simple results,
which gives the possibility to reveal more important features
of motion on a rotating sphere, which differs from motion
on a rotating plane. Furthermore we guess that a geograph-
ical latitudeϕ, coincides with a geomagnetic latitudeϕ′ i.e.
θ=θ ′, θ0=θ ′

0.
Now we introduce the vectoral potentialh/(αρ)=∇×U,

then we find:

∇ ×
h
αρ

= ∇ × ∇ × U=∇(∇ × U)−1U. (17)

Without losing generality, we can assume that∇×U=0.
This is the Lorenz calibration condition, which guarantees
a uniqueness of the solution for the vectoral potentialU.
Seeking the solution of Eqs. (14) and (15) as a plane wave
V, h∼ exp{i(kr −ωt)}, where k is the wave vector,ω is
the frequency of perturbation. From Eq. (17) we obtain
∇×h/(αρ)=k2U. Taking into account this, Eqs. (14) and
(15) may be written in the form:

∂

∂t
∇ × V = ∇ × V × 2ω0 − ∇ × U × 2�H , (18)

∂

∂t
∇ × U = ∇ × V × 2�0 + ∇ × U × 2�H , (19)

where 2�H=−(ck2/(4πeN))H0, 2�0=(eN/(NnMc))H0.

Equations (17) and (18) show that the electromagnetic waves
must be generated by hydrodynamic and electromagnetic
interaction on triplecomponent ionospheric plasma. From
these equations follow that the changing of the velocity
vortex ∇×V and the vectoral potential vortex∇×U occurs
under the action of CoriolisFC=ρV×2ω0 and the electro-
magnetic gyroscopicFH =ρV×2�H , F0=ρV×2�0 forces.
The solenoidal character automatically is taken into account
by V and U vectors. Equations (18) and (19) represent a
closed system of equations, describing the interaction of
two uncompressible fluids, moving with velocitiesV andU
under the action of the three gyroscopic forces mentioned
above. In the general case, Eqs. (18) and (19) have a sixth
order with respect to time and the corresponding dispersion

equation has four nonzero roots forω frequency. Two zero
frequencies (∂/∂t∼ω=0) correspond to hydrodynamic and
electromagnetic equilibrium in the unperturbed state.

As far as U has a velocity dimension m s−1, �H and
�0 have dimension s−1, differential Eq. (18) coincides with
Eq. (19) replacing V by U, andω0 by �0+2�H . The coin-
cidence of these differential equations means that they must
describe similar physical phenomena.

It must be mentioned that fundamental discoveries in
quantum mechanics and different areas of theoretical physics
are revealed by the analogy method. It will be shown below
that the application of the analogy method gives the possibil-
ity to search the electromagnetic analogy of the atmospheric
waves in the E- and F-regions of the ionosphere without solv-
ing Eqs. (18) and (19) in the general case. Let us consider a
few particular cases for the system of Eqs. (18) and (19) for
illustration.

1. For the E-region of the ionosphere�0�ω0
and dicussing perturbations for which
�H /ω0�|V |/|U |��H /�0 the first term in the
right side of Eq. (18) exceeds the second one, but in
Eq. (19) – vice versa. In this case formulas (18) and
(19) give a closed system of equations forV and U
vectors:

∂

∂t
∇ × V = ∇ × V × 2ω0, (20)

∂

∂t
∇ × U = ∇ × U × 2�H . (21)

For small-scale (L�103 km) processes Eq. (20), well
known in dynamical meteorology, has the general so-
lution in the form of three-dimensional inertial waves,
satisfying the dispersion Eq. (20) (Gill, 1982; Pedlosky,
1979; Gossard and Hooke, 1975):

ω = ωI =
1

k
(2ω0·k) (22)

where k=
√

k2
x+k2

y+k2
z.

For large-scale (L∼103–104 km) processes Eq. (20) has
exact solution-slow planetary Rossby waves, satisfying
the dispersion equation (Pedlosky, 1979; Gossard and
Hooke, 1975; Khantadze, 1973):

ω = ωR = −β
kx

k2
x + k2

y
, (23)

where β=∂2ω0z/∂y=2ω0 sinθ0/r0 is the Rossby pa-
rameter, ∂/∂y=−r−1

0 ∂/∂θ . Here, θ0 is sum mean
value of colatitude in the vicinity of which a motion in
medium is considered.

Note once more that the Eq. (23) solution is obtained in
a standard system of coordinates in theβ-plane approx-
imation (Gill, 1982; Pedlosky, 1979; Holton, 1975).
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The essence of this approximation is that at integra-
tion of vortex Eq. (20) parameters 2ω0z=2ω0 cosϕ0
andβ=∂2ω0z/∂y=2ω0 sinϕ0/r0 are considered as con-
stants (after (∇×) operator action) and Eq. (20) is trans-
formed into a differential equation with constant coeffi-
cients, of the solution of which may be obtained in the
form of plane waves. This simple mean of the Earth’s
surface curvature calculation gives, at the same time, an
opportunity to notice the most important features of the
motions of the atmosphere on a rotating sphere, distin-
guishing it from a motion on a rotating plane. The same
approximation is also used to obtain in the given work, a
solution of equations of electromagnetic waves (21) and
parameters of the geomagnetic field H0z=−2Hp cosθ0,
Hoy=−Hp sinθ0, andβH =∂H0z/∂y=−2Hp sinθ0/r0.

Equation (20) does not contain any more information
about the new atmospheric waves. It is a cubic equation
with respect to time and has nonzero own frequencies
ωI andωR . Third root-zero frequency, as it is men-
tioned above, corresponds to a quasi-static and quasi-
geostrophic equilibrium (Vg=2ω0×∇P0/(4ρω2

0) state
of the atmosphere; P0 is the equilibrium pressure; Vg is
velocity of geostrofic wind.

Using the analogy method, without solving Eq. (21)
and applying only the expression (22), we can conclude
that the analogy of the smallscale inertial waves in the
ionosphere at the electromagnetic approach is the well-
known “atmospheric whistle” (helicons):

ω=ωh= −
1

k
(2�H · k)=

ck

4πeN
(k · H0). (24)

The sign “and” denotes the opposite directions of vec-
torsω0 andH0.

For largescale processes (L∼103–104 km), when lati-
tude variation of the geomagnetic fieldH0 is not neg-
ligible, electromagnetic analogy of Rossby waves (23)
must exist in the E-region of the ionosphere (Kobaladze,
et al., 1989; Khantadze, 2002):

ω = ωH = −βH
kx

k2
x + k2

y

=
cβI

4πeN
kx, (25)

where

βH=∂2�Hz/∂y= − ck2(∂H0z/∂y)/(4πeN)= − c
(k2

x + k2
y)β1/(4πeN), β1=∂H0z/∂y= − 2Hpsinθ0/r0.

Taking into account both components of the geomag-
netic field, we obtain (Khantadze, 1989; Aburjania et
al., 2001):

ωH =
α

4π

√
β2

I + β2
2kx =

cHp

4πeN

√
1 + 3 sin2 θ

r0
kx, (26)

where β2=∂H0y/∂y. This is the new mode of
eigenoscillations of the E-region of the ionosphere.

Numerical calculations of the parameters of planetary
waves (26) were carried out using models of the iono-
sphere and the neutral atmosphere (Jacchia, 1977) for
low and high Sun activity. Numerical calculations show
that atθ=45◦ in the interval of heights (90–150) km,
phase velocity of waves CH =ωH /kx vary from 4 to
1.4 km s−1 at night, and from 400 to 800 m s−1 in the
daytime. Periods (TH =λ/CH at λ=2×103 km) are in
the interval of (1.5–6) h in the daytime and (4–12) min
at night. Perturbation of the geomagnetic field of these

waves hH =Hp

√
1+3 sin2 θξe/r0 (whereξe is the elec-

tron displacement) is 8 and 80 nT atξe=0.1 km and
ξe=1 km. The influence of exosphere temperature on
CH and TH is insignificant but is important for the mag-
netic field perturbations. CH and TH values are sub-
stantially different in the daytime and at night as far as
electron concentration in the E-region of the ionosphere
varies by magnitude with order during a given day.

These oscillations were observed experimentally (Bauer
et al., 1995; Sharadze et al., 1988) at middle latitudes of
the E-region of the ionosphere and were extracted as
middle-latitude long-period oscillations. But it is ev-
ident from Eq. (26), that there aren’t any restrictions
for the existence of these perturbations at both high and
low latitudes. They are revealed especially by a world-
wide network of ionospheric and magnetospheric ob-
servatories during earthquakes, magnetic storms and ar-
tificial explosions (Hayakawa, 1999; Hajkovicz, 1991;
Al’perovich et al., 1985).

Equation (21) does not contain any additional informa-
tion. Now we demonstrate this in general case for high
and moderate latitudes (H0≈H0zez). Let us write the
expression (21) in the following form:

ωk × U = i2�HzkzU − βH Uyez, (27)

k · U = 0. (28)

Multiplying Eq. (27) byk vectorially and using Eq. (28)
we obtain:

U = −i
2�Hz

ωk2
kzk × U +

βH

ωk2
Uyk × ez. (29)

Excluding the expressionk×U using Eq. (27) and
taking into account(k × ez)x=ky , (k × ez)y=−kx ,
(k×ez)z=0 from Eq. (29), we obtain the system of
equations for Ux , Uy , and Uz component(

1 −
ω2

h

ω2

)
Ux =

βH

ωk2
kyUy, (30)

(
1 −

ω2
h

ω2

)
Uy = −

βH

ωk2
kxUy, (31)
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1 −

ω2
h

ω2

)
Uz = i

2�Hzkz

ωk2
βH Uy . (32)

It follows from Eq. (31) that(
1 −

ω2
h

ω2
+

βH kx

ωk2

)
Uy = 0, (33)

whereωh=ckkzH0z/(4πeN). So, we have two cases:
Uy 6=0 or Uy=0.

a) At Uy 6=0 in Eq. (33) round bracket tends to zero(
1 −

ω2
h

ω2
+

βH kx

ωk2

)
= 0, or

(
1 −

ω2
h

ω2

)
=

βH kx

ωk2
. (34)

Substituting this expression into Eq.D (30), we
obtain:

−
βH kx

ωk2
kxUx =

βH

ωk2
kyUy .

From this it follows that kxUx+kyUy=0. Taking
into account Eq. (28) kxUx+kyUy+kzUz=0,
we obtain kzUz=0. Therefore, if kz=0, from
formula (32) yields Uz=0. Thus, kz, Uz and ωh

vanish simultaneously at Uy 6=0. If Ux and Uy are
nonzero, in this case the dispersion Eq. (34) gives
only a Rossby wave analogy

ω = ωH = −βH

kx

k2
x + k2

y

=
cβI

4πeN
kx;

b) Left side of Eqs. (30) and (32) tends to zero at
Uy=0(

1 −
ω2

h

ω2

)
Ux = 0;

(
1 −

ω2
h

ω2

)
Uz = 0.

If Ux=0, Uz=0, we have a trivial zero solution, which
corresponds to the equilibrium state, when electric drift
velocity and geostrophic wind velocity are equal (Ger-
shman, 1974). At Uy 6=0 and Uz 6=0 we obtain the dis-
persion equation for heliconsω=ωh=ckkzH0z/(4πeN).

Analysis of the possible solutions of Eq. (21) shows that
the electromagnetic planetary wave CH =ωH /kx is the
unique solution of Eq. (21) at Uy 6=0, for which helicons
are automatically excluded. But at Uy=0 helicons are a
unique solution, and CH -waves are filtered out. By the
analogy method this proof can be carried out directly for
inertial and planetary Rossby waves, i.e. for Fridman’s
equation (20).

2. In the F-region of the ionosphere�0�ω0
and discussing perturbations for which
ωH /�0�|V |/|U |��H /ω0, the first term can be
neglected in comparison with the second one in the
right side of Eq. (18) and vice versa in Eq. (19):

∂

∂t
∇ × V = −∇ × U × 2�H , (35)

∂

∂t
∇ × U = ∇ × V × 2�0. (36)

It is easy to show that the system of Eqs. (35) and (36)
does not contain the Hall parameterα and therefore, this
system can be applied to the investigation of electro-
magnetic processes in the F-region of the ionosphere.

For small-scale processes, when latitude variations of
the geomagnetic field H0 can be neglected, parame-
ters 2�H and 2�0 become constant and the system of
Eqs. (35) and (36) can be solved in the general case. Ac-
tually, using transversal condition of the waves(k·U=0,
(k·V)=0 from Eqs. (35) and (36) we obtain:

ωk × V=−i(k · 2�H)U; ωk × U = i(k · 2�0)V. (37)

EliminatingU andV from these expressions, we obtain
a dispersion equation for modified Alfvén waves in the
F-region of the ionosphere:

ω2
= −

1

k
(k · 2�0) ·

1

k
(k · 2�H)

from which follows:

ω1,2= ±

√
η

√
4πMN

(k · H0)= ±
√

ηωA . (38)

Here, the nondimensional parameterη=N/Nn denotes
the degree of plasma ionization;ωA=(k ·H0)/

√
4πMN

is the Alfvén frequency. Modified Alfv́en waves are
slow waves as far as the parameterη varies in the inter-
val 10−7–10−3 for F-region of the ionosphere at (200–
500) km. Dispersion Eq. (38) has two roots for positive
and negative propagation directions. Group velocity of
these perturbations is directed along the force lines of
the geomagnetic fieldH0.

Similarly to Eq. (38), from Eqs. (35) and (36) we obtain
only one root for the dispersion equation, describing the
propagation of zonal perturbations along latitude circles
(along xaxis directing towards parallel) for large-scale
processes, when latitude variations of the geomagnetic
field is not negligible (Khantadze, 2002; Aburjania et
al., 2002):

ω = ωn =
√

η
Hp

√
4πMN

√
1 + 3 sin2 θ

r0
. (39)
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Calculations show that phase velocity of these waves
Cn=ωn/kx are in the range of (20–1400) km s−1

at a height of (200–500) km, the wavelength is
λ=2×103 km, θ=45◦, the exosphere temperature is
Texos=600◦K; and (10–50) km s−1 at Texos=2600◦.
The period of these waves Tn=2π/ωn does not de-
pend on a wavelength and is in the interval (105–3) s
at Texos=600◦K and (210–40) s at Texos=2600◦. Mag-
netic pulsations, induced by these waves have the same
order by magnitude as CH -waves,hn≈hH . The coriolis
force and the existence of the ordinary Rossby waves
in the F-region of the ionosphere leads to the dispersion
relation(ω/kx)

2
=C2

n(1−ωR/ω)−1. Periods, phase ve-
locities and amplitudes of geomagnetic pulsations for
Cn-waves in a middle-latitude ionosphere are in agree-
ment with observation data of both middle-latitude and
large-scale electromagnetic perturbations, generated in
F-region of the ionosphere at powerful earthquakes and
magnetic storms (Hayakawa, 1999; Bauer et al., 1995;
Hajkowicz, 1991).

3. Now we consider the frequency bandω�2�H . The left
side of Eq. (19) may be neglected in comparison with
the free terms (which is fulfilled for potential electric
fields):

∂

∂t
∇ × V = ∇ × V × 2ω0 − ∇ × U × 2�H , (40)

0 = ∇ × V × 2�0 + ∇ × U × 2�H . (41)

Eliminating ∇×U×2�H , we obtain the generalized
Fridman’s equation for vorticity:

∂

∂t
∇ × V = ∇×(2ω0 + 2�0) =

∇ × V × 2(ω0 + ηωi), (42)

whereωi is the ion gyrofrequency.

From Eq. (42), as in case 1), it follows, that two classes
of the waves must be generated: the smallscale modified
inertial waves with frequency

ω=ω′

I=
1

k
(2ω′

0 · k). (43)

where 2ω′

0=2(ω0+ηωi) and the largescale planetary
Rossbytype waves having both a hydrodynamic and an
electromagnetic nature (compare with Tolstoy, 1967;
Khantadze, 1967):

ω = ω′

R = −β ′
kx

k2
x + k2

y

. (44)

Here, β ′
=β+βi , βi=η∂ωiz/∂y. Calculations show

that phase velocities of C′R=ω′

R/kx=−β ′λ2/(4π2)-
waves are in the range of (−2–+80) m s−1 in the day-
time, at the heights of (90–150) km Texos=600◦K and

λ=2×103 km. Forλ=2×104 km phase velocities vary
from (−41 m s−1)to (+1, 8 km s−1) in the daytime and
in the range of (−41–11) m s−1 at night. Velocities
change from (3 m s−1 to +60 m s−1 in the daytime and
from (2 m s−1) to (1.3 m s−1) at night, Texos=2600◦K
and λ=2×103 km. In this case the sign “and” points
in the direction of the phase velocity from the east to
the west, sign “+” from the west to the east. Calcula-
tions show thatβ ′

=(Nωiz/Nn−�0)2 sinθ/r0 tends to
zero and C′R=0 in the daytime at the height of 115 km.
Parameterβ ′ tends to zero at the height 150 km of the
nightly ionosphere. Hence, ordinary slow planetary
Rossby waves, moving from the west to the east di-
rection in the daytime, prevailed in the lower E-region
at the heights of (90–115) km; fast planetary waves,
having an electromagnetic nature and moving from the
west to the east direction, will prevail higher of criti-
cal altitudes. The Hall region is completely occupied
by the slow Rossby waves at the nightly ionosphere.
Hence, magnetic control of planetary waves in the iono-
sphere depends on critical altitude, where the condition
β ′

=β+βi=0 is fulfilled. These altitudes experimentally
may be revealed at the registration of planetary waves
jointly by both ionospheric and magnetosphere observa-
tories. Calculation shows, that periods T′

R=2π/ω′

R are
in the interval from 14 day’s to 8 h at the heights (90–
150) km , Texos=600◦ K, λ=2×103 km. T′

R vary from
14 days to 2 h at Texos=2600◦ K. Perturbation of the ge-
omagnetic field hR= ≈|4πeNC′

Rξ |/c runs up to a few
tens of nT, whereξ is the ion(neutral) displacement. Pa-
rameters of C′R-waves are correlated well with observ-
able parameters of planetary electromagnetic waves in
the E-region of the ionosphere at moderate latitudes at
any season of the year (Sharadze et al., 1989; Cavalieri
et al., 1976; 1974).

Vortex-free flow∇×V=0 and other cases, depending on ori-
entation of bothV andU velocities with respect to the geo-
magnetic fieldH0 in the ionosphere, may be considered eas-
ily, but these problems are not considered in this paper.

4 Conclusion

The analogy method yields the simple and important physical
results. Particularly, investigation of Eqs. (18) and (19) show
that four normal modes: small-scale inertial waves, atmo-
spheric whistles (helicons), fast large-scale electromagnetic
planetary CH =ωH /kx-waves and slow Rossby-type waves
must exist in the Eregion of the ionosphere. Modified small-
scale slow Alfv́en waves withω+ andω− frequencies, fast
large-scale electromagnetic planetary waves Cn=ωn/kx and
ordinary slow planetary Rossby waves must be generated
in the F-region of the ionosphere. Two eigen-frequencies,
ω=0 also have the physical notion and correspond to hydro-
dynamic and electromagnetic equilibrium state of the iono-
spheric medium in a background state, where geostrophycal
wind velocity coincides with electric drift velocity.
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Existence of the large-scale fast waves CH (in E-region),
Cn (in F-region) and slow Rossby-type planetary waves C′

R

(in both the E- and F-regions) are caused by the inhomo-
geneity of the geomagnetic fieldH0. Slow waves are gen-
erated by the polarized electrostatic dynamo field of polar-
ization (Ed=V×H0/c), fast waves – by the vortex elec-
tric field EV =VD×H0/c. The frequencies of these waves
vary in the bandω∼1–10−6 s−1 and occupy both infrasound
and ultra-low frequency (ULF) bands. The wavelength is
λ∼(103–104) km, the period of oscillation is T∼1 s –14 days.
Waves generate pulsations of geomagnetic field (1–102) nT.

Dynamics of the slow planetary electromagnetic waves
in the ionosphere are studied experimentally, more or less.
Experimental investigation of features of the fast large-
scale electromagnetic waves must be realized. Formu-
las (26) and (39) show that fast electromagnetic large-scale
(L(103–104) km) atmospheric waves both in the E- and F-
regions of the ionosphere have a general-planetary charac-
ter and occupy latitudes from the pole(θ=0) to the equator
(θ=π/2).

The fast electromagnetic atmospheric waves at iono-
spheric altitudes can be experimentally revealed and regis-
tered using their specific features:

1. A wide range of phase velocity dependence on latitude
(phase velocities of these waves are increased from the
pole to the equator; they are doubled at the equator).

2. A high variation (by magnitude) of electron concen-
tration N substantially increases the phase velocity of
CH =ωH /kx-waves in the E-region of the ionosphere at
nightly conditions (from a few hundreds m/s in the day-
time to a few tens of km/s at night).

3. Application of the well-known profiles N(h) allows
us to calculate uniquely the height distribution of the
CH -waves in the E-region of the ionosphere and, con-
versely, from a height distribution of CH (h)-waves we
can plot the dependence of the concentration N(h) on an
altitude.

4. Altitude variation of the neutral component concentra-
tion Nn(h) leads to a strong increase in the phase ve-
locity of the Cn-waves (phase velocity of Cn-waves at
heights of (200–500) km is increased from a few km s−1

up to 1000 km s−1) in the F-region of the ionosphere.

5. The response of especially the CH - and Cn-waves at
earthquakes, magnetic storms, artificial explosions and
magnetic activity of the Sun.

6. Registeration of electromagnetic and large-scale (103–
104 km) character of both the CH and Cn-waves by a
world-wide network of ionospheric and magnetospheric
observatories.

In conclusion we can say that planetary waves in the iono-
sphere, unlike the troposphere, generate high temporal-
varying “weather”. Waves occupy a large temporal interval

from two days or more (slow planetaryω′

R-waves) and from
a few hours up to a few minutes or less (fast planetaryωH

andωn-waves).
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