
 584

RETOO: Translating Relational to Object-Oriented Database
Conceptual Schema

Soon Lay Kia, Hamidah Ibrahimb, and Ali Mamatc

aFaculty of Information Technology,

Multimedia University,
Cyberjaya 63100, Selangor, Malaysia.

E-mail: lksoon@mmu.edu.my

b,cFaculty of Computer Science and Information Technology,
Universiti Putra Malaysia,

Serdang 43400, Selangor, Malaysia.
bhamidah@fsktm.upm.edu.my, cali@fsktm.upm.edu.my

ABSTRACT

The existence of multiple, heterogeneous and
autonomous databases within an organization means
the globally important information exists in separate
local database management systems (DBMSs), thus
making the existing data inaccessible to remote users.
One solution is to integrate these databases in order
to form a single cohesive definition of a multi-
database. Most of the integration is done by
translating one database conceptual schema into
another. In this paper, we will discuss a set of
translation rules proposed to translate relational
database conceptual schema into object-oriented
database conceptual schema. A prototype called
RElational-To-Object-Oriented (RETOO) has been
developed based on our translation rules.

Keywords

Conceptual Modelling, Relational Database, Object-
Oriented Database, Database Integration.

1.0 INTRODUCTION

The proliferation of information and communication
technology has enabled organizations to own
comprehensive information systems to manage their
operations since decades ago. However, the
computing environment in most of these
contemporary organizations contains distributed,
heterogeneous, and autonomous hardware and
software systems, particularly database systems. The
distributed and heterogeneous database systems within
an organization have to be integrated in order to
provide a single cohesive view of a multi-database.
The translation from one database conceptual schema
into another is inarguably essential in database
integration.

Relational database management systems (RDBMSs)
play a predominant role in today’s market (Rob and
Coronel, 2004; Kemper and Moerkotte, 1994). It is
estimated that 80% of currently sold database
management systems (DBMSs) are based on the
relational model. Nevertheless, the applications
where the scheme of the data is likely to change, and
where the data are complex or n-dimensional have
triggered the emerging development of object-oriented
database management systems (OODBMS).
OODBMSs are not only managed to provide the
strengths of conventional databases, but a lot more
features demanded by complex applications (Elmasri
and Navathe, 2004; Rob and Coronel, 2004; Rao,
1994).

Hence, in this research project, we propose a set of
translation rules to translate relational database
conceptual schema into object-oriented (OO) database
conceptual schema. The translation rules are also
applied in a prototype called RElational-To-Object-
Oriented (RETOO) using Java applet. More detailed
information about our work can also be referred in
(Soon, Ibrahim, & Mamat, 2005a; Ibrahim, Soon, &
Mamat, 2005b; Soon, Ibrahim ,Mamat, & Phua, 2001;
Soon, Ibrahim, Mamat, & Phua, 2000).

This paper is organised as in Section 2, previous
related works are briefly discussed. While the
concepts used in our translation rules as well as the
details of the rules will be presented in Section 3 and
4. In Section 5, we shall discuss the result of the
implementation in RETOO.

2.0 RELATED WORKS

A few works have been done on translating relational
schema into OO schema. In (Siew & Wang, 2003), an
approach was proposed to transform the spatial data
from relational database to object-oriented database.
McBrien and Poulovassilis developed a general

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UUM Repository

https://core.ac.uk/display/20573193?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 585

framework to support the schema transformation
process (McBrien & Poulovassilis , 1998). Their
model is demonstrated using an Entity-Relationship
(ER) common data model and schema transformations
on it. However, users have to understand the graph-
based common data model in order to do the
transformation based on the primitive transformation
proposed.
Huang proposed a schema translation system, which
can recapture the missing or hidden semantics of a
database (Huang, Chen, Li, & Fong, 1997). The
kernel of their system is an Extended Entity
Relationship (EER) Data Dictionary System (DDS),
which can store all the semantics of the new database
system. All original database models which to be
translated, must first be translated into EER model.
Later, the intended model is mapped from the EER
model. The reengineering process undoubtedly causes
duplicate works.

In (Castellanos, Saltor, & García -Solaco, 1994;
Castellanos & Saltor, 1991), a methodology to
translate the relational model into Barcelona Object-
Oriented Model (BLOOM model) was proposed.
However, their approach tends to create extra classes,
which are sometimes not necessary. Stanisic focused
his work not only on schema translation, but query
translation as well (Stanisic , 1999). The transformed
OO database schema by Stanisic is not semantically-
rich enough since it only supports two object-oriented
concepts, which are inheritance and aggregation.
Besides, the relationships among classes are only
shown by one of the classes. In (Fong, 1997), schema
translation from relational schema into object-oriented
schema does no support multiple-inheritance. In
addition, the relationships among classes are not
specified clearly.

3.0 CONCEPTS BEHIND TRANSLATION

RULES

In our approach, the translation rules are derived based
on two concepts of database conceptual modelling,
which are :

i. inclusion dependency
ii. key attributes and types of attributes.

3.1 Inclusion Dependency and Translation Rules

In relational database modelling, referential integrity
constraint states that a tuple in one relation that refers
to another relation must refer to an existing tuple in
that relation. In Figure 1, table GRADE_REPORT
indicates the performance of every student. The
attribute StudID in table GRADE_REPORT is a
foreign key, which refers to the StuID in table
STUDENT. Hence, this attribute’s value in table
GRADE_REPORT must match the StuID’s value of
some tuples in the STUDENT table.

STUDENT

Name StudID Class Major
GRADE_REPORT

StudID SectionIdentifier Grade

Figure 1: Referential Integrity Constraint

Since referential integrity constraint relates attributes
across relations, it can be specified as an inclusion
dependency (Elmasri & Navathe 2004). We may
specify the inclusion dependency of tables in Figure 1
as follow:

ID: GRADE_REPORT.StudID ⊆ STUDENT.StudID

The inclusion dependency above represents referential
integrity constraint. Since referential integrity
constraint represents the relationships among
relations, or classes in object-oriented modelling,
inclusion dependencies are able to represent higher-
level class/subclass relationships (Elmasri & Navathe,
2004). Hence, inclusion dependency plays a major
role in this research to determine the class and
subclass relationships between classes.

Besides inclusion dependency, foreign keys of each
relations are also needed to be further determined
whether they are key attributes in that relation itself or
not. Different circumstances will produce different
translation results. In addition, our translation rules
will take note of the types of attribute, particularly the
composite attribute in the process of forming classes.
The roles of all these characteristics in our translation
rules are clearly demonstrated in ten translation rules,
as showcased in Section 4.

4.0 RELATIONAL TO OBJECT-

ORIENTED DATABASE SCHEMA
TRANSLATION APPROACH

There are two main phases in our translation approach,
namely the identification of classes and operations.

4.1 Classes Identification

To identify objects or class, there are four main steps
in this phase:

Step 1: Translating Every Relation into a Class
The first rule stated that:

Rule 1 :
If
 R is a relation with attributes A1, A2, …An,
then
 create a class R with attributes A1, A2, …An.

 586

All the relations will be translated as classes, further
determination rules will be applied in later steps. Each
of these classes will only have their attributes and
types of attributes being specified. Below is an
example:

Relational Database Conceptual Schema:
Surgeon(SName : String,
 Street : String,
 City : String,
 Country : String,
 Phone-No : String)

The result of Rule 1 in Step 1:

Object-Oriented Database Conceptual Schema:
class Surgeon
 Attributes
 SName, Street, City, Country: String;
 Phone-No : String;
end Surgeon.

Step 2: Identifying Composite Attributes
In OO modelling, something should only be
represented by a class if it represents a set of similar
objects or concepts with meaningful properties and
operations, which are required to be maintained by the
system (Rob & Coronel, 2004).

Composite attributes represent a set of objects with
meaningful simple attributes (Elmasri & Navathe,
2004; Rob & Coronel, 2004). One of the most
common composite attributes is address, which
normally consists of street, city, state and country.
Undoubtedly, this composite attribute represents a set
of similar objects or concepts. Hence,

Rule 2 :
If

relation R consis ts of m composite attributes CA i,
where 1 ≤ i ≤ m and CA i = {Ai1, Ai2, …, A in} with
no overlapping attributes between the CA i, i.e. ∩
m

i=1 CAi = { },
then

- the attributes forming the composite attribute
CAi are taken out from class R, and are
formed as a newly defined class, say Ti;

- in class R, attributes Ai1, Ai2, …, Ain forming
the composite attribute CA i are replaced by
statement RCAi: set(Ti), where RCA i is an
attribute in class R referring to class Ti.

The following example demonstrates the execution of
Rule 2 on class Surgeon after class Address has been
formed:

 Object-Oriented Database Conceptual Schema:
 class Address
 Attributes
 Street, City, Country : String;

 end Address.

 class Surgeon
 Attributes
 SName : String;
 SAddress : set(Address);
 Phone-No : String;
 end Surgeon.

The attributes in any relations which form the
composite attribute Address would be replaced by
set(Address) .

In addition to the simple case of composite attributes
above, there are two other cases, which are more
complicated regarding composite attributes. To
illustrate these two cases, assuming we have a relation
with these attributes:

Relational Database Conceptual Schema:
Surgeon(ID_N : String

FName, MInit : String,
 LName, Phone_No : String)

Case 1:
Assuming that there are two composite attributes in
this relation, which are:
§ Name : FName, MInit, LName
§ Staff_No : FName, Phone_No

In Case 1, FName exists in both composite attributes
Name and Staff_No. Attribute FName in Staff_No is
actually referring to the same attribute in Name. The
relationship between these two composite attributes
will be specified clearly by our third translation rules.
The attributes that form these composite attributes will
be taken out from the original relation and formed as
classes, same as the simple case discussed in Rule 2.
After the translation process, we will get the following
three classes:

Object-Oriented Database Conceptual Schema:
class Name
 Attributes
 FName, MInit, LName : String;
end Name.

class Staff_No
 Attributes
 FName : Name.FName;
 Phone_No : String;
end Staff_No.

class Surgeon
 Attributes
 ID_No : String;
 SName : set(Name);
 Staff_No : set(Staff_No);
end Surgeon.

 587

Case 2:
In this case, assuming there are another two sets of
composite attribute in relation Surgeon.
§ Name : FName, MInit, LName
§ Staff_No : FName, LName

We will check the types of every attribute in the
composite attributes. Obviously, all the attributes in
both composite attributes responsible for forming the
composite attributes only, thus all attributes will be
taken out from the original relation. Consequently, we
will get the following three classes:

Object-Oriented Database Conceptual Schema:
class Name

 Attributes
 FName, MInit, LName: String;

end Name.
class Staff_No

 Attributes
 FName: Name.FName;
 LName: Name.LName;

end Staff_No.

class Surgeon
 Attributes
 ID_No : String;
 SName : set(Name);
 Staff_No : set(Staff_No);
 Phone-No : String;

end Surgeon.

As a result of these special circumstances of
composite attributes, we have produced two more
rules:

Rule 3 :
If

relation R consists of a composite attribute CA1
with attributes {A11, A12, …, A1n} and another
composite attribute CA2 with attributes {A21, A22,
…, A2m}, and there exists at least an attribute in
CA2, say A2i, which exists in both CA1 and CA2, 1

then
- the attributes forming CA1 are taken out from

class R and formed as a newly defined class, say
T1;

- the attributes forming CA2 are also taken out from
class R and formed as another newly defined
class, say T2;

- in class T2, attribute A2i is defined as A2i: T1. A2i;

1 If there is an attribute in CA2, say A2j which is a
simple attribute by itself, then in class T2, attribute A2j
is defined as A2j:R.A2j; and attribute A2j will remain in
class R.

- in class R, attributes A11, A12, …, A1n are replaced
by statement RCA1: set(T1), representing
composite attribute CA1;

- similarly, statement RCA2: set(T2) is used to
replace attributes A21, A22, …, A2m, representing
composite attribute CA2.

Rule 4 :
If

relation R has a composite attribute CA1 = {A11,
A12, …, A1n} and another composite attribute CA2 =
{A21, A22, …, A2m} where CA2 ⊂ CA1 (CA2 is a
subset of CA1),

then
- the attributes A11, A12, …, A1n forming CA1 are

taken out from class R and formed as a newly
defined class, say T1;

- the attributes A21, A22, …, A2m forming CA2 are
also taken out and formed as another newly
defined class, say T2;

- in class T2, attribute A2i where 1 ≤ i ≤ m is
defined as A2i: T1. A2i;

- in class R, attributes A11, A12, …, A1n are replaced
by statement RCA1: set(T1) representing
composite attribute CA1;

- in class R, statement RCA2: set(T2) is used to
represent composite attribute CA2.

Step 3: Identifying Relations Consist of Foreign

Keys only
Referring to the mapping process in relational data
modelling, a relation will have only foreign key
attributes when the relation is formed as a result of an
interaction between binary relations in M:N
relationship, or as a result of n-ary relationship, where
n > 2 (Elmasri & Navathe 2004; Rob & Coronel
2004).
The foreign keys, which originated from the key
attributes of the participating relations in that
relationship will form the primary keys of this newly
formed relation. For this kind of relations, we will
treat them as an object resulted from the interaction
between or among the classes that the foreign key
attributes reference to. The translation is reflected in
Rule 5 :

Rule 5 :
If

relation R consists of n attributes A1, A2, …, An
where each Ai is the foreign key that reference to
relation Ui, where 1 ≤ i ≤ n,

then
- class R is treated as interactions of all the classes

{U1, U2, …, Un};
- in class Ui, statements {R: set(U1) inverse is U1.R,

R: set(U2) inverse is U2.R, …, R: set(Un) inverse
is Un.R } – {R: set(Ui) inverse is Ui.R} are stated;

- class R is abolished.

 588

The example below illustrates this translation step.

Relational Database Conceptual Schema:
Paper(P#, Title, Issue# : String,

Institute_Name, Vol# : String)

Author(AName, Nationality : String,
Date_of_Birth : Date)

Writes(P#, AName : String)

Inclusion Dependencies:
ID: Writes.P# ⊆ Paper.P#
ID: Writes.AName ⊆ Author.Aname

Writes relation contains only two foreign key
attributes where P# refers to the P# in relation Paper,
and AName refers to the AName in relation Author.
Hence, relation Writes is actually representing the
interaction between relations Paper and Author. After
the translation of Rule 5 , class Writes, which is formed
after Rule 1 in translation step 1 is abolished.

Object-Oriented Database Conceptual Schema:
class Paper
 Attributes
 P#, Title, Issue# : String;
 Institute_Name, Vol# : String;
 Written_by : set(Author)
 inverse is Author.write;
end Paper.

class Author
 Attributes
 AName, Nationality : String;
 Date_of_Birth : Date;

 Write: set(Paper) inverse is Paper.written_by;
end Author.

Step 4: Identifying Foreign Keys and The

Candidate Keys Being Referenced
There are two main possibilities identified regarding
the referential integrity as shown in Table 1. We
categorise this step into case 1 and case 2, whereby
case 1 is when both the foreign key and the key being
referenced are key attributes. While case 2 represents
the occurrence of foreign key as a non-key attribute.
For the purpose of this project, we regard composite
primary key as a key attribute that consists of more
than one simple attributes.

Table 1: Foreign Key

Foreign Key Candidate Key Being
Referenced

Key Attribute Key Attribute
Non-Key Attribute Key Attribute

Case 1:
In this case, we can further divide it into another four
categories, as shown in Table 2:

Table 2: Four Categories of Case 1

Foreign Key
(Key Attribute)

Candidate Key Being
Referenced

Simple Primary Key Simple Primary Key
Composite Primary Key Composite Primary Key
Composite Primary Key Simple Primary Key
Part-of Composite
Primary Key

Simple/Composite
Primary Key

In relational database modelling, the key attribute is an
attribute whose values are used to identify each
individual entity uniquely (Elmasri & Navathe, 2004;
Rob & Coronel, 2004). Specifying that an attribute is
a key of an entity type means that the preceding
uniqueness property must hold for every extension of
that entity type (Elmasri &d Navathe, 2004; Rob &
Coronel, 2004). This key constraint is derived from
the properties of the miniworld that the database
represents (Elmasri & Navathe, 2004).

The key constraint in relational modelling indicates
that when the key attribute of a relation R1 is a foreign
key, this relation refers to the whole relation R2 that
contains the key being referenced. Hence, R1 is an
instance of R2 whereby besides the attributes in R2, R1
has its extra attributes. In OO modelling, this situation
is similar to inheritance. A subclass is inherited from
a superclass if the subclass “is -an” instance of the
superclass.

For category one, if both the foreign key and the
candidate key being referenced are simple primary key
attributes of the relations, the foreign key’s relation is
considered as an inheritance of the relation which is
being referenced. This applies to the second category
where both of the foreign key and the key being
referenced are composite primary keys. As stated in
Rule 6 :

Rule 6 :
If

both the foreign key in relation R and the candidate
key being referenced in relation V are simple
primary key attributes or composite primary keys,

then
- class R is treated as an inheritance of class V;
- statement inherit V is included in class R;
- statement inherited_by T is included in class V.

For example, the SName attribute in Consultant is the
foreign key, which refers to the primary key of

 589

Surgeon . In this case, we can say that the Consultant
“is -a” Surgeon.

Relational Database Conceptual Schema:
Surgeon(SName, Street, City : String,
 Country, Phone_No : String)

Consultant(SName, Speciality : String)

Inclusion Dependency
ID: Consultant.SName ⊆ Surgeon. SName

After translation, we shall get the following OO
schema:

Object-Oriented Database Conceptual Schema:
class Surgeon
 inherited_by Consultant
 Attributes
 SName : String;
 SAddress : set(Address);
 Phone_No : String;
end Surgeon.

class Consultant
 inherit Surgeon
 Attributes
 Speciality : String;
end Consultant.

There are certain relations with more than one foreign
key and all the foreign keys formed the primary key
attributes of the relations. Besides these foreign keys,
these relations might also have their own attribute(s).
If the subclass “is -an” instance of the superclasses, the
relationships among these relations are translated as
multiple inheritance. Assuming in a stationery
manufacturing factory, it produces a Notebook , which
is a CommercialProduct and also a Gift for customers:

Relational Database Conceptual Schema:
CommercialProduct(CommercialID : String,
 Packaging : String,
 Price : Integer)

Gift(GiftID, Category : String,
 Coupon: Integer)

Notebook (CommercialID, GiftID : String,
 Size: Integer)

Inclusion Dependencies
ID: Notebook .CommercialID ⊆
CommercialProduct. CommercialID
ID: Notebook .GiftID ⊆ Gift. GiftID

The Notebook “is -a” CommercialProduct and also “is -
a” Gift to the manufacturer. As a result, these three
classes will be translated as follow:

Object-Oriented Database Conceptual Schema:
class CommercialProduct
 inherited_by Notebook

Attributes
 CommercialID : String;
 Price : Integer;
 Packaging : String;

end CommercialProduct.

class Gift

inherited_by Notebook
Attributes

 GiftID, Category : String;
 Coupon : Integer;
end Gift.

class Notebook
 inherit CommercialProduct

inherit Gift
 Attributes

Size : Integer;
end Notebook .

As mentioned above, in OO modelling, a subclass is
inherited from a superclass only if the relationship
between the subclass and the superclass is “is -a”
relationship. Refer to the example below:

Relational Database Conceptual Schema:
Programmer(SSN, Salary, Sex : String,
 BDate : Date)

Project(P#, PName : String,

StartDate, DueDate : Date)

Works_On(SSN, P# : String,

 Hours : Integer)

Inclusion Dependencies
ID: Works_On.SSN ⊆ Programmer. SSN
ID: Works_On.P# ⊆ Project. P#

Works_On is neither “is -a” Programmer nor “is -a”
Project. In fact, Works_On would be more suitable to
be identified as an aggregation or assembler of the two
classes. According to the mapping process in
relational modelling, Works_On shows the M:N
relationship between Programmer and Project. While
the attribute Hours is an attribute obtained from the
relationship between Programmer and Project.

From the aggregation perspective in OO modelling,
class Works_On does not concern about the
representation details of Programmer and Project. All
the properties of the Programmer and the Project
associated with a particular Works_On occurrence are
encapsulated by the class and may be accessed
without explicit joins.

 590

Thus, not all relations with foreign keys as composite
primary key are translated as multiple inherited class.
The translation result would be:

Object-Oriented Database Conceptual Schema:
class Programmer

participate_in Works_On
Attributes

SSN, Salary, Sex : String;
BDate : Date;

end Programmer.

class Project
 participate_in Works_On

Attributes
 P#, PName : String;

 StartDate, DueDate : Date;
end Project.

class Works_On
 assemble Programmer
 assemble Project

Attributes
Hours :Integer;

end Works_On.
For third category, Rule 7 and Rule 8 are formed:

Rule 7 :
If

relation R has a set of foreign keys {fk1, fk2, …,
fkn} where n > 1 and fki where 1 ≤ i ≤ n formed the
primary key of R, and after being translated into
class R, class R is an instance of the classes C1, C2,
…, Cm where its foreign keys referenced to, i.e.
R.fki ⊆ Cj.pk2, where pk is the primary key of Cj,

then
- class R is treated as an inheritance of classes C1,

C2, …, Cm;
- in class R, statements inherit Cj, where 1 ≤ j ≤ m

are included;
- statements inherited_by R is included in classes

C1, C2, …, Cm.

Rule 8 :
If

relation R has a set of foreign keys {fk1, fk2, …,
fkn} where n > 1 and fki where 1 ≤ i ≤ n formed the
primary key of R, and after being translated into
class R, class R is an aggregation of classes C1, C2,
…, Cm where its foreign keys referenced to, i.e.
R.fki ⊆ Cj.pk, where pk is the primary key of Cj,

then
- class R is treated as an aggregation of classes C1,

C2, …, Cm;

2 The symbol ⊆ shows the inclusion dependency.

- statements assemble Cj where 1 ≤ j ≤ m are
included in class R;

- statement participate_in R is included in classes
C1, C2, …, Cm.

The fourth category of this case indicates another
situation where the foreign key is a part-of primary
key. The candidate key(s) being referenced can be
simple or composite primary key(s). In relational
database modelling, this happens when the relation
that contains the foreign key(s) is a weak entity. The
key attribute of the parent entity is included as a
foreign key in the weak entity and will be part of the
key attribute in the weak entity. Rule 9 is derived
such that:

Rule 9 :
If

part of the primary key of relation R is a foreign key
attribute, which refers to a relation Q,

then
- class R is treated as a weak entity, which depends

on class Q;
- statement depend Q is included in class R;
- statement has_dependent R is included in class Q.

An example is shown below, the class Children is a
weak entity that depends on its parent entity
Employee.

Relational Database Conceptual Schema:
Employee(SSN#, Name, Gender : String)
Children(SSN#, Child_Name, Gender : String,
 Age : Integer)

Inclusion Dependency
ID: Children.SSN# ⊆ Employee. SSN#

The following two classes are obtained after Rule 9 :

Object-Oriented Database Conceptual Schema:
class Employee

has_dependent Children
Attributes

SSN#, Name, Gender: String;
end Employee.

class Children

depend Employee
Attributes

 Child_Name Gender: String;
 Age : Integer;
end Children.

Case 2:
In relational database mapping process, for each
regular binary 1:1 and 1:N relationship type R, we
should identify the relation S that represents the
participating entity type at the full participation or N-
side of the relationship type. Then, include as foreign

 591

key in S the primary key of the relation T that
represents the other entity type participating in R, as
showcased in Case 2 of Table 1.

The mapping process mentioned above shows that the
existence of the non-key attribute in relation S that
refers to the key attribute of relation T means that the
foreign key in S is merely referring to relation T and
not an instance of relation T or even assembling
relation T. The existence of this foreign key as non-
key attribute is regarded as an interaction between S
and T.

Below is an example demonstrating our approach:

Relational Database Conceptual Schema:
Employee(SSN, Sex, Salary, DeptNo: String,
 BDate : Date)

Department(DeptNo, DName, Location: String)

Inclusion Dependency
ID: Employee.DeptNo ⊆ Department.DeptNo

After being translated:

Object-Oriented Database Conceptual Schema:
class Employee
 Attributes
 SSN, Sex, Salary : String;
 BDate : Date;
 Work_in : set(Department)
 inverse is Department.Worked_by;
end Employee.

class Department

Attributes
 DeptNo, DName, Location: String;
 Worked_by: set(Employee)
 inverse is Employee.Work_in;
end Department.

Based on our finding on Case 2, the last translation
rule in our approach is:

Rule 10:
If

relation R has a foreign key f which is not a key
attribute, that refers to a relation P,

then
- attribute f shows the interaction between class R

and class P;
- in class R, statement f: set(P) inverse is P.R

replaces attribute f;
- in class P, statement R: set(R) inverse is R.f is

included.

4.2 Operations Identifications

In OO modelling, there are basically three categories
of operations for each class:

1. Constructor/destructor functions
2. Accessor/query functions
3. Transformer/update functions

User intervention in this phase is crucial as the
information of operations for each object or relation is
not provided in the relational data model. By default,
we suggest two operations for every class, which are
the constructor and destructor operations.
Nevertheless, users will still have the flexibility
whether to accept the default operations or not. For
other necessary functions, users will need to provide
the information to RETOO though.
Showing below is an example of these two basic
operations applied to a class:

Object-Oriented Database Conceptual Schema:
class Lecture
 Attributes
 LectureID : String;
 location : set(Address);
 ……
 Methods
 create(…);
 destroy(…);
end Lecture.

5.0 RETOO IMPLEMENTATION

We have developed a prototype based on the
translation rules using Java. The tools have been
tested with numerous cases and it is evident that our
translation rules work well in translating relational to
OO database conceptual schema. Figure 2 shows the
original relational database conceptual schema which
will be translated. While Figure 3 presents a
comparison between our translated OO model and
BLOOM model.

employee(ss#, dept, salary)
department(d_name, location, budget)
ID:employee.dept ⊆ department.d_name

Figure 2: Relational Database Conceptual Schema

In this example, class privileged has been created in
BLOOM model. According to Castellanos et al., this
class is created because employee.dept is not null-
constrained. Therefore, it can exist as null value. For
those employees whose dept attribute is null, they are
considered as “privileged-employees”.

The referential integrity constraint in relational
database modelling specifies that a foreign key can
either exists as a value of the candidate key it
reference to or exists as null. Obviously, the forming
of new class privileged is actually not necessary since
the existence of null value for dept is acceptable. In

 592

our approach, the existence of dept in class employee
is represented as work_in:department.worked_by,
demonstrating the interaction between these two
classes.

BLOOM
class employee
 subclass privileged
 id ss#
 atrs department
 salary
end_class

class privileged
 superclass employee
 exception_on dept
end_class

class department
 s_agg_of manager
 id d_name
 atrs budget
end_class

RETOO
class department
 Attributes
 d_name, location, budget : string;
 worked_by : set(employee) inverse is
 employee.work_in;
end department.

class employee
 Attributes
 ss# : string;
 work_in : set(department) inverse is
 department.worked_by;
 salary : integer;

end employee.

Figure 3: Comparing RETOO Result and BLOOM

6.0 CONCLUSION

In this research project, we have proposed a set of
translation rules to translate relational database
conceptual schema to object-oriented database
conceptual schema. The rules have been implemented
in a prototype called RETOO by using Java applet.
The relational semantics are well-preserved in the
translated object-oriented conceptual schema.

Currently, RETOO needs users to enter the relational
schema, including the referential integrity, key
attributes and types of the attributes for the translation
process. Our plan is to improve RETOO by
minimizing user’s work in entering the information
regarding relational conceptual schema. A more
autonomous translator, which is similar to a compiler
that is able to read and capture the information
regarding relational conceptual schema by itself shall
be the future direction of this field. Besides having a
fix set of translation rules, we would also like to
explore the possibility of incorporating description
logic in our database schema translation.

REFERENCES
Castellanos, M., Saltor, F., & García -Solaco, M.

(1994). Semantically Enriching Relational
Databases into an Object Oriented Semantic
Model. In Proceedings Of the 5 th International
Conference on Database and Expert Systems
Applications. (pp. 125-134). London, UK.

Castellanos, M. & Saltor, F. (1991). Semantic
Enrichment of Database Schemas: An Object
Oriented Approach. In Proceedings of the 1 st
International Workshop on interoperability in
Multimedia Systems. (pp. 71-78). Kyoto, Japan.

Elmasri, R. & Navathe, S.B. (2004). Fundamentals of
Database Systems . United States of America:
Addison Wesley.

Fong, J. (1997). Converting Relational to Object-
Oriented Databases . The ACM SIGMOID
Record , 26(1): 53 – 58.

Huang, S.M., Chen, H.H., Li, C.H., & Fong, J. (1997).
A Data Dictionary System Approach for Database
Schema Translation. Publication of IEEE, 3966-
3971.

Soon, L.K., Ibrahim, H. & Mamat, A.. (2005).
Constructing Object-Oriented Classes from
Relations. In Proceedings of MMU International
Symposium on Information and Communication
Technologies 2005. (pp. TS13 17-20). Petaling
Jaya, Malaysia.

Ibrahim, H., Soon, L.K. & Mamat, A. (2005).
Developing Translation Rules for Converting
Relational to Object-Oriented Database
Conceptual Schema. Pertanika Journal of
Science and Technology, 13 (1): 1-21.

Kemper, A., & Moerkotte, G.. (1994). Object-
Oriented Database Management, Applications in
Engineering and Computer Science. United
States of America: Prentice Hall Inc.

McBrien, P., & Poulovassilis, A.. (1998). Automatic
Migration and Wrapping of Database
Applications – A Schema Transformation
Approach. Department of Computer Science
Technical Report, King’s College London.

Rao, B.R.. (1994). Object-Oriented Databases,
Technology, Applications, and Products. United
States of America: McGraw-Hill, Inc.

Rob, P. & Coronel, C. (2004). Database Systems:
Design, Implementation, & Management. United
States of America: Thomson Learning.

Siew, T.K., & Wang, Y.C. (2003). An Object-
Oriented Approach for Transformation of Spatial
Data from Relational Database to Object-Oriented
Database. Proc. Of The International Conference
on Asian Digital Libraries (ICADL) , Kuala
Lumpur, Malaysia, 533 – 543, Lecture Notes in
Computer Science, Springer-Verlag.

Soon, L.K., Ibrahim, H., Mamat, A., & Phua, C.S.
(2001). Translating Relational Model to Object-
Oriented Model. In Proceedings Of The

International Conference on Information
Technology and Multimedia . (pp. 525-532).

 593

Selangor, Malaysia: The International Conference
on Information Technology and Multimedia.

Soon, L.K., Ibrahim, H., Mamat, A., & Phua, C.S.
(2000). Relational-to-Object-Oriented Database
Schema Translation. In Proceedings of
Information Technology Colloquium (INTEC)
2000. (pp. 99-104). Selangor, Malaysia: UPM
Information Technology Colloquium.

Stanisic, P. (1999). Database Transformation from
Relational to Object-Oriented Database and
Corresponding Query Translation. In
Proceedings Of Workshop on Computer Science
and Information Technology. (pp. 199-208).

