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a b s t r a c t

Introduction: Attention modulates the availability of sensory information to conscious

perception. In particular, there is evidence of pathological, spatial constriction of the

effective field of vision in patients with right hemisphere damage when a central task

exhausts available attentional capacity. In the current study we first examined whether

this constriction might be modulated across both space and time in right hemisphere

stroke patients without neglect. Then we tested healthy elderly people to determine

whether non-pathological ageing also leads to spatiotemporal impairments of vision under

conditions of high attention load.

Methods: Right hemisphere stroke patients completed a task at fixation while attempting to

discriminate letters appearing in the periphery. Attentional load of the central task was

modulated by increasing task difficulty. Peripheral letters appeared simultaneously with

the central task or at different times (stimulus onset asynchronies, SOAs) after it. In a

second study healthy elderly volunteers were tested with a modified version of this

paradigm.

Results: Under conditions of high attention load right hemisphere stroke patients have a

reduced effective visual field, over a significantly extended ‘attentional blink’, worse for

items presented to their left. In the second study, older participants were unable to

discriminate otherwise salient items across the visual field (left or right) when their

attention capacity was loaded on the central task. This deficit extended temporally, with

peripheral discrimination ability not returning to normal for up to 450 msec.

Conclusions: Dynamically tying up attention resources on a task at fixation can have pro-

found effects in patient populations and in normal ageing. These results demonstrate that

items can escape conscious detection across space and time, and can thereby impact

significantly on visual perception in these groups.

ª 2012 Elsevier Ltd. All rights reserved.
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ier Ltd. All rights reserved.
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1. Introduction
 targets when they were required to complete a difficult task at
Our eyes are bombarded with a vast amount of information

from across the visual field. Visual acuity for this information

can be mapped by standard perimetry. However, what is

available to conscious perception is affected by factors other

than low-level visual processes. Availability of attentional

resources appears to be critical for awareness (e.g., see, Lavie,

2005; Rees et al., 1997, 1999; Schwartz et al., 2005; Vanni and

Uutela, 2000). If the amount of attention required for a task

at fixation is high, there is an effective constriction of the

available visual fields and failure to perceive otherwise salient

onsets in healthy people (Russell et al., 2004). The dynamic

loss of vision for peripheral targets when attentional re-

sources are occupied can be seen by the decrease in neural

activity for peripheral checkerboard patterns even in early

visual cortex when task demands at fixation are high

(Schwartz et al., 2005 see also, Rees et al., 1997).

Recently O’Connell et al. (2011) examined the effect of

central attentional load on spatial orienting towards periph-

eral events, measuring event-related potentials to assess

timing of the modulation. The early N1 signal (previously

shown to indicate enhanced attentional processing) was

attenuated, particularly over the right hemisphere, for ex-

pected peripheral targets when participants completed a high

load task at fixation. Modulation of N1 is consistent with evi-

dence linking this signal to the right temporo-parietal cortex.

The key role of these regions in directing attention is well

documented (e.g., Corbetta and Shulman, 2002; Friedrich

et al., 1998). Indeed fMRI has revealed modulation by load in

these regions, particularly right intra-parietal sulcus, sug-

gesting an important contribution to non-spatial attentional

capacity (e.g., Culham et al., 2001).

Compatible with studies on healthy participants, damage

to the right hemisphere leads to impairments in attention.

Visuospatial neglect, frequently occurring after damage to

right parietal cortex (e.g., see, Driver and Mattingley, 1998;

Mort et al., 2003; Vallar, 2001), is characterized by a loss of

awareness for items in the visual field contralateral to the

lesion. Although the most salient features of neglect involve

spatial attention, as deficits are strongly lateralized, there is

evidence that non-spatial components of attention are

affected (see Husain and Rorden, 2003; Robertson, 2001). These

patients have problems in sustaining attention over minutes

(e.g., Malhotra et al., 2009: Robertson et al., 1997) and

increasing alertness ameliorates the lateralized symptoms

(e.g., Chica et al., 2012; Degutis and Van Vleet, 2010; Thimm

et al., 2006; Robertson et al., 1998). Further, non-spatial atten-

tion capacity deficits in these patients affect conscious

awareness for items across the visual field. Vuilleumier et al.

(2008) examined responses to background checkerboards in

early visual cortex of neglect patients completing a task at

fixation. When central task load was low, early visual cortex

responded to the checkerboards on both sides. However, when

central load was increased, responses to checkerboards pre-

sented to the left visual field were reduced or abolished (see

also, Bonato et al. (2010); Peers et al., 2006; Sarri et al., 2009).

Russell et al. (2004) revealed that patients with damage to

right parietal cortex, even without neglect, missed peripheral
fixation. Performance was particularly poor on the contrale-

sional side but there was even loss of ipsilesional vision when

central task demand was sufficiently high.

In addition to spatial impairments in conscious awareness

under high load, observers can suffer detection deficits over

time. The ‘Attentional Blink’ (AB) paradigm is used to delineate

temporal capacity limits to perception (Raymond et al., 1992;

Shapiro et al., 1994). Participants are presentedwith two targets

embedded in a stream of rapidly presented items at fixation.

Healthy youngparticipants often fail to detect the second target

if it ispresentedwithinashort lagof thefirst (underw500msec).

The time taken to process the first target occupies capacity,

rendering it briefly difficult to identify another target; indeed

task load manipulations within the AB paradigm indicate that

perception of the second target reflects current availability of

attentional resources (e.g., Elliott andGiesbrecht, 2010). Patients

with visuospatial neglect have shown an extended ‘AB’, with a

failure to report second targets over a much longer lag period

(e.g., up to 1300 msec) (see Husain et al., 1997; Hillstrom et al.,

2004; Rizzo et al., 2001). However, it is unclear whether such

deficits can also be protracted spatially, particularly to the

contralesional side, as previous studies have used centrally

presented targets. Our first study aims to assess whether the

spatial contralesional deficit for discriminating stimuli when

performing a demanding central task extends temporally and

impairs perception for a longer period.

This potential attention-modulated loss of available visual

fielde over space and timee is also relevant to healthy ageing

and our understanding of the impact of age-related decline on

daily function. Investigators have developed tests of the

Useful Field of View (UFOV) and correlated performance with

driving ability (e.g., Clay et al., 2005; Owsley et al., 1995). UFOV

tests typically involve making judgements on a central item

whilst attempting to discriminate peripheral items, oftenwith

concurrent distractors. Older adults who, despite having

intact visual fields, are poor at this test are more dangerous

drivers as indexed by measures including road accidents and

driver simulator performance (Clay et al., 2005). Crucially,

these studies have not modulated the amount of attention

required in the central task in order to examine how this

impacts on deployment of attention to peripheral items. Some

investigations have also reported that older participants

might suffer from an AB that is longer and of greater magni-

tude (e.g., Georgiou-Karistianis et al., 2007; Maciokas and

Crognale, 2003), but no studies have examined perception

across the visual field in these paradigms. In our second

experiment, we used our paradigm to probe deployment of

attention over space and time within healthy ageing when

participants perform a demanding task at fixation.
2. Experiment 1

2.1. Method

2.1.1. Participants
Five patients with right hemisphere stroke participated in the

study. Patients were aged from 55 to 75 (mean 66 years). All

http://dx.doi.org/10.1016/j.cortex.2012.10.005
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were in-patients at the Fondazione Santa Lucia Neuro-

Rehabilitation Hospital in Rome, Italy. They had suffered

from their stroke on average 12 weeks prior to entering the

research programme. Brain lesions, imaged by CT or MRI,

were reconstructedwithMRICro software (http://www.sph.sc.

edu/comd/rorden/mricro.html), plotted with the use of a

graphics tablet (WACOM Intuos A4). See Fig. 1 for lesion

mapping images, which demonstrate widespread involve-

ment including frontal and parietal regions. Scans were un-

available for one patient (the radiology report stated that there

was damage to right frontal, parietal and temporal regions

affecting cortical and sub-cortical structures).

None of the patients suffered from neglect at the time of

testing according to a standard clinical examination. All pa-

tients had intact visual fields as tested by confrontation, 4/5

patients had constructional apraxia as revealed by perfor-

mance on the ReyeOsterrieth complex figure and block design

of the Wechsler Adult Intelligence Scale. Patients were

compared with five age-matched healthy control participants.

Their ages ranged from 56 to 70 (mean 65 years), all reported

normal/corrected to normal vision. All participants gave writ-

ten informed consent according to the Declaration of Helsinki.

The study was approved by both the hospital and university

research ethics committees.

2.1.2. Apparatus & stimuli
The experiment was programmed with Psyscope software

(Cohen et al., 1993) run from a Macintosh G4 laptop computer.

A small white diamond shape (1� across, see Fig. 2) was pre-

sented at fixation with either its top or bottom apex missing.

During the low load condition only the diamond was pre-

sented in the centre. In the high load task, a mask stimulus

appeared immediately after the diamond was extinguished to

increase demand.

On each trial a red upper case letter appeared elsewhere on

the screen (either an H or a T). Possible positions of these let-

ters were at one of the four corners of two imaginary squares

centred on the diamond. The eccentricity of imaginary square

corners could be near to the diamond (2�) or further (6�). Size of

the letters varied according to peripheral distance, with those

further away scaled account for the cortical magnification

factor of items nearer the fovea. Those at 2� were .46� across

those at 6� were .69� across. There were an equal number of

near and far letters presented and they were distributed

approximately equally across the four peripheral directions.

Stimuli were displayed on a mid-grey background.
Fig. 1 e Lesion overlap showing regions affected in 4 of the part

sub-cortical white matter (in green) with a very small focus (in re

(MNI coordinates 28, L26, 24).
2.1.3. Procedure
Trials began with a central fixation cross presented for

500 msec, followed by the diamond stimulus for 200 msec. In

high load blocks, the mask stimulus appeared immediately

afterwards for 150msec.A letterwaspresented in theperiphery

in every trial. Letter presentationwas either simultaneouswith

the central diamond or delayed. During stimulus onset asyn-

chrony (SOA) trials there were three possible asynchronies

(450 msec, 850 msec and 1650msec). Simultaneous letter trials

were in separate blocks. Differing SOAs were presented

randomly, with an approximate equal number of each type

across the blocks. Therewere four types of experimental block:

Low-demand, simultaneous letter presentation; Low-demand,

SOA letter presentation; High-demand, simultaneous letter

presentation; High-demand, SOA letter presentation.

Most participants completed 10 experimental blocks. Two

blocks each of Low-demand and High-demand simultaneous

letter blocks and three blocks each of Low-SOA and High-SOA.

Each block had 50 trials. Participants completed these blocks

in two to three separate 1-h sessions. Presentation order of the

blocks was counterbalanced. Task instructions emphasized

the need to complete the central task accurately.

Participants sat approximately 50 cm from the computer

screen and made verbal responses, stating first whether the

diamond was missing the top or bottom apex and second

what they believed the identity of the letter to be. Two ex-

perimenters were present throughout testing. One sat facing

participants with the response button box, enabling them to

cancel trials in which participants moved their eyes from

screen centre and to enter verbal responses. The other started

each block, explained the task and observed whether the

participant appeared to understand task requirements.
3. Results and discussion

3.1. Analysis across groups

First, performance on the central diamond taskwas examined

(see Fig. 3a for this data). This revealed participants to be

equivalently accurate across both experimental groups for

each level of attentional demand [interaction between

task load and group was not significant; F (1, 8) < 1]. Thus

participants fulfilled instructions and gave sufficient priority

to performing the central task. To assess the consequences of

this on deployment of attention to other locations, we
icipating patients. The greatest areas of overlap were in the

d) where all four patients had a common region of damage

http://www.sph.sc.edu/comd/rorden/mricro.html
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Fig. 2 e Schematic example of trial events for both the low attention demand (on the left of the figure) and the high attention

demand (on the right) trials. For clarity of the small stimuli the figures display only the central part of the screen.
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examined participants’ discrimination of peripheral letters

(Table 1a and b).

An ANOVA was conducted with four within-subjects fac-

tors: SOA (0 msec; 450 msec; 850 msec; 1650 msec); load of
Fig. 3 e Results for Experiment 1. 3a displays performance for th

load. 3b gives themean percentage of correct discriminations of

and side of presentation. 3c shows peripheral discrimination da

left of the central y-axis and right-sided span out to the right.
central task (high or low); side of peripheral stimulus (left or

right) and distance of peripheral stimulus (near or far) and the

between-subjects factor of group (patient or control). Results

revealed significant interactions between both SOA and group
e central fixation task for both groups across both levels of

peripheral letters collapsed over both distance from fixation

ta split by side of presentation. Left-sided stimuli are to the

http://dx.doi.org/10.1016/j.cortex.2012.10.005
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Table 1 e a: Patient group means and standard deviations (in brackets) for Experiment 1. b: Control group means and
standard deviations (in brackets) for Experiment 1.

Low central load High central load

Left Right Left Right

Near Far Near Far Near Far Near Far

a

Zero .44 (.17) .41 (.16) .64 (.12) .56 (.17) .48 (.08) .46 (.23) .53 (.05) .71 (.15)

450 msec .86 (.17) .80 (.12) .95 (.05) .87 (.22) .48 (.18) .69 (.19) .83 (.24) .87 (.25)

850 msec .82 (.17) .68 (.27) .92 (.10) .98 (.05) .83 (.37) .69 (.29) .72 (.30) .87 (.29)

1650 msec .95 (.74) .81 (.17) .98 (.04) .98 (.05) 1 (0) .91 (.12) 1 (0) .88 (.17)

b

Zero .94 (.11) .90 (.14) .87 (.17) .88 (.16) .83 (.15) .91 (.09) .85 (.15) .83 (.12)

450 msec 1 (0) 1 (0) .99 (.02) 1 (0) .90 (.11) .98 (.03) .97 (.05) .98 (.05)

850 msec .97 (.06) .99 (.03) 1 (0) 1 (0) .99 (.03) .95 (.10) .98 (.05) .93 (.08)

1650 msec 1 (0) .94 (.13) .96 (.09) .91 (.13) .92 (.08) .95 (.09) .94 (.10) .96 (.09)
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[F (3, 7) ¼ 10.775, p < .01], as well as between side of peripheral

letter and group [F (3, 7)¼ 9.627, p< .01]. Crucially therewas an

interaction between SOA, load, side and group [F (3, 7) ¼ 3.611,

p < .05], indicating that patients and controls were differen-

tially affected by manipulations of SOA, the load of the task

and the side of space that the letterwas presented. Fig. 3b gives

the data collapsed over both side and distance of letter stimuli.

The control group’s letter discrimination ability whilst

completing the central task remained robust across both load

conditions and all SOAs, but the patient group’s performance

was lower for the first three SOA’s (0 msec, 450 msec, 850 msec)

and loweragainwhilst completing themoredifficult central task.

Presumably due to successful correction for cortical magnifica-

tion factors, no comparisons involving the distance of peripheral

stimuli reached significance. Therefore, for simplicity, datawere

collapsed across distance in further analyses.

The significant effect of the factor of side in the ANOVAs

above suggests differences in the perception of left versus

right peripheral stimuli. This is potentially very important and

so the data were split according to side of letter presentation

and re-analysed separately (Fig. 3c).

For stimuli on the left, ANOVA revealed significant in-

teractions between SOA and group [F (1, 9) ¼ 6.705, p < .01] as

well as for the crucial comparison of SOA, load and group [F (3,

7) ¼ 4.006, p < .05]. In contrast analysis for right-sided letters

revealed a main effect of SOA and group [F (1, 9) ¼ 6.046,

p < .01] but, importantly, no interaction between SOA, load

and group [F (3, 7) < 1].

Independent sample t-tests on the data in Fig. 3c revealed

that whereas for left-sided stimuli patients and controls signif-

icantly differed in accuracy at both load levels at 0 msec [t

(9) ¼ �4.412, p < .01 and t (9) ¼ �5.109, p < .01 for low and high

respectively] and 450 msec [t (9) ¼ �3.356, p < .05 and t

(9)¼�5.634,p< .01 for lowandhighrespectively], athigherSOAs

the groups’ scores were not significantly different. For right-

sided stimuli, between subjects t-tests revealed that only data

for0msecsignificantlydifferedbetween thegroups [t (9)¼ 6.691,

p < .01 during low load and t (9) ¼ 6.057, p < .01 for high load].

The patient group was impaired in reporting peripheral

letters compared to controls when these letters appeared

simultaneously or within a short delay period from the central

stimuli. This effect appeared to be modulated by available
attentional capacity, as discrimination was worse when they

were required to complete a more demanding task at screen

centre. This pattern was prominent for letters appearing on

the left side of space as there was a significant interaction

between task demand, SOA condition and group for these

stimuli. However, even on the right side, right-hemisphere

patients were less accurate than controls when letters

appeared simultaneously with the central diamonds.

3.2. Analysis of patient data

An initial ANOVA involving within-subjects factors of SOA (4

levels), load (2 levels) and side (left vs right) revealed signifi-

cant main effects of SOA and side [F (3, 7) ¼ 23.94, p < .001 and

F (1, 9) ¼ 9.607, p < .05 respectively]. In addition, there was a

significant interaction between SOA, load and side [F (3,

7) ¼ 5.069, p < .05]. Again, to investigate differential responses

according to side, separate analysis was carried out for letters

appearing on the left and right. On the left there was a critical

interaction between SOA and load [F (3, 7) ¼ 5.289 p < .05). In

contrast discrimination accuracy for letters on the right did

not reveal this interaction (F (3, 7) < 1, n.s.].

Further analysis of left-sided performance was carried out.

Of interest here were differences in discrimination according

to load at the various SOAs. For left-sided stimuli during the

low-demand condition, there was a significant difference in

detection between the 0 msec and 450 msec condition

[t (4) ¼ �5.14, p < .01], which was not the case during the high

demand condition [t (4) ¼ �1.403, n.s.]. This pattern continues

for stimuli at 850 msec, as during the low load task, patients

detected significantly more letters than those presented

simultaneously [t (4) ¼ �3.382, p< .01]. By contrast, when they

were completing the high load task patients still did not detect

significantly more than at 0 msec [t (4) ¼ �1.863, n.s.]. At

1650 msec, discrimination was significantly better than for

letters presented simultaneously with the central task for both

levels of central task load: t (4)¼�10.874,p< .001; t (4)¼�7.071,

p < .01 for low and high load respectively.

Vision across the contralesional field in this group of pa-

tients appears critically impaired when they complete an

attentionally demanding task at fixation. Crucially this

impedance isnot solely at the time thecentral task ispresented

http://dx.doi.org/10.1016/j.cortex.2012.10.005
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but extends forward in time to give a “spatial attentional blink”

on the contralesional side lasting for up to 850 msec. These

patients do not suffer from visuospatial neglect-however the

lesions from which they suffer appear to reduce attentional

capacity such that loading processing resources at fixation

causes both a spatial and temporal loss of visual perception.
4. Experiment 2

Patients in the previous study were compared to healthy age-

matched participants. However, there is evidence to suggest

that completing a task at fixation constricts the available field

of peripheral vision even in older participants (e.g., Owsley

et al., 1995). We hypothesized that if the level of attention

required in the task described in Experiment 1 was increased,

older participants might begin to show a failure to discrimi-

nate peripheral stimuli. The paradigm developed in the first

study lends itself well to examiningwhether any impairments

older people have in reporting peripheral events (Owsley et al.,

1995) interact with the lengthened attentional blink described

by other authors in elderly individuals (e.g., Maciokas and

Crognale, 2003; Georgiou-Karistianis et al., 2007).

4.1. Method

As we were no longer assessing impairments in stroke pa-

tients but differences between healthy younger and older

groups, the methodology of Experiment 1 was manipulated to

increase difficulty. First, display time of both peripheral letters

and central diamonds was shortened to 150 msec (from

200msec in the first study). Second, peripheral letters were no

longer red but were now white. Finally, the SOAs differed so

that letters appeared at either 0 msec, 250 msec, 450 msec,

850 msec from the central diamond stimulus. All other

methodological details were identical.

4.1.1. Participants
A group of 21 healthy participants aged from 52 to 78 years of

age (mean: 63 years) were compared to a group of 10 younger
Fig. 4 e Results for Experiment 2. 4a displays central task perform

the means percentage of correct discriminations of peripheral le

of presentation.
participants aged from 19 to 24 years (mean: 21 years). Ethical

approval for the study was given by the university research

ethics panel.

4.2. Results

4.2.1. Analysis comparing older and younger groups
Examination of performance on the central task confirmed

that accuracy was high and equivalent across participant

groups and conditions (Fig. 4a). There was no significant

interaction between the within-subjects factor of task

load and the between-subjects factor of group [F (1,

30) < 1, ns].

An initial ANOVA was carried out with the within-subjects

factors of SOA (zero, 250 msec, 450 msec, 850 msec), central

load (high vs low), side of letter presentation (left vs right) and

the between-subjects factor of age group (older vs younger).

There was no interaction between group and side [F (1,

30) ¼ 2.38, p ¼ .14] and data were subsequently collapsed

across side of presentation. Analysis did reveal significant

interactions between load and group [F (1, 30) ¼ 7.38, p < .05],

as well as between group and SOA [F (3, 29) ¼ 6.63, p < .001].

See Fig. 4b and Table 2a and b.

Due to the interaction between load and group, data were

split and additional ANOVAswere performed on data from the

lowandhigh load tasks. First, during thehigh load central task,

therewasasignificant interactionbetweengroupandSOA [F (3,

28)¼ 5.30, p< .01]. This contrastswith the low load condition as

there was no significant interaction between SOA and group

[F (3, 28) ¼ 2.10, n.s.]. Attentional demand of the central task

appears critical to differences betweenperformance across the

age groups. Independent subject t-tests examined these dif-

ferences between group performances. During the high-

demand task older participants were significantly worse than

the younger group at each SOA [t (28) ¼ �3.33, p < .01;

t (28)¼�3.77, p< .01; t (28)¼�2.34, p< .05; t (28)¼�2.9, p< .05

for zero, 250 msec, 450 msec and 850 msec respectively].

Whereas in the low-load task although zero and 250 ms did

differ [t (28)¼ �2.39, p < .05; t (28) ¼ �2.13, p < .05 respectively]

there was no longer a significant loss of accuracy for the older
ance for the two groups across both levels of load. 4b gives

tters collapsed across both distance from fixation and side

http://dx.doi.org/10.1016/j.cortex.2012.10.005
http://dx.doi.org/10.1016/j.cortex.2012.10.005


Table 2 e a: Older group means and standard deviations
(in brackets) for Experiment 2. b: Younger group means
and standard deviations (in brackets) for Experiment 2.

Low central load High central load

Near Far Near Far

a

Zero msec .88 (12.94) .86 (13.13) .76 (21.68) .71 (19.49)

250 msec .96 (5.98) .93 (7.22) .89 (9.87) .84 (10.20)

450 msec .96 (6.49) .93 (9.58) .90 (10.47) .86 (9.15)

850 msec .96 (6.54) .95 (7.26) .92 (7.24) .90 (11.07)

b

Zero msec .95 (4.66) .97 (3.72) .95 (8.63) .95 (5.41)

250 msec .97 (4.44) .99 (2) .97 (4.27) .97 (4.36)

450 msec .99 (2.44) .98 (3.04) .94 (5.83) .95 (8.23)

850 msec .97 (4.08) .95 (8.19) .96 (6.54) .95 (7.26)

c o r t e x 4 9 ( 2 0 1 3 ) 1 8 7 4e1 8 8 31880
group at 450 msec [t (28) ¼ �1.84, ns] and 850 msec

[t (28) ¼ �.33, n.s.].

4.2.2. Analysis of older group
AnANOVA on SOA (4 levels) and load (2 levels) revealed highly

significantmain effects of both SOA [F (3, 28)¼ 19.83, p< .0001]

and load [F (1, 30) ¼ 22.73, p < .0001] and a significant inter-

action between the two [F (3, 28) ¼ 4.14, p < .01].

Paired samples t-tests further investigated the source of

this interaction. In the low load task the discrimination per-

formance of older participants did not significantly differ be-

tween the three SOAs [all t (20)< 1, n.s.]. Whereas during the

high load task, performance was equivalent at 250 and

450 msec [t (20) ¼ �1.34, n.s.], but at 850 msec it was signifi-

cantly better than at either of the two other delays [t

(20)¼ �3.17, p< .01 and t (20)¼ �2.42, p< .05 for 250msec and

450 msec respectively].

The results described here provide new evidence that

perception of older individuals is strongly impaired when they

are required to pay attention to a task at fixation. Compared to

younger participants, those in the older group were far less ac-

curate in discriminating peripheral letters not only when pre-

sentedsimultaneouslywith thecentral diamondsbut foradelay

period afterwards. This is the first evidence of a “spatiotem-

poral” attentional blink across the visual fieldmodulated by the

demand of a primary task at fixation in older healthy

participants.
5. General discussion

The experiments presented here reveal the spatial and tempo-

ral consequences to the effective visual field of an attention-

demanding task at fixation. Experiment 1 demonstrated that

patients with right hemisphere damage, but without visuo-

spatial neglect,were severely impaired in discriminating letters

evennear tofixationwhilstmaintaining ahigh level of accuracy

for the primary task. Spatially, this impacted on perception on

the contralesional side. Temporally, this impact lasted well

beyond the presentation of central stimuli. Experiment 2

modified the difficulty of the task in order to investigate the

effect of healthy ageing on these perceptual effects. This study
revealed a significant impairment in older participants,

compared to a younger group, in detecting peripheral letters

when attention demands to perform the central task was high.

Again, this impairmentwas for itemsnear tofixation and lasted

for a lag period after central task presentation. Crucially this

was not the case for younger participants. A parsimonious

explanation for these results might be that there is a patho-

logical attentional capacity deficit in right hemisphere patients

andadecline inattentional capacity asweage.These results are

the first demonstration both of a pathological spatiotemporal

AB in patients with right hemisphere damage and of the

perceptual results of a decline in attention capacity during

healthy ageing. The paradigm developed here has revealed it-

self to be robust and adaptable to different participant groups

for the exploration of interactions between spatial and tempo-

ral attentional processes. Here, we have been able to show that

patients with right hemisphere damage are severely impaired

at identifying letters appearing away froma central task. In fact

they detect and discriminate only around 50% of these letters at

both levels of central task difficulty when they appear simul-

taneously. This poor performance for letters appearing simul-

taneously with the diamond task is not simply for those on the

contralesional side but also for those presented ipsilesionally

(only 60% of these are detected during the high load task, see

Fig. 3c). However, the critical aim of this study was to examine

whether difficulties in discriminating the letters extended

temporally. That is, if the peripheral letters appear after the

central diamonds, is there a protracted period over which

discrimination remains poor? Further, is this posited lag period

affected by the attentional demand of the central task?

Our results demonstrate that, when there was a high

attention demand in the central task, patients were impaired

in accurately responding to these letters for a lag period that

lasted for up to 850 msec. They failed to accurately discrimi-

nate significantly more letters at an SOA of 850 msec than

when these letters were simultaneously presented with the

diamonds. Critically, although patients and controls demon-

strate very different performance in their perception away

from fixation, performance of both groups for the central task,

at both levels of attentional demand, was equivalent. There-

fore, there was not a generalized loss of ability but rather

specific failures, revealed both spatially and temporally, in

secondary task completion when a large amount of attention

was required in a central task. There is effectively less visual

field available and so fewer letters are correctly identified

away from fixation; we did not find a near versus far effect.

The results of Experiment 1 align well with previous

research on similar patients who have shown that increasing

the amount of attention required in a central task increases

the ipsilesional bias (e.g., Peers et al., 2006) and decreases

neural activity for contralesional stimuli (e.g., Vuilleumier

et al., 2008). Here we extend this to examine the temporal

dynamics of these phenomena, revealing that the increased

ipsilesional bias and loss of perception on the contralesional

side extends forward in time.

The patients tested here all had suffered from right hemi-

sphere lesions. The majority of them had cortical damage,

involving parietal cortex (4/5 patients). The maximal area of

overlapwas found to be sub-cortical. This interesting finding is

consistent with recent research, which has outlined the

http://dx.doi.org/10.1016/j.cortex.2012.10.005
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previously overlooked role of whitematter tracts in the neural

attention network (e.g., Thiebaut de Schotten et al., 2011, 2005;

Doricchi et al., 2008). Tentatively this suggests that damage to

a frontoparietal network might lead to the loss of attentional

capacity resulting in these findings.

Behaviourally, although most of these patients had suf-

fered from visuospatial neglect at first admission, it is

important to emphasize that they no longer clinically suffered

from this disorder. The majority (4/5) suffered from more

subtle non-lateralized visuospatial deficits, such as construc-

tional apraxia, which can be associated with trans-saccadic

deficits (see Russell et al., 2010) but has not previously been

associated with the spatiotemporal impairments we have re-

ported here. The findings presented here provide further in-

formation on the role of the right hemisphere networks,

including white matter, involved in deploying attention.

While the research focussing on the neglect syndrome is

important, it is also useful to examine patients who no longer

have this condition, but nevertheless continue to suffer from

attention impairments.

In Experiment 2, we modified our paradigm to examine

potential spatial and temporal effects of attention loss in

healthy ageing individuals. The results confirmed that,

although older participants were able to complete the central

task as accurately as younger individuals, when this task

demanded more attention their ability to discriminate letters,

even in thenear periphery,was severely impaired. This impact

on perception lasted for up to 450msec, indicative of an AB for

these stimuli, on both sides of space. At low-demand condi-

tions there was little difference between the groups. However,

the results changed dramatically when demand on the central

task was higher as the healthy older individuals suffered sig-

nificant loss in the ability to discriminate letters when they

appeared simultaneously, 250 msec or 450 msec from the

diamond stimuli. This effect of age on spatiotemporal atten-

tion has not previously been shown. Although there is evi-

dence of an extended AB with increasing age (e.g., Georgiou-

Karistianis et al., 2007) and a central task seems to lead to a

reduction in the visual field available away from fixation (e.g.,

Owsley et al., 1995) evidence of interaction between atten-

tionally modulated spatial and temporal deficits in the effec-

tive visual field is demonstrated here for the first time. The

finding has important ‘real world’ implications with respect to

performance of daily tasks such as driving. Importantly,

considering the strong effect of increasing attention load on

older participants, it is possible that some UFOV assessments

might even underestimate deficits in the available visual field

when attention demand at fixation is high.

Although here we are concerned with behaviour, the ef-

fects of age on the healthy brain have recently received much

research attention. It is well established that the prefrontal

cortex undergoes structural and also seemingly functional

change with increasing age (see Grady, 2008 for review). Less

established are effects on parietal cortex and the right hemi-

sphere white matter underlying these regions. However, it

appears to be the case that older participants have signifi-

cantly more activity in posterior parietal cortex whilst

attending to an attentional cue (Jimura and Braver, 2010) and a

general greater recruitment of these regions in other attention

tasks (Grady, 2008). The authors propose that this age group is
less efficient at utilizing attention, possibly as a result of loss of

capacity (Jimura and Braver, 2010). Structurally, there is evi-

dence of both cortical parietal atrophy (Bergfield et al., 2010) as

well as age-related white matter hyperintensities in this re-

gion (Murray et al., 2010). Results found here correspond well

with these recent neuroimaging studies as we demonstrate

the behavioural consequences of age related degeneration of

attentional networks.

The results outlined within this paper are important with

respect to the groups studied here but beyond that the para-

digm itself is a significant development. Our own previous

research using a similar paradigm revealed that if task load is

high enough even young healthy participants canmiss items in

the near periphery (Russell et al., 2004 see Lavie, 2005). Further

adaptation of the basic method could be used to investigate

attentional capacity across diverse groups such as those with

left hemisphere damage or suffering from dementia, enabling

the identification of the key brain regions and networks for

integration of spatial and temporal components of attention.

In conclusion, we have examined spatiotemporal attention

processing capacity in two groups. The first (Experiment 1)

consisted of patients with right hemisphere lesions, without

neglect. Compared to their healthily ageing counterparts, these

individuals suffer from a pathological loss of ability to

discriminate simple stimuli even in the near periphery when

they complete an unrelated task at screen centre. This loss is

modulated by the amount of attention they must give the

central task and temporally extends for a period of 850 msec.

Secondly (Experiment 2), task modulations made it possible to

examine the effects of healthy ageing on visual attention. Here

we were able to show that an older group (mean age: 63 years)

was as efficient as a much younger group when little attention

was required at screen centre. However, they were greatly

impaired across the visual field when they were required to

allocate more attention centrally. They failed to discriminate

simple letters and suffered from an AB of 450 msec. These

important results provide a timely demonstration of the

importance of visual attention both spatially and temporally for

conscious perception and efficient completion of even seem-

ingly undemanding tasks.
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