
International Journal of Grid and Distributed Computing

Vol. 4, No. 3, September, 2011

61

Performance Comparison of Priority Rule Scheduling Algorithms

Using Different Inter Arrival Time Jobs in Grid Environment

Zafril Rizal M Azmi
1
, Kamalrulnizam Abu Bakar

2
, Abdul Hanan Abdullah

3
, Mohd

Shahir Shamsir
4
, Wan Nurulsafawati Wan Manan

5
,

1,5
Faculty of Comp. Systems and Software Engineering, Universiti Malaysia Pahang

2,3
Faculty of Comp. Science and Information System, Universiti Teknologi Malaysia

4
Faculty of Biosciences and Bioengineering, Universiti Teknologi Malaysia

zafril@ump.edu.my, kamarul@fsksm.utm.my, hanan@fsksm.utm.my,

shahir@fbb.utm.my, safawati@ump.edu.my

Abstract

Recent advancement in meta-heuristics grid scheduling studies have applied various

techniques such as Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Ant

Colony Optimization (ACO) to solve the grid scheduling problem. All of these technique

requires an initial scheduler in order to initiate the scheduling process and the priority rule

algorithms will typically be used. However, from the literature, none of these studies

elaborate and justify their selection of a particular priority rule algorithms over another.

Since the initial scheduler can significantly affect the entire scheduling process, it is

important that the correct initial scheduler be selected. In this paper we quantitatively

compared six initial scheduler algorithms to determine the best algorithm performance. We

believe the performance comparison would enable users to utilize the best initial scheduler to

fit their meta-heuristics grid scheduling studies.

Keywords: Grid scheduling, priority rule algorithms, performance

1. Introduction

The use of meta-heuristics techniques such as Particle Swarm Optimization (PSO),

Genetic Algorithm (GA) and Ant Colony Optimization (ACO) to solve the grid scheduling

problem requires an initial scheduler. These schedulers are usually the priority rule

algorithms, which have been combined with meta-heuristics technique to schedule the jobs

and resources effectively. Priority rules such as First Come First Serve (FCFS) have been

previously applied to solve the queuing problems. Reported combinations includes the use of

Longest Job First (LJF) and FCFS as an initial schedule for the Fuzzy Particle Swarm based

scheduling [1], Shortest Job First (SJF) as initial scheduler for the Swift Scheduler algorithm

[9] and the SJF and LJF for initial schedule for the Genetic Algorithms based scheduler [3].

However, there is no comparison study that investigates and ranks the performance of these

priority rule algorithms. We feel that a comparison study would enable users to choose the

priority rule algorithm best suited for their meta-heuristic grid scheduling techniques. Using

performance metrics, we compared different performance parameters that would assist users

to decide which priority rule algorithms are suitable for their grid system.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/20571592?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

International Journal of Grid and Distributed Computing

Vol. 4, No. 3, September, 2011

62

2. Priority Rule Algorithms

Priority rules also referred as Queue-based [7]. Instead of guaranteeing optimal solution,

these techniques aim to find reasonable solutions in a relatively short time. Although it is a

suboptimal algorithms, it is yet the most frequently used for solving scheduling problem in

real world because of the easiness to implement and their low time complexity. In this study,

we used six priority rules algorithms

2.1 First Come First Serve (FCFS)

First Come First Serve (FCFS) or also known as First In First Out (FIFO) is the simplest

and the most fundamental of grid scheduling that involves client-server interaction. In grid

scheduling, FCFS policy manages the jobs based on their arrival time, which means that the

first job will be processed first without other biases or preferences. This concept has been

used by several well known enterprise scheduler such as MAUI [6] and PBS [5].

2.2 Earliest Deadline First (EDF)

Earliest Deadline First (EDF) is a policy that schedule all the incoming jobs according to

the specified due date or deadline. Incoming jobs will be processed or put in the queue based

on the chronology indicate by the deadline. The job with the earliest deadline will be placed

first in the processing queue.

2.3 Shortest Job First (SJF)

Shortest job First (SJF) also known as Shortest Job Next (SJN) or Shortest Process Next

(SPN) is a scheduling technique that selects the job with the smallest execution time. The jobs

are queued with the smallest execution time placed first and the job with the longest

execution time placed last and given the lowest priority. In theory, the best strategy to

minimize the response time is to schedule the shortest job on the fastest resource [1]. Since

this policy gives preference to some groups of jobs over other group of jobs, this policy is

unfair when compared to FCFS policy. In extreme cases, when jobs with shorter execution

time continue to arrive, jobs with longer execution period may never get a chance to execute

and would have to wait indefinitely. This is known as „starvation‟ and would pose a serious

problem and reflect the low degree of fairness for this policy [4]. In addition, SJF is believed

to have the maximum makespan time compared to other algorithms because of this

characteristic.

2.4 Longest Job First (LJF)

Longest Job First (LJF) have the contradiction behavior of SJF. While shortest job is

believe will reduce the response time, processing longest job first on the fastest resource

according to Abraham in [1] will minimize the makespan time. However, LJF will be

suffering due to slightly increase in the response time.

2.5 Earliest Release Date (ERD)

Earliest Release Date (ERD) put the highest priority to the job that has the earliest release

date in the queue. Release date is the start time of each and every job and it can be different or

same. If there are two or more jobs that have the same release date, FCFS rule will be applied.

Studies have also shown that if there is only a few numbers of jobs in the queue, the ERD

International Journal of Grid and Distributed Computing

Vol. 4, No. 3, September, 2011

63

performance will be similar to FCFS but when the number of jobs increases, the results will

defer. [8]

2.6 Minimum Time to Due Date (MTTD)

Minimum Time to Due Date (MTTD) is a scheduling algorithm which put the priority on

the jobs according to the time that can be considered for the job to be executed with minimum

tardiness [8]. To achieve this objective, MTTD define the time as follow:

(Deadline-Release Date) (1)

3. Experimentation On Grid Simulator

Based on the characteristics of priority rule algorithms explained earlier, a set of

algorithms have been designed to implement the priority rule algorithms into grid

environment. General architecture of the Priority-rule algorithms in grid environment is

shown in Figure 1. Algorithm 1-6 representing Priority rule algorithms while Algorithm 7

determines resource selection and job allocation. This work uses Alea [7] the extended

version of GridSim to simulate the scheduling process in a grid computing environment. The

experiment were conducted by using simulation of 150 machines with different CPU number

and speed and total number of 3000 jobs. The jobs datasets used consist of five folders. Each

folder contains 20 different jobs file and each file has 3000 different jobs with specific inter-

arrival time ranging 1-5 generated from negative exponential distribution. Folder DataSets-1

contained jobs with inter-arrival 1, DataSets-2 contained jobs with inter-arrival 2 and so on.

There are total 150 heterogeneous machines were used in this experiment with a total

numbers of experiments are 20 x 5 = 100 for each algorithm and the results obtained are the

average performance of these data sets. For inter arrival time, the lesser job inter arrival time,

the higher the contention in the system will be. In this experimentation, group of jobs with

inter arrival time representing the heaviest load of jobs the grid have to schedule. To evaluate

the performance of priority rule algorithms, we have used five different performance metrics:

total number of delayed jobs, makespan time, flowtime, percentage of machine usage and

total tardiness.

Figure 1. General Architecture of Priority Rules Scheduling Algorithms

International Journal of Grid and Distributed Computing

Vol. 4, No. 3, September, 2011

64

Algorithm 1. FCFS
0 Add jobi last in the main queue

Algorithm 2. SJF
0 for i=0 to i<main queue.size

1 if jobi+1 length < jobi length then

2 add jobi+1 in front of jobi in the queue

3 end if

4 if main queue.size = 0 then

5 add jobi last in the main queue

6 end if

Algorithm 3. LJF
0 for i=0 to i<main queue.size

1 if jobi+1 length > jobi length then

2 add jobi+1 in front of jobi in the queue

3 end if

4 if main queue.size = 0 then

5 add jobi last in the main queue

6 end if

Algorithm 4. ERD
0 for i=0 to i<main queue.size

1 if jobi+1 release date < jobi release date then

2 add jobi+1 in front of jobi in the queue

3 end if

4 if main queue.size = 0 then

5 add jobi last in the main queue

6 end if

Algorithm 5. MTTD
0 for i=0 to i<main queue.size

1 if jobi+1 due date - jobi+1 release date < jobi due date - jobi release date then

2 add jobi+1 in front of jobi in the queue

3 end if

4 if main queue.size = 0 then

5 add jobi last in the main queue

6 end if

Algorithm 6. EDF
0 for i=0 to i<main queue.size

1 if jobi+1 due date < jobi due date then

2 add jobi+1 in front of jobi in the queue

3 end if

4 if main queue.size = 0 then

5 add jobi last in the main queue

6 end if

International Journal of Grid and Distributed Computing

Vol. 4, No. 3, September, 2011

65

Algorithm 7. Resource Selection
0 Perform Algorithm 1/2/3/4/5/6

0 if main queue.size > 0 then

1 get first job in the queue (jobi)

2 for j=0 to j<resource.size

3 get information of resourcej

4 if resourcej is free and the number of PE equal or more than jobi requested then

4 if resourcej speed > resourcej-1 speed

5 Accept resourcej

6 end if

7 end if

8 end for

9 if resourcej is accepted then

10 remove jobi from the main queue

11 send jobi to resourcej

12 end if

4. Results and Discussion

Previous work has demonstrated that when the job inter-arrival time increases, the

number of late jobs decreases [2][7]. As expected, the results show that total number of

delayed jobs decreases when the average inter arrival time increases (Figure 2). This is

because, under low system contention, the job competition is also low and chances for

machines to process more jobs will be high. Furthermore, from Table 1, we can clearly see

that SJF have the least number of delayed jobs for DataSets-1. This shows that the SJF is the

best algorithm to handle a great amount of jobs that came to the system at one time (in this

case averages inter arrival time =1 and the objective is to reduce delayed jobs). However

when the system become lighter (inter arrival time = 2-5), the performance of MTTD is the

best.

Table 1. Total Number of Delayed Jobs by Priority Rule Algorithms

number of delayed jobs

0

500

1000

1500

2000

2500

DataSets-1 DataSets-2 DataSets-3 DataSets-4 DataSets-5

FCFS

SJF

LJF

ERD

MTTD

EDF

Figure 2. Graph Comparing the Number of Delayed Jobs by Priority Rule
Algorithms

International Journal of Grid and Distributed Computing

Vol. 4, No. 3, September, 2011

66

SJF also proven to be the best scheduler that can speed up the entire process. Figure 3 and

Table 2 show that SJF have the least flowtime and at the same time outperform other

schedulers for all inter arrival time.

Table 2. Flowtime by Priority Rule Algorithms

 FCFS SJF LJF ERD MTTD EDF

DataSets-1 9024.624 6818.591 11456.98 9019.339 8109.23 8358.44

DataSets-2 7605.925 5570.798 10028.41 7624.006 6865.687 7247.473

DataSets-3 6265.873 4454.252 8615.786 6257.477 5680.557 5974.412

DataSets-4 4881.744 3456.51 6998.278 4890.977 4600.077 4697.654

DataSets-5 3567.71 2669.424 5254.541 3562.958 3516.616 3505.087

flowtime

0

2000

4000

6000

8000

10000

12000

14000

DataSets-1 DataSets-2 DataSets-3 DataSets-4 DataSets-5

FCFS

SJF

LJF

ERD

MTTD

EDF

Figure 3. Graph Comparing the Flowtime by Priority Rule Algorithms

Figure 5 once again proven that SJF shows the best performance in terms of percentage of

machine usage. It also means that SJF algorithm is able to better exploit the system

computational resources compared to the other algorithms.

However, despite the good performances shows by the SJF algorithms for the delayed

jobs, flowtime and machine usage, SJF suffer from the worst performance of the makespan.

This can be seen from Table 3 and graph in Figure 4. On the other hand, although LJF shows

bad performance for the three criteria mentioned before, it has the best makespan compared to

others with 25% lesser then SJF.

Table 3. Makespan by Priority Rule Algorithms

 FCFS SJF LJF ERD MTTD EDF

DataSets-1 24486 25106 19942 24262 24303 24316

DataSets-2 24620 25012 20132 24515 24705 24564

DataSets-3 24462 25455 20328 24879 24442 24663

DataSets-4 24981 25777 20424 24805 24470 24480

DataSets-5 24980 25583 21294 24787 24994 24957

International Journal of Grid and Distributed Computing

Vol. 4, No. 3, September, 2011

67

makespan

0

5000

10000

15000

20000

25000

30000

DataSets-1 DataSets-2 DataSets-3 DataSets-4 DataSets-5

FCFS

SJF

LJF

ERD

MTTD

EDF

Figure 4. Graph Comparing the Makespan by Priority Rule Algorithms

Table 4. Machine Usage by Priority Rule Algorithms

 FCFS SJF LJF ERD MTTD EDF

DataSets-1 88.896 90.0245 86.373 88.8405 88.8515 89.0425

DataSets-2 89.2195 90.183 86.502 89.142 89.1565 89.2485

DataSets-3 89.3615 90.039 86.634 89.2985 89.5345 89.501

DataSets-4 89.473 90.605 86.875 89.7135 89.7765 89.656

DataSets-5 89.773 90.7005 87.71 89.763 89.94 89.718

machine usage

84

85

86

87

88

89

90

91

92

DataSets-1 DataSets-2 DataSets-3 DataSets-4 DataSets-5

FCFS

SJF

LJF

ERD

MTTD

EDF

Figure 5. Graph Comparing the Machine Usage by Priority Rule Algorithms

In Table 5 and Figure 6, the result showed the total tardiness that is represented by the

duration of jobs between its completion time and the corresponding deadline. MTTD

scheduler outperforms other algorithm in all cases. This is because, by ordering a jobs based

on equation 1, total lateness of jobs can be reduced

International Journal of Grid and Distributed Computing

Vol. 4, No. 3, September, 2011

68

Table 5. Tardiness by Priority Rule Algorithms

 FCFS SJF LJF ERD MTTD EDF

DataSets-1 15172016 10607690 20324174 15164512 7523838 8203722

DataSets-2 12173537 8224574 17281259 12213547 5168139 6117202

DataSets-3 9359418 5977296 14448580 9339971 3095640 3627323

DataSets-4 6488452 3987283 11095144 6513019 1325633 1282996

DataSets-5 3758901 2421436 7607480 3756994 541185 541446

tardiness

0

5000000

10000000

15000000

20000000

25000000

DataSets-1 DataSets-2 DataSets-3 DataSets-4 DataSets-5

FCFS

SJF

LJF

ERD

MTTD

EDF

Figure 6. Graph Comparing the Tardiness by Priority Rule Algorithms

 To summarize these results, we have used FCFS as a performance indicator and

compared the percentage of other algorithms to show which algorithms is the best for the case

of heavy load grid system (inter arrival time = 1). In Table 6, the results shows that SJF is the

most promising algorithms to handle system with heavy contention. However it is depend on

what objective the scheduler wants to achieve. For example, if the objective is to achieve best

tardiness, MTTD is the best algorithms to be applied.

Table 6. Comparison of performance percentage based on DataSet-1

 FCFS SJF (%) LJF (%) ERD (%) MTTD

(%)

EDF (%)

Delayed Jobs 0 13.73 0.71 0 13.68 0.81

Flowtime 0 24.44 -26.95 0.06 10.14 7.38

Makespan 0 -2.53 18.56 0.91 0.75 0.69

Machine Usage 0 1.27 -2.84 -0.06 -0.05 0.16

Tardiness 0 30.08 -33.96 0.05 50.41 45.93

4.5 Conclusions

 In this paper, we have presented a performance comparison of priority rule

scheduling algorithms that schedules jobs in grid computing system. We have present results

based on five different inter arrival time that representing different level of contention in the

grid system. This study is very important as a reference for researcher that wish to use one of

this algorithms as a seed or initial schedule for their proposed scheduling algorithms

especially the one involving heuristics.

International Journal of Grid and Distributed Computing

Vol. 4, No. 3, September, 2011

69

References

[1] A. Abraham, R. Buyya, B. and Nath, Nature‟s heuristics for scheduling jobs on computational Grids,

Proceedings of the 8th International Conference on Advanced Computing and Communications, Tata
McGraw-Hill, India, 2000, pp. 45–52.

[2] G. Capannini, R. Baraglia, D. Puppin, L. Ricci, and M. Pasquali. A job scheduling framework for large

computing farms. In ACM/IEEE International Conference for High Performance Computing, Networking,
Storage and analysis (SC'07), 2007.

[3] J. Carretero, and F. Xhafa\, Use of Genetic Algorithms for Scheduling Jobs in Large Scale Grid Applications.

Journal of Technological and Economic Development. A Research Journal of Vilnius Gediminas Technical

University, ISSN 1392-8619, Vol. 12, 2006, No. 1, p. 11-17.

[4] J. M. Garrido. Performance modeling of operating systems using object-oriented simulation: a practical

introduction, Kluwer Academic Publishers, Norwell, MA, 2000.

[5] R. Henderson. Job scheduling under the portable batch system. Job Scheduling Strategies for Parallel

Processing, Springer-Verlag, Berlin 1995, pp. 337–360.

[6] D. Jackson. Snell Q. and Clement M. Core Algorithms of the Maui Scheduler, Lecture Notes in Computer
Science, Vol. 2221, 2001, pp. 87-102.

[7] D. Klusacek, L. Matyska, and H. Rudova. Alea - Grid Scheduling Simulation Environment. In Parallel

Processing and Applied Mathematics. Heidelberg, Germany : Springer-Verlag, Lecture Notes in Computer
Science, 2007.

[8] A. Rasooli, M. Mirza-Aghatabar and S. Khorsandi. Introduction of Novel Rule Based Algorithms for

Scheduling in Grid Computing Systems; Second Asia International Conference on Modeling & Simulation,
2008.

[9] K. Somasundaram, S. Radhakrishnan, Task Resource Allocation in Grid using Swift Scheduler, Int. J.

of Computers, Communications & Control, ISSN 1841-9836, E-ISSN 1841-9844, Vol. IV, 2009, No.
2, pp. 158-166

Authors

Zafril Rizal M Azmi obtained his BSc and MSc in Computer Science

from Universiti Teknologi Malaysia. Currently he is a PhD student

working on Grid Scheduling.

Kamalrulnizam Abu Bakar obtained his Ph.D degree from

Aston University (Birmingham, UK) in 2004. Currently, he is an

Associate Professor in Computer Science at Universiti Teknologi

Malaysia (Malaysia) and member of the “Pervasive Computing”

research group. He involves in several research projects and is the

referee for many scientific journals and conferences. His

specialization includes mobile and wireless computing, information

security and grid computing.

International Journal of Grid and Distributed Computing

Vol. 4, No. 3, September, 2011

70

Mohd Shahir Shamsir obtained his BSc in Biotechnology and

Plant Sciences from University of Sheffield in 1996 and PhD in

Biological Sciences (Computational Biology) from University of

Exeter in 2005. Currently he is a Senior Lecturer at Faculty of

Bioscience & Bioengineering, Universiti Teknologi Malaysia. His

research focuses on molecular dynamics and biodiversity databases.

Abdul Hanan Abdullah received his BSc and MSc in

Computer Science from the University of San Francisco and his

PhD in the same field from the Aston University, UK in 1995.

Currently he is a professor at Faculty of Computer Science and

Information System, Universiti Teknologi Malaysia. His research

interest includes network security, grid computing and active

network.

 Wan Nurulsafawati Wan Manan received her Bcs in computer

science major in networking from University Technical Malaysia

Malacca (UTeM) in 2006 and Master in Information Technology

(Network) at Queensland University of Technology (QUT) on 2009.

Currently she is a lecturer at Faculty of Computer System &

Software Engineering, University Malaysia Pahang (UMP). Her

research interest focuses on grid and cloud computing, network

security and wireless network.

