
Submitted 14 April 2017
Accepted 12 June 2017
Published 3 July 2017

Corresponding author
Todd C. Pataky,
tpataky@shinshu-u.ac.jp

Academic editor
Robert Winkler

Additional Information and
Declarations can be found on
page 23

DOI 10.7717/peerj-cs.125

Copyright
2017 Pataky

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Power1D: a Python toolbox for numerical
power estimates in experiments involving
one-dimensional continua
Todd C. Pataky
Institute for Fiber Engineering, Shinshu University, Ueda, Japan

ABSTRACT
The unit of experimental measurement in a variety of scientific applications is the
one-dimensional (1D) continuum: a dependent variable whose value is measured
repeatedly, often at regular intervals, in time or space. A variety of software packages
exist for computing continuum-level descriptive statistics and also for conducting
continuum-level hypothesis testing, but very few offer power computing capabilities,
where ‘power’ is the probability that an experiment will detect a true continuum
signal given experimental noise. Moreover, no software package yet exists for arbitrary
continuum-level signal/noise modeling. This paper describes a package called power1d
which implements (a) two analytical 1D power solutions based on random field theory
(RFT) and (b) a high-level framework for computational power analysis using arbitrary
continuum-level signal/noise modeling. First power1d’s two RFT-based analytical
solutions are numerically validated using its random continuum generators. Second
arbitrary signal/noise modeling is demonstrated to show how power1d can be used
for flexible modeling well beyond the assumptions of RFT-based analytical solutions.
Its computational demands are non-excessive, requiring on the order of only 30 s to
execute on standard desktop computers, butwith approximate solutions availablemuch
more rapidly. Its broad signal/noise modeling capabilities along with relatively rapid
computations imply that power1d may be a useful tool for guiding experimentation
involving multiple measurements of similar 1D continua, and in particular to ensure
that an adequate number of measurements is made to detect assumed continuum
signals.

Subjects Scientific Computing and Simulation, Programming Languages
Keywords Gaussian random fields, Time series, Random field theory, Hypothesis testing,
Computational statistics, Data modeling

INTRODUCTION
Analyzing multiple measurements of one-dimensional (1D) continua is common to
a variety of scientific applications ranging from annual temperature fluctuations in
climatology (Fig. 1) to position trajectories in robotics. These measurements can be
denoted y(q) where y is the dependent variable, q specifies continuum position, usually in
space or time, and where the continua are sampled at Q discrete points. For the climate
data depicted in Fig. 1 y is temperature, q is day and Q= 365.

Measurements of y(q) are often: (i) registered and (ii) smooth. The data are ‘registered’
in the sense that point q is homologous across multiple continuum measurements.

How to cite this article Pataky (2017), Power1D: a Python toolbox for numerical power estimates in experiments involving one-
dimensional continua. PeerJ Comput. Sci. 3:e125; DOI 10.7717/peerj-cs.125

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/205713476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://peerj.com
mailto:tpataky@shinshu-u.ac.jp
mailto:tpataky@shinshu-u.ac.jp
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.125
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj-cs.125

0 100 200 300
Day

30

20

10

0

10

20

Te
m

pe
ra

tu
re

 (
de

g
C) (A)

0 100 200 300
Day

30

20

10

0

10

20 (B)

Arctic
Atlantic
Continental
Pacific

Figure 1 Canadian temperature data (Ramsay & Silverman, 2005). (A) All measurements. (B) Means
(thick lines) and standard deviations (error clouds). Dataset download on 28 March 2017 from: http://
www.psych.mcgill.ca/misc/fda/downloads/FDAfuns/Matlab/fdaMatlab.zip (./examples/weather)

Registration implies that it is generally valid to compute mean and variance continua as
estimators of central tendency and dispersion (Friston et al., 1994). That is, at each point q
the mean and variance values are computed, and these form mean and variance continua
(Fig. 1B) which may be considered unbiased estimators of the true population mean and
variance continua.

The data are ‘smooth’ in the sense that continuum measurements usually exhibit low
frequency signal. This is often a physical consequence of the spatial or temporal process
which y(q) represents. For example, the Earth’s rotation is slow enough that day-to-day
temperature changes are typically much smaller than season-to-season changes (Fig. 1A).
Regardless of the physical principles underlying the smoothness, basic information theory
in fact requires smooth continua because sufficiently highmeasurement frequency is needed
to avoid signal aliasing. This smoothness has important statistical implications because
smoothness means that neighboring points (q and q+1) are correlated, or equivalently
that adjacent points do not vary in a completely independent way. Thus, even when Q
separate values are measured to characterize a single continuum, there may be far fewer
than Q independent stochastic units underlying that continuum process.

The Canadian temperature dataset in Fig. 1 exhibits both features. The data are
naturally registered because each measurement station has one measurement per day over
Q= 365 days. The data are smooth because, despite relatively high-frequency day-to-day
temperature changes, there are also comparatively low-frequency changes over the full year
and those low-frequency changes are presumably the signals of interest.

Having computedmean and variance continua it is natural to ask probabilistic questions
regarding them, and two basic kinds of probability questions belong to the categories: (i)
classical hypothesis testing and (ii) power analysis. Continuum-level hypothesis testing
has been well-documented in the literature (Friston et al., 1994; Nichols & Holmes, 2002;
Pataky, 2016) but power has received comparatively less attention. While this paper
focuses on power analysis it is instructive to first consider continuum-level hypothesis
testing because those results are what power analysis attempts to control.

Pataky (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.125 2/24

https://peerj.com
http://www.psych.mcgill.ca/misc/fda/downloads/FDAfuns/Matlab/fdaMatlab.zip
http://www.psych.mcgill.ca/misc/fda/downloads/FDAfuns/Matlab/fdaMatlab.zip
http://dx.doi.org/10.7717/peerj-cs.125

0 100 200 300
Day

0

1

2

3

4

5

6

7

t v
al

ue

Test statistic continuum
Bonferroni threshold (=0.05)
RFT threshold (=0.05)
Uncorrected threshold (=0.05)

Figure 2 Two-sample hypothesis test comparing the Atlantic and Continental regions from Fig. 1.
The test statistic continuum is depicted along with uncorrected, random field theory (RFT)-corrected and
Bonferroni-corrected thresholds.

Continuum-level hypothesis testing
Classical hypothesis testing can be conducted at the continuum level using a variety
of theoretical and computational procedures. In the context of the temperature data
(Fig. 1B) a natural hypothesis testing question is: is there is a statistically significant difference
between the Atlantic and Continental mean temperature continua? Answering that question
requires a theoretical or computational model of stochastic continuum behavior so that
probabilities pertaining to particular continuum differences can be calculated.

One approach is Functional Data Analysis (FDA) (Ramsay & Silverman, 2005) which
combines ‘basis functions’, or mathematically-defined continua, to model the data. Since
the basis functions are analytical, one can compute a variety of probabilities associated
with their long-term stochastic behavior. A second approach is Random Field Theory
(RFT) (Adler & Hasofer, 1976; Hasofer, 1978) which extends Gaussian behavior to the
1D continuum level via a smoothness parameter (Kiebel et al., 1999) from which a
variety of continuum level probabilities can be calculated (Friston et al., 1994). A third
approach is the non-parametric permutation method of Nichols & Holmes (2002) which,
instead of modeling stochastic continuum behavior directly, instead constructs probability
distributions through iterative computation. Ultimately these and all other approaches,
when used for classical hypothesis testing, offer a correction for multiple comparisons
across the Q continuum nodes based on continuum smoothness.

Example hypothesis testing results for the Canadian temperature data are depicted
in Fig. 2. Since there are mean and variance continua it is trivial to compute the test
statistic continuum, here as the two-sample t statistic representing the variance-normalized

Pataky (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.125 3/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.125

difference between the Atlantic and Continental regions. The next step is less trivial: finding
the critical test statistic threshold. The threshold ismeant to represent the value above which
purely random test statistic continua (i.e., those produced by random continua when the
true continuum difference is null) would traverse in α percent of an infinite number of
experiments, where α is the Type I error rate and is usually 0.05.

Of the three thresholds depicted in Fig. 2 only one (the RFT threshold) is a true
continuum-level threshold. The other two depict nappropriate thresholds as references
to highlight the meaning of the RFT threshold. In particular, the uncorrected threshold
(α = 0.05) is ‘uncorrected’ because it presumes Q= 1; since Q= 365 for these data it
is clearly inappropriate. On the other extreme is a Bonferroni threshold which assumes
that there are Q completely independent processes. It is a ‘corrected’ threshold because it
acknowledges that Q> 1, but it is inappropriate because it fails to account for continuum
smoothness, and thus overestimates the true number of stochastic processes underlying
these data. The third method (RFT) is also a ‘corrected’ threshold, and it is closest to the
true threshold required to control α because it considers both Q and smoothness Friston et
al. (1994). Specifically, it assesses inter-node correlation using the 1D derivative (Kiebel et
al., 1999) to lower the estimated number of independent processes, which in turn lowers
the critical threshold relative to the Bonferroni threshold. This RFT approach is described
extensively elsewhere Friston et al. (2007) and has also been validated extensively for 1D
continua (Pataky, 2016).

For this particular dataset the test statistic continuum crosses all three thresholds,
implying that the null hypothesis of equivalent mean continua is rejected regardless of
correction procedure. If the continuum differences are not as pronounced as they are here,
especially near the start and end of the calendar year, the correction procedure would
become more relevant to interpretation objectivity.

Continuum-level power analysis
Before conducting an experiment for which one intends to conduct classical hypothesis
testing it is often useful to conduct power analysis, where ‘power’ represents the probability
of detecting a true effect. The main purposes of power analysis are (a) to ensure that
an adequate number of measurements is made to elucidate a signal of empirical interest
and (b) to ensure that not too many measurements are made, in which case one risks
detecting signals that are not of empirical interest. The balance point between (a) and (b)
is conventionally set at a power of 0.8, and that convention is followed below.

The literature describes two main analytical approaches to continuum-level power
analysis: (i) inflated variance (Friston et al., 1996) and (ii) noncentral RFT (Hayasaka et al.,
2007; Mumford & Nichols, 2008; Joyce & Hayasaka, 2012). The inflated variance method
models signal as smooth Gaussian noise (Fig. 3A) which is superimposed upon Gaussian
noise with different amplitude and smoothness. The non-central RFT approach models
signal as a constant mean shift from the null continuum (Fig. 3B). Since both techniques
are analytical power calculations can be made effectively instantaneously. However, both
techniques are limited by simple signal models and relatively simple noise models. In reality

Pataky (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.125 4/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.125

0 25 50 75 100
Continuum position (%)

4

2

0

2

4

De
pe

nd
en

t v
ar

ia
bl

e (a) Inflated variance

Noise
Signal

0 25 50 75 100
Continuum position (%)

(b) Non-central RFT

0 25 50 75 100
Continuum position (%)

(c) Numerical

Figure 3 Continuum-level power analysis methods. (A) Friston et al. (1996). (B) Hayasaka et al. (2007)
andMumford & Nichols (2008). (C) This paper’s proposed computational method. RFT= random field
theory.

the signal can be geometrically arbitrary and the noise can be arbitrarily complex (Fig. 3C).
Currently no analytical methods exist for arbitrary signal geometries and arbitrary noise.

The purpose of this study was to develop a computational approach to continuum-level
power analysis that permits arbitrary signal and noise modeling. This paper introduces
the resulting open-source Python software package called power1d, describes its core
computational components, and cross-validates its ultimate power results with results
from the two existing analytical methods (inflated variance and non-central RFT). Source
code, HTML documentation and scripts replicating all results in this manuscript are
available at http://www.spm1d.org/power1d.

SOFTWARE IMPLEMENTATION
power1dwas developed in Python 3.6 (Van Rossum, 2014) using Anaconda 4.4 (Continuum
Analytics, 2017) and is also compatible with Python 2.7. Its dependencies include Python’s
standard numerical, scientific and plotting packages:

• NumPy 1.11 (Van der Walt, Colbert & Varoquaux, 2011).
• SciPy 0.19 (Jones, Oliphant & Peterson, 2001).
• matplotlib 2.0 (Hunter, 2007).

Other versions of these dependencies are likely compatible but have not been tested
thoroughly. The package is organized into the following modules:

• power1d.geom—1D geometric primitives for data modeling.
• power1d.models—high-level interfaces to experiment modeling and numerical
simulation.
• power1d.noise—1D noise classes including mixtures, signal-dependent and compound
classes.
• power1d.prob—analytical probabilities for central and noncentral t and F fields.
• power1d.random—smooth 1D Gaussian field generation.
• power1d.roi—regions-of-interest (ROIs) for geometric hypothesis constraints.
• power1d.stats—standard t and F computations for continua.

Pataky (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.125 5/24

https://peerj.com
http://www.spm1d.org/power1d
http://dx.doi.org/10.7717/peerj-cs.125

Details regarding the contents and capabilities of eachmodule are provided in power1d’s
documentation (http://www.spm1d.org/power1d) and are summarized below, building to
amodel and ultimately a power analysis of the Canadian temperature dataset above (Fig. 1).

Geometry (power1d.geom)
Basic geometries can be constructed and visualized as follows:

import power1d

Q = 101

y = power1d.geom.GaussianPulse(Q , q=60 , fwhm=20, amp=3.2)

y.plot()

Here Q is the continuum size, q is the continuum position at which the Gaussian pulse
is centered, fwhm is the full-width-at-half-maximum of the Gaussian kernel, and amp is
its maximum value (Fig. 4). All of power1d’s geometric primitives have a similar interface
and are depicted in Fig. 5. More complex geometries can be constructed using standard
Python operators as follows (see Fig. 6).

import power1d

Q = 101

y0 = power1d.geom.GaussianPulse(Q , q=40 , fwhm=60, amp= 1)

y1 = power1d.geom.Sinusoid(Q , amp=1 , hz=2)

yA = y0 + y1

yB = y0 * y1

yC = y0 ** y1

Noise (power1d.noise)
Continuum-level noise objects can be constructed and visualized as follows:

from matplotlib import pyplot

import power1d

J = 8

Q = 101

n0 = power1d.noise.Gaussian(J , Q , mu=0 , sigma=1)

n1 = power1d.noise.SmoothGaussian(J , Q , mu=0 , sigma=1 , fwhm=20)

ax0 = pyplot.subplot(121)

ax1 = pyplot.subplot(122)

n0.plot(ax=ax0)

n1.plot(ax=ax1)

Pataky (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.125 6/24

https://peerj.com
http://www.spm1d.org/power1d
http://dx.doi.org/10.7717/peerj-cs.125

0 20 40 60 80 100
Continuum position

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Co
nt

in
uu

m
 v

al
ue

Figure 4 Example GaussianPulse geometry.

Here J is sample size and is a necessary input for all power1d.noise classes. This
code chunk results in the noise depicted in Fig. 7. The SmoothGaussian noise (Fig. 7B)
represents residuals observed in real datasets like those depicted implicitly in Fig. 1A. For
this SmoothGaussian noise model the fwhm parameter represents the full-width-at-half-
maximum of a Gaussian kernel that is convolved with uncorrelated Gaussian continua.
RFT describes probabilities associated with smooth Gaussian continua (Fig. 7B) and in
particular the survival functions for test statistic continua (Friston et al., 1996;Pataky, 2016).

All power1d noise models are depicted in Fig. 8. Compound noise types are supported
including additive, mixture, scaled and signal-dependent. As an example, the additive noise
model depicted in Fig. 8H can be constructed as follows:
n0 = power1d.noise.Gaussian(J , Q , mu=0 , sigma=0.1)

n1 = power1d.noise.SmoothGaussian(J , Q , mu=0 , sigma=1.5 , fwhm=40)

n = power1d.noise.Additive (noise0 , noise1)

All noise models use the random method to generate new random continua, and all
store the current continuum noise in the value attribute, and all number generation can
be controlled using NumPy’s random.seed method as follows:

np.random.seed(0)

J = 10

Q = 101

noise = power1d.noise.Gaussian (J , Q , mu=0 , sigma=1)

print(noise.value[0 , 0:3])

Pataky (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.125 7/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.125

0 50 100
2

0

2

4

Co
nt

in
uu

m
 v

al
ue (A) Continuum1D

0 50 100
2

0

2

4 (B) Constant

0 50 100
2

0

2

4 (C) Exponential

0 50 100
2

0

2

4 (D) ExponentialSaw

0 50 100
2

0

2

4 (E) GaussianPulse

0 50 100
2

0

2

4

Co
nt

in
uu

m
 v

al
ue (F) Linear

0 50 100
2

0

2

4 (G) Null

0 50 100
2

0

2

4 (H) SawPulse

0 50 100
2

0

2

4 (I) SawTooth

0 50 100
2

0

2

4 (J) Sigmoid

0 50 100
Continuum position

2

0

2

4

Co
nt

in
uu

m
 v

al
ue (K) Sinusoid

0 50 100
Continuum position

2

0

2

4 (L) SquarePulse

0 50 100
Continuum position

2

0

2

4 (M) SquareTooth

0 50 100
Continuum position

2

0

2

4 (N) TrianglePulse

0 50 100
Continuum position

2

0

2

4 (O) TriangleTooth

Figure 5 All geometric primitives. The Continuum1D primitive accepts an arbitrary 1D array as input, and all other primitives are parameterized.
(A) Continuum1D, (B) Constant, (C) Exponential, (D) ExponentialSaw, (E) GaussianPulse, (F) Linear, (G) Null, (H) SawPulse, (I) SawTooth, (J)
Sigmoid, (K) Sinusoid, (L) SquarePulse, (M) SquareTooth, (N) TrianglePulse, (O) TriangleTooth.

0 20 40 60 80 100
Continuum position

1.0

0.5

0.0

0.5

1.0

Co
nt

in
uu

m
 v

al
ue

(A) y0
y1

0 20 40 60 80 100
Continuum position

1

0

1

2

3

4

5

6 (B) yA = y0 + y1
yB = y0 * y1
yC = y0 ** y1

Figure 6 (A) Two example geometric primitives. (B) Python operators used to construct complex ge-
ometries from primitives.

noise.random()

print(noise.value[0 , 0:3])

np.random.seed(0)

noise.random()

print(noise.value [0 , 0:3])

Pataky (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.125 8/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.125

0 20 40 60 80 100
Continuum position

3

2

1

0

1

2

3

Co
nt

in
uu

m
 v

al
ue

(A)

0 20 40 60 80 100
Continuum position

3

2

1

0

1

2

3 (B)

Figure 7 (A) Uncorrelated Gaussian noise. (B) Smooth (correlated) Gaussian noise.

0 50 100

2

0

2

4

Co
nt

in
uu

m
 v

al
ue (A) ConstantUniform

0 50 100

2

0

2

4 (B) ConstantGaussian

0 50 100

2

0

2

4 (C) Uniform

0 50 100

2

0

2

4 (D) Gaussian

0 50 100

2

0

2

4 (E) Skewed

0 50 100

2

0

2

4

Co
nt

in
uu

m
 v

al
ue (F) SmoothGaussian

0 50 100

2

0

2

4 (G) SmoothSkewed

0 50 100
Continuum position

2

0

2

4

Co
nt

in
uu

m
 v

al
ue (H) Additive

0 50 100
Continuum position

2

0

2

4 (I) Mixture

0 50 100
Continuum position

2

0

2

4 (J) Scaled

0 50 100
Continuum position

2

0

2

4 (K) SignalDependent

Figure 8 All noise models. (A–E), (F–G) and (H–K) depict basic, smooth and compound noise types, respectively.

The first, second and third print commands display the following results:

[0.176 0.040 0.098]

[-0.100 0.167 0.016]

[0.176 0.040 0.098]

This emphasizes control over power1d’s random values via np.random.seed.

Pataky (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.125 9/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.125

0 20 40 60 80 100
Continuum position

2

0

2

4

6

8

Co
nt

in
uu

m
 v

al
ue

(A) Noise
Mean

0 20 40 60 80 100
Continuum position

2

0

2

4

6

8
(B)

Figure 9 Data sample model. (A) and (B) depict two separate samples generated using a single DataSam-
ple object.

Data sample and experiment models (power1d.models)
In this section the terms ‘‘DataSample’’ and ‘‘data sample’’ refer to the object class:
power1d.models.DataSample and a numerical instantiation of that class, respectively.
DataSample objects have three components: (a) baseline, (b) signal and (c) noise. The first
two are power1d.geom objects and the last is a power1d.noise object. DataSample objects,
like noise objects, use random to generate new random data samples as follows:

J = 8

Q = 101

baseline = power1d.geom.Null(Q)

signal = power1d.geom.GaussianPulse(Q , q=60 , fwhm=30, amp=8)

noise = power1d.noise.SmoothGaussian(J , Q , mu=0 , sigma=1 , fwhm=20)

model = power1d.models.DataSample(baseline , signal , noise)

model.plot()

model.random()

model.plot()

Two such data samples constructed in this manner are depicted in Fig. 9. Any geometry
object and any noise object can be combined to form a DataSample object. The purpose of
the baseline object is to provide a visual reference when constructing DataSample models.
For example, the Atlantic temperature data from Fig. 1A could be modeled with the
experimentally observed mean as follows:

data = power1d.data.weather()

y = data[" Continental "]

J = 8

Pataky (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.125 10/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.125

0 100 200 300
Continuum position

30

20

10

0

10

20

Co
nt

in
uu

m
 v

al
ue

(A) Noise
Mean

0 100 200 300
Continuum position

20

10

0

10

20
(B)

Figure 10 Data sample model using experiment mean from the Continental data in Fig. 1. (A) and (B)
depict two separate randomly generated samples.

Q = 365

baseline = power1d.geom.Continuum1D(y.mean(axis=0))

signal = power1d.geom.Null(Q)

n0 = power1d.noise.Gaussian(J , Q , mu=0 , sigma=0.3)

n1 = power1d.noise.SmoothGaussian(J , Q , mu=0 , sigma=3 , fwhm=70)

noise = power1d.noise.Additive(n0 , n1)

model=power1d.models.DataSample(baseline , signal , noise , J=J)

model.plot()

model.random()

model.plot()

The first command loads the Canadian temperature (or ‘weather’) data as a Python
dictionary. The second extracts just the Continental data. Next the experimental mean
is used to create a Continuum1D baseline object, and a Null signal object is also created.
The next three lines create an additive noise model which contains both high- and low-
frequencies. Subsequently aDataSample model is created with the sample size J. The results
of this code chunk are depicted in Fig. 10.

The baseline component of DataSample objects have no effect on subsequently described
power calculations, which are based on the signal and noise components. The baseline
component is included for two reasons: (a) to visually guide DataSample construction, and
(b) to permit hypothesis-relevant calculations. For example, one’s hypothesis may pertain
to a function of the continua like their cumulative integral rather than to the originally
measured continua themselves. In that case the baseline’s magnitude as well as its positive
and negative regions could be important for test statistic computation.

Pataky (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.125 11/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.125

Once a data sample model is constructed it can be routed into an Experiment model for
simulation as follows:

J = 8

Q = 101

baseline = power1d.geom.Null(Q)

signal = power1d.geom.GaussianPulse(Q , q=60 , fwhm=30, amp=3)

noise = power1d.noise.SmoothGaussian(J , Q , mu=0 , sigma=1 , fwhm=20)

model = power1d.models.DataSample(baseline , signal , noise , J=J)

teststat = power1d.stats.t_1sample

emodel = power1d.models.Experiment(model , teststat)

emodel.simulate(50)

pyplot.plot(emodel.Z.T , color="k" , linewidth=0.5)

Here teststat is a function that computes the one-sample t statistic continuum. The
Experiment model contains both a DataSample model and a test statistic computer. Once
the simulate method is called, a random data sample is generated and the corresponding
test statistic continuum is calculated and stored in the Z attribute, in this case for a total of
50 iterations.

The resulting test statistic continua are depicted in Fig. 11. Since test statistic continua
can be numerically generated in this manner for arbitrary DataSample and Experiment
models, it follows that power analysis can be numerically conducted by comparing two
experiment models, one representing the null hypothesis (which contains null signal) and
one representing the alternative hypothesis (which contains the signal one wishes to detect).
power1d provides a high-level interface to that two-experiment comparison through its
ExperimentSimulator object as demonstrated below:
J = 5

Q = 101

baseline = power1d.geom.Null(Q)

signal0 = power1d.geom.Null(Q)

signal1 = power1d.geom.GaussianPulse(Q , q=60 , fwhm=30, amp=2)

noise = power1d.noise.Gaussian(J , Q , mu=0 , sigma=1)

model0 = power1d.models.DataSample(baseline , signal0 , noise , J=J)

model1 = power1d.models.DataSample(baseline , signal1 , noise , J=J)

teststat = power1d.stats.t_1sample

emodel0 = power1d.models.Experiment(model0 , teststat)

Pataky (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.125 12/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.125

0 20 40 60 80 100
Continuum position

0

5

10

15

20

Te
st

 st
at

ist
ic

va
lu

e

Figure 11 Test statistic continua generated using an Experiment model (50 iterations).

emodel1 = power1d.models.Experiment(model1 , teststat)

sim = power1d.ExperimentSimulator(emodel0 , emodel1)

results = sim.simulate(10000)

results.plot()

Note that the emodel0 and emodel1 objects represent null and a Gaussian pulse signal,
respectively, and thus represent the null and alternative hypotheses, respectively. TheMonte
Carlo simulation proceeds over 10,000 iterations (triggered by the simulate command)
and completes for this example in approximately 2.2 s. The final results.plot command
produces the results depicted in Fig. 12.

In this example the omnibus power is 0.92 (Fig. 12A), implying that the probability
of rejecting the null at at least one continuum location is 0.92. This omnibus power
should be used when the hypothesis pertains to the entire continuum because it embodies
whole-continuum-level control of both false negatives and false positives.

While the omnibus power is greater than 0.9, the point-of-interest (POI) and center-
of-interest (COI) powers are both well below 0.8 (Fig. 12C); see the Fig. 12 caption for
a description of POI and COI powers. The POI power should be used if one’s hypothesis
pertains to a single continuum location. The COI power should be used if the scope of the
hypothesis is larger than a single point but smaller than the whole continuum.

Overall these results imply that, while the null hypothesis will be rejected with high
power, it will not always be rejected in the continuum region which contains the modeled
signal (i.e., roughly between continuum positions 40 and 80). This simple model thus
highlights the following continuum-level power concepts:

Pataky (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.125 13/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.125

0 20 40 60 80 100
Continuum position

2

0

2

4

Co
nt

in
uu

m
 v

al
ue

(A)
Null --- P(reject)=0.050
Alternative --- P(reject)=0.920

0 20 40 60 80 100
Continuum position

0.0

0.2

0.4

0.6

0.8

1.0

Po
we

r

Null power continua (B)

POI power
COI power (radius=3)
Power datum

0 20 40 60 80 100
Continuum position

0.0

0.2

0.4

0.6

0.8

1.0
Alternative power continua (C)

Figure 12 Example power1d results (α = 0.05). (A) depicts the two experiment models and the om-
nibus power (p = 0.920). (B, C) depict power continua (B: null model, C: alternative model). The point-
of-interest (POI) continuum indicates the probability of null hypothesis rejection at each continuum
point. The center-of-interest (COI) continuum depicts the same but expands the search area to a cer-
tain radius surrounding the POI, in this case with an arbitrary radius of three. Thus the omnibus power is
equivalent to the maximum COI power when the COI radius is Q (i.e., the full continuum size). The in-
tegral of the POI power continuum for the null model is α. Powers of 0, 0.8 and 1 are displayed as dotted
lines for visual reference.

• Continuum-level signals can be modeled with arbitrary geometry.
• Continuum-level omnibus power does not necessarily pertain to the modeled signal.
• The investigator must specify the scope of the hypothesis in an a priori manner (i.e.,
single point, general region or whole-continuum) and use the appropriate power value
(i.e., POI, COI or omnibus, respectively).

Themodel depicted in Fig. 12 is simple, and similar results could be obtained analytically
by constraining the continuum extent of noncentral RFT inferences (Hayasaka et al.,
2007). The advantages of numerical simulation are thus primarily for situations involving
arbitrary complexities including but not limited to: multiple, possibly interacting signals,
signal-dependent noise, covariate-dependent noise, unequal sample sizes, non-sphericity,
etc. All of these complexities introduce analytical difficulties, but all are easily handled
within power1d’s numerical framework.

Pataky (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.125 14/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.125

Regions of interest (power1d.roi)
The final functionality supported in power1d is hypothesis constraining via region of
interest (ROI) continua. In practical applications, even when complete continua are
recorded, one’s hypothesis does not necessarily relate to the whole continuum. For example,
the Canadian temperature example (Fig. 1) depict daily values collected for the whole year,
but one’s hypothesis might pertain only to the summer months (approximately days
150–250). In this case it is probably most practical to model the entire year, but constrain
the hypothesis to a certain portion of it as follows:

data = power1d.data.weather()

y = data[" Continental "]

baseline = power1d.geom.Continuum1D(y.mean (axis=0))

signal0 = power1d.geom.Null(Q)

signal1 = power1d.geom.GaussianPulse(Q , q=200 , amp=6 , fwhm=100)

n0 = power1d.noise.Gaussian(J , Q , mu=0 , sigma=0.3)

n1 = power1d.noise.SmoothGaussian(J , Q , mu=0 , sigma=5 , fwhm=70)

noise = power1d.noise.Additive(n0 , n1)

model0 = power1d.models.DataSample(baseline , signal0 , noise , J=J)

model1 = power1d.models.DataSample(baseline , signal1 , noise , J=J)

teststat = power1d.stats.t_1sample

emodel0 = power1d.models.Experiment(model0 , teststat)

emodel1 = power1d.models.Experiment(model1 , teststat)

sim = power1d.ExperimentSimulator(emodel0 , emodel1)

results = sim.simulate(10000)

roi = np.array([False] * Q)

roi[150 : 250] = True

results.set_roi(roi)

results.set_coi_radius(50)

results.plot()

The code above models a maximum temperature increase of six degrees on Day 200 as a
Gaussian pulse with an FWHM of 100 days, and constrains the hypothesis to Days 150–250
via the set_roi method. The results in Fig. 13 depict the ROI as blue background window
and suggest that the omnibus power is close to 0.8. Setting the COI radius to the ROI
radius of 50 via the set_coi_radius method emphasizes that the COI power continuum’s
maximum is the same as the omnibus power. Also note that, had an ROI not been set, the
ROI is implicitly the entire continuum, in which case the omnibus power would have been

Pataky (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.125 15/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.125

0 100 200 300
Continuum position

30

20

10

0

10

20

30

Co
nt

in
uu

m
 v

al
ue

(A)
Null --- P(reject)=0.050
Alternative --- P(reject)=0.765

0 100 200 300
Continuum position

0.0

0.2

0.4

0.6

0.8

1.0

Po
we

r

Null power continua (B)

POI power
COI power (radius=50)
Power datum

0 100 200 300
Continuum position

0.0

0.2

0.4

0.6

0.8

1.0
Alternative power continua (C)

Figure 13 Example region of interest (ROI)-constrained power results (α = 0.05). Note that an COI
radius of 365 would raise the null COI power continuum to α. (A) depicts the two experiment models and
the omnibus power (p= 0.765). (B, C) depict power continua (B: null model, C: alternative model).

considerably lower at 0.586. This emphasizes the fact that the critical threshold must be
raised as the continuum gets larger in order to control for omnibus false positives across
the continuum. These analyses, involving a more complex additive noise model and 10,000
iterations, required approximately 15 s on a standard desktop PC.

VALIDATIONS
0D power
power1d can be used for standard 0D (scalar) power assessments by setting an ROI
object to a single continuum point as follows. First set values for the main power-relevant
parameters:

alpha = 0.05

J = 12

effect = 0.8

df = J - 1

delta = effect * J ** 0.5

where alpha, df and delta are the Type I error rate, degrees of freedom and noncentrality
parameter, respectively. Next compute power analytically:

Pataky (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.125 16/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.125

from scipy import stats

u = stats.t.isf(alpha , df)

p = stats.nct.sf(u , df , delta)

where u is the critical threshold and where the power is p= 0.829. To replicate this
in power1d one must create a model which replicates the assumptions underlying the
analytical calculation above. In the code below a continuum size of Q= 2 is used because
that is the minimum size that power1d supports.

Q = 2

baseline = power1d.geom.Null(Q)

signal0 = power1d.geom.Null(Q)

signal1 = power1d.geom.Constant(Q , amp=effect)

noise = power1d.noise.Gaussian(J , Q , mu=0 , sigma=1)

model0 = power1d.DataSample(baseline , signal0 , noise , J=J)

model1 = power1d.DataSample(baseline , signal1 , noise , J=J)

Last, simulate the modeled experiments and numerically estimate power:

teststat = power1d.stats.t_1sample

emodel0 = power1d.models.Experiment(model0 , teststat)

emodel1 = power1d.models.Experiment(model1 , teststat)

sim = power1d.ExperimentSimulator(emodel0 , emodel1)

results = sim.simulate(1000)

roi = np.array([True , False])

results.set_roi(roi)

p = results.p_reject1

Here power is given by the p_reject1 attribute of the simulation results (i.e., the probability
of rejecting the null hypothesis in alternative experiment given the null and alternative
models) and in this case the power is estimated as p= 0.835. Increasing the number of
simulation iterations improves convergence to the analytical solution.

Repeating across a range of sample and effect sizes yields the results depicted in
Fig. 14. This power1d interface for computing 0D power is admittedly verbose.
Nevertheless, as a positive point power1d’s interface emphasizes the assumptions that
underly power computations, and in particular the nature of the signal and noise models.

1D power: inflated variance method
The inflated variance method (Friston et al., 1996) models signal as a Gaussian continuum
with a particular smoothness and particular variance. power1d does not support random
signal modeling, but the inflated variance model can nevertheless be modeled using
alternative noise models as demonstrated below. First all power-relevant parameters are set:

J = 20

Pataky (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.125 17/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.125

0.2 0.4 0.6 0.8 1.0
Effect size

0.2

0.4

0.6

0.8

1.0

Po
we

r

J = 5
J = 10
J = 25

Figure 14 Validation of power1d’s 0D power calculations. Solid lines depict theoretical solutions from
the noncentral t distribution and dots depict power1d’s numerically simulated results (1,000 iterations
each).

Q = 201

df = J - 1

alpha = 0.05

W0 = 20

W1 = 10.0

sigma = 2.0

Here W0 and W1 are the continuum smoothness values under the null and alternative
hypotheses, respectively, and sigma is the effect size as the standard deviation of the ‘signal’
(i.e., noise) under the alternative.

Next the critical RFT threshold can be computed using power1d’s inverse survival
function following Friston et al. (1996) (Eqn. 5, p. 226) as follows:

u = power1d.prob.t_isf(alpha , df , Q , W0)

Next the smoothness and threshold parameters are transformed according to Friston et
al. (1996) (Eqns. 8–9, p. 227):

s2 = sigma

f = float(W1) / W0

Wstar = W0 * ((1 + s2) / (1 + s2 / (1 + f ** 2))) ** 0.5

ustar = u * (1 + s2) ** -0.5

Pataky (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.125 18/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.125

Here s2 is the variance and f is the ratio of signal-to-noise smoothness. The probability
of rejecting the null hypothesis when the alternative is true is given as the probability
that random fields with smoothness W ∗ will exceed the threshold u∗ (Wstar and ustar,
respectively), and where that probability can be computed using the standard RFT survival
function:

p = power1d.prob.t_sf(ustar , df , Q , Wstar)

Here the analytical power is p= 0.485. Validating this analytical power calculation in
power1d can be achieved using a null signal and two different noise models as follows:

baseline = power1d.geom.Null(Q=Q)

signal = power1d.geom.Null(Q=Q)

SG = power1d.noise.SmoothGaussian

n0 = SG(Q=Q , sigma=1.0 , fwhm=W0 , J=J)

n1 = SG(Q=Q , sigma=1.0 , fwhm=Wstar , J=J)

model0 = power1d.models.DataSample(baseline , signal , n0 , J=J)

model1 = power1d.models.DataSample(baseline , signal , n1 , J=J)

teststat = power1d.stats.t_1sample

emodel0 = power1d.Experiment(model0 , teststat)

emodel1 = power1d.Experiment(model1 , teststat)

sim = power1d.ExperimentSimulator(emodel0 , emodel1)

results = sim.simulate(1000)

p = results.sf(ustar)

The numerically estimate power is p= 0.492, which is reasonably close to the analytical
probability of 0.485 after just 1,000 iterations. Repeating for background noise smoothness
values of 10, 20 and 50, sample sizes of 5, 10 and 25 and effect sizes ranging from σ = 0.5
to 2.0 yields the results depicted in Fig. 15. Close agreement between the theoretical and
simulated power results is apparent. As noted by Hayasaka et al. (2007) powers are quite
low for the inflated variance approach because the signal is not strong; the ‘signal’ is
effectively just a different type of noise. The noncentral RFT approach described in the
next section addresses this limitation.

1D power: noncentral RFT method
The noncentral RFT method models signal as a constant continuum shift (Hayasaka et al.,
2007). Like the inflated variance method above, it can by computed analytically in power1d
by first defining all power-relevant parameters:

Pataky (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.125 19/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.125

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Effect size ()

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Po
we

r

(A) FWHM = 10

J = 5
J = 10
J = 25

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Effect size ()

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 (B) FWHM = 20

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Effect size ()

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 (C) FWHM = 50

Figure 15 Validation results for the inflated variance approach to 1D power. Solid lines depict theo-
retical solutions from the noncentral random field theory and dots depict power1d’s numerically simu-
lated results (10,000 iterations each). J represents sample size and FWHM represents the smoothness of
the background noise process. (A) FWHM= 10, (B) FWHM= 20, (C) FWHM= 50.

J = 8

Q = 201

W = 40.0

df = J - 1

alpha = 0.05

effect = 0.8

delta = effect * J ** 0.5

where delta is the noncentrality parameter. Next power can be be computed via noncentral
RFT (Hayasaka et al., 2007; Mumford & Nichols, 2008; Joyce & Hayasaka, 2012) as follows:

u = power1d.prob.t_isf(alpha , df , Q , W)

p = power1d.prob.nct_sf(zstar , df , Q , W , delta)

Here u is the critical threshold and nct_sf is RFT’s noncentral t survival function. The
analytical power is p= 0.731. Next, similar to the 0D validation above, power1d can be
used to validate this analytical power by constructing signal and noise objects as indicated
below. Note that the signal is Constant (Fig. 5), as assumed by the noncentral RFT method.

baseline = power1d.geom.Null(Q)

signal0 = power1d.geom.Null(Q)

signal1 = power1d.geom.Constant(Q , amp=effect)

n = power1d.noise.SmoothGaussian(J , Q , mu=0 , sigma=1 , fwhm=W)

model0 = power1d.DataSample(baseline , signal0 , n , J=J)

model1 = power1d.DataSample(baseline , signal1 , n , J=J)

Last, simulate the modeled experiments and numerically estimate power:

teststat = power1d.stats.t_1sample

emodel0 = power1d.models.Experiment(model0 , teststat)

emodel1 = power1d.models.Experiment(model1 , teststat)

sim = power1d.ExperimentSimulator(emodel0 , emodel1)

Pataky (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.125 20/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.125

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Effect size

0.2

0.4

0.6

0.8

1.0

Po
we

r

(A) FWHM = 10

J = 5
J = 10
J = 25

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Effect size

0.2

0.4

0.6

0.8

1.0 (B) FWHM = 20

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Effect size

0.2

0.4

0.6

0.8

1.0 (C) FWHM = 50

Figure 16 Validation results for the noncentral random field theory approach to 1D power. Solid lines
depict theoretical solutions from the noncentral random field theory and dots depict power1d’s numeri-
cally simulated results (10,000 iterations each). FWHM and J represent continuum smoothness and sam-
ple size, respectively. (A) FWHM= 10, (B) FWHM= 20, (C) FWHM= 50.

results = sim.simulate(1000)

p = results.p_reject1

Here the numerically estimated power is p= 0.747, which is again similar to the analytical
probability of p= 0.731 after just 1,000 iterations. Repeating for smoothness values of 10,
20 and 50, sample sizes of 5, 10 and 25 and effect sizes ranging from 0.1 to 0.7 yields the
results depicted in Fig. 16. Agreement between the theoretical and numerically simulated
powers is reasonable except for large effect sizes and intermediate sample sizes (Fig. 16C,
J = 25). Since theoretical and simulated results appear to diverge predominantly for high
powers these results suggest that the noncentral RFT approach is valid in scenarios where
powers of approximately 0.8 are sought for relatively small sample sizes.

While the noncentral RFT approach has addressed the low-power limitation of the
inflated variance method (Fig. 15), its ‘signal’ is geometrically simple in the form of
a mean shift. Clearly other, more complex signal geometries may be desirable. For
example, in the context of the Canadian temperature data (Fig. 1) one may have a
forward dynamic model which predicts regional temperatures through region-specific
parameters such as land formations, foliage, wind patterns, proximity to large bodies
of water and atmospheric carbon dioxide. Forward models like those can be used to
generate specific continuum predictions based on, for example, increases in atmospheric
carbon dioxide. Those continuum predictions are almost certainly not simple signals like
the ones represented by the inflated variance and noncentral RFT methods. Therefore,
when planning an experiment to test continuum-level predictions, and specifically when
determining howmany continuummeasurements are needed to achieve a threshold power,
the numerical simulation capabilities of power1d may be valuable.

COMPARISON WITH OTHER SOFTWARE PACKAGES
Power calculations for 0D (scalar) data are available in most commercial and open-source
statistical software packages. Many of those offer limited functionality in that most are
limited to the noncentral t distribution, and many have vague user interfaces in terms of
experimental design. Some also offer an interface to noncentral F computations, but nearly
all have limited capabilities in terms of design.

Pataky (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.125 21/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.125

The most comprehensive and user-friendly software package for computing power
is G-power (Faul et al., 2007). In addition to the standard offerings of noncentral t
computations, G-power also offers noncentral distributions for F , χ2 and a variety of other
test statistics. It has an intuitive graphical user interface that is dedicated to power-specific
questions. However, in the context of this paper G-power is identical to common software
packages in that its power calculations are limited to 0D (scalar) data.

Two software packages dedicated to continuum-level power assessments, and those
most closely related to power1d are:
1. PowerMap (Joyce & Hayasaka, 2012).
2. fmripower (Mumford & Nichols, 2008).
Both PowerMap and fmripower are designed specifically for continuum-level power

analysis, and both extend the standard noncentral t and F distributions to the continuum
domain via RFT. They have been used widely in the field of Neuroimaging for planning
brain imaging experiments and they both offer graphical interfaces with a convenientmeans
of incorporating piiot data into guided power analyses. However, both are limited in terms
of the modeled signals they offer. RFT’s noncentral t and F distributions model ‘signal’ as
a whole-continuummean displacement, which is geometrically simple relative to the types
of geometries that are possible at the continuum level (see the ‘Software Implementation:
Geometry section above). PowerMap and fmripower somewhat overcome the signal
simplicity problem through continuum region constraints, where signal is modeled in
some regions and not in others in a binary sense. This approach is computationally
efficient but is still geometrically relatively simple. A second limitation of both packages is
that they do not support numerical simulation of random continua. This is understandable
because it is computationally infeasible to routinely simulate millions or even thousands
of the large-volume 3D and 4D random continua that are the target of those packages’
power assessments. Consequently neither PowerMap nor fmripower supports arbitrary
continuum signal modeling.

As outlined in the examples above power1d replicates the core functionality of
PowerMap and fmripower for 1D continua. It also offers functionality that does not
yet exist in any other package: arbitrary continuum-level signal and noise modeling and
associated computational power analysis though numerical simulation of randomcontinua.
This functionality greatly increases the flexibility with which one can model one’s data,
and allows investigators to think about the signal and noise in real-world units, without
directly thinking about effect sizes and effect continua.

SUMMARY
This paper has described a Python package called power1d for estimating power in
experiments involving 1D continuum data. Its two main features include (a) analytical
continuum-level power calculations based on random field theory (RFT) and (b)
computational power analysis via continuum-level signal and noise modeling. Numerical
simulation is useful for 1D power analysis because 1D continuum signals can adopt
arbitrary and non-parameterizable geometries. This study’s cross-validation results show

Pataky (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.125 22/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.125

that power1d’s numerical estimates closely follow theoretical solutions, and also that its
computational demands are not excessive, with even relatively complex model simulations
completing in under 20 s. Since power1d accommodates arbitrary signals, arbitrary noise
models and arbitrarily complex experimental designs it may be a viable choice for routine
yet flexible power assessments prior to 1D continuum experimentation.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by Wakate A Grant 15H05360 from the Japan Society for the
Promotion of Science. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the author:
Japan Society for the Promotion of Science: 15H05360.

Competing Interests
The author declares there are no competing interests.

Author Contributions
• Todd C. Pataky conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, wrote the paper,
prepared figures and/or tables, performed the computation work, reviewed drafts
of the paper, wrote the software and its documentation.

Data Availability
The following information was supplied regarding data availability:

All code, including scripts to replicate the paper’s results, are available at http:
//www.spm1d.org/power1d.

REFERENCES
Adler R, Hasofer A. 1976. Level crossings for random fields. The Annals of Probability

4(1):1–12 DOI 10.1214/aop/1176996176.
ContinuumAnalytics. 2017. Anaconda: leading open data science platform powered by

Python. https://www.continuum.io/anaconda-overview.
Faul F, Erdfelder E, Lang A-G, Buchner A. 2007. G*Power 3: a flexible statistical power

analysis program for the social, behavioral, and biomedical sciences. Behavior
Research Methods 39(2):175–191 DOI 10.3758/BF03193146.

Friston K,Worsley K, Frackowiak R, Mazziotta J, Evans A. 1994. Assessing the
significance of focal activations using their spatial extent. Human Brain Mapping
1(3):210–220 DOI 10.1002/hbm.460010306.

Pataky (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.125 23/24

https://peerj.com
http://www.spm1d.org/power1d
http://www.spm1d.org/power1d
http://dx.doi.org/10.1214/aop/1176996176
https://www.continuum.io/anaconda-overview
http://dx.doi.org/10.3758/BF03193146
http://dx.doi.org/10.1002/hbm.460010306
http://dx.doi.org/10.7717/peerj-cs.125

Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE, PennyWD. 2007. Statistical paramet-
ric mapping: the analysis of functional brain images. London: Elsevier.

Friston KJ, Holmes A, Poline JB, Price CJ, Frith CD. 1996. Detecting activations
in PET and fMRI: levels of inference and power. NeuroImage 4(3):223–235
DOI 10.1006/nimg.1996.0074.

Hasofer AM. 1978. Upcrossings of random fields. Advances in Applied Probability
10:14–21 DOI 10.1017/S0001867800029426.

Hayasaka S, Peiffer AM, Hugenschmidt CE, Laurienti PJ. 2007. Power and sample
size calculation for neuroimaging studies by non-central random field theory.
NeuroImage 37(3):721–730 DOI 10.1016/j.neuroimage.2007.06.009.

Hunter JD. 2007.Matplotlib: a 2D graphics environment. Computing in Science and
Engineering 9(3):90–95.

Jones E, Oliphant T, Peterson P. 2001. SciPy: open source scientific tools for python.
Available at http://www.scipy.org/ .

Joyce KE, Hayasaka S. 2012. Development of PowerMap: a software package for statis-
tical power calculation in neuroimaging studies. Neuroinformatics 10(4):351–365
DOI 10.1007/s12021-012-9152-3.

Kiebel S, Poline J, Friston K, Holmes A,Worsley K. 1999. Robust smoothness estima-
tion in statistical parametric maps using standardized residuals from the general
linear model. NeuroImage 10(6):756–766 DOI 10.1006/nimg.1999.0508.

Mumford J, Nichols TE. 2008. Power calculation for group fMRI studies accounting
for arbitrary design and temporal autocorrelation. NeuroImage 39(1):261–268
DOI 10.1016/j.neuroimage.2007.07.061.

Nichols T, Holmes A. 2002. Nonparametric permutation tests for functional
neuroimaging: a primer with examples. Human Brain Mapping 15(1):1–25
DOI 10.1002/hbm.1058.

Pataky TC. 2016. rft1d: smooth one-dimensional random field upcrossing probabilities
in python. Journal of Statistical Software 71(7):1–22.

Ramsay JO, Silverman BW. 2005. Functional data analysis. New York: Springer-Verlag.
Van derWalt S, Colbert SC, Varoquaux G. 2011. The NumPy array: a structure for

efficient numerical computation. Computing in Science and Engineering 13:22–30.
Van RossumG. 2014. The python library reference release 2.7.8. Available at https:

// docs.python.org/2/ library/ .

Pataky (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.125 24/24

https://peerj.com
http://dx.doi.org/10.1006/nimg.1996.0074
http://dx.doi.org/10.1017/S0001867800029426
http://dx.doi.org/10.1016/j.neuroimage.2007.06.009
http://www.scipy.org/
http://dx.doi.org/10.1007/s12021-012-9152-3
http://dx.doi.org/10.1006/nimg.1999.0508
http://dx.doi.org/10.1016/j.neuroimage.2007.07.061
http://dx.doi.org/10.1002/hbm.1058
https://docs.python.org/2/library/
https://docs.python.org/2/library/
http://dx.doi.org/10.7717/peerj-cs.125

