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Abstract. Ecosystem classifications map an area into relatively homogenous
units for environmental research, monitoring and management. However, their
effectiveness is rarely tested. Here, three classifications are 1) defined and characterized
for Canada along summertime productivity (MODIS fraction of absorbed
photosynthetically active radiation) and wintertime snow conditions (SSM/I snow water
equivalent), independently and in combination, and 2) comparatively evaluated to
determine the ability of each classification to represent the spatial and environmental
patterns of alternative schemes, including the Canadian ecozone framework.

All classifications depicted similar patterns across Canada, but detailed class
distributions differed. Class spatial characteristics varied with environmental conditions
within classifications, but were comparable between classifications. There was moderate
correspondence between classifications. The strongest association was between
productivity classes and ecozones. The classification along both productivity and snow
balanced these two sets of variables, yielding intermediate levels of association in all
pairwise comparisons. Despite relatively low spatial agreement between classifications,
they successfully captured patterns of the environmental conditions underlying alternate
schemes (e.g., snow classes explained variation in productivity, and vice versa).

The performance of ecosystem classifications and the relevance of their input
variables depend on the environmental patterns and processes used for applications and
evaluation. Productivity or snow regimes, as constructed here, may be desirable when
summarizing patterns controlled by summer- or winter-time conditions, respectively, or
of climate change responses. General-purpose ecosystem classifications should include
both sets of drivers. Classifications should be carefully, quantitatively, and
comparatively evaluated relative to a particular application prior to their implementation
as monitoring and assessment frameworks.

1. Introduction

Natural systems are complex and variable over time and space, and at a range of scales.
To better understand our surroundings, scientists and resource managers have developed a
variety of ecosystem classifications. Also known as ecological regionalizations, these products
are simplified conceptualizations of an area that classify a land base into regions characterized by
similar environmental conditions (e.g., Bailey et al. 1985; Loveland and Merchant 2004),
ecological processes (e.g., McMahon et al. 2004), and distinct biotic communities (e.g., Olson et
al. 2001). Because conditions of interest are assumed to be relatively homogenous within
component regions, classifications can provide frameworks for generalization, stratification, and
to inform expectations of what is natural or appropriate for a site (e.g., Omernik 1987).

Regions help to organize, study, manage, and present monitoring and research results for
large, diverse areas. For instance, a large nation such as Canada is not likely to be well
characterized by average conditions (e.g., mean air pollution levels, mean forest volume), but
conditions may be adequately represented by summary values from a system of homogenous,
ecologically defined regions. In addition to experiencing similar conditions, sites within a region
are expected to respond similarly to stressors (Bailey et al. 1985). Ecosystem classifications can,
therefore, be used to pair pristine and degraded sites (or control and experimental sites), and to
generalize and scale up observations from a limited data sample. Indeed, ecosystem
classifications are often used as the areal units for national and international reporting



requirements (e.g., Commission for Environmental Cooperation 1997; Government of Canada
1996; Petit et al. 2001). Ecosystem classifications are useful stratification tools because, if
classes are characterized by internal homogeneity and between-class distinctness, a sample
encompassing all classes is expected to include most of the variability of an area (McMahon et
al. 2004). Management applications of ecosystem classifications include setting forestry (Banner
et al. 1996; Beauchesne et al. 1996) and fire management recommendations (McRae 1996),
monitoring water quality (Barton and Metzeling 2004; Wells et al. 2002) and genetically
modified organisms (Graef et al. 2005), and defining representative protected area networks
(Convention on Biological Diversity 2004; Olson and Dinerstein 1998; Parks Canada 1997).

Consequently, a number of ecosystem classifications have been developed, ranging from
ecoregions, typically expert-based delineations of regional patterns (e.g., Ecological
Stratification Working Group 1995; Wiken et al. 1996), to quantitative environmental domain
classifications (environmental cluster analyses) of particular variables or combinations thereof,
which may relax requirements of spatial contiguity (e.g., Host et al. 1996; Mackey et al. 2008).
Ecosystem classifications are generally created along input variables of climate, topography,
geology, and/or soils (e.g., Host et al. 1996; Kirkpatrick and Brown 1994; Leathwick et al. 2003;
Mackey et al. 2008; Trakhtenbrot and Kadmon 2006). Remotely sensed indices of vegetation
and ecosystem function have also been used (Fernandez et al. 2010; Mackey et al. 2008), but are
surprisingly less common. Earth observation data have strong traditions of providing spatially-
extensive, physically-based estimates of a variety of environmental variables from sensors with
optimized spatial, spectral, and temporal characteristics. For example, optical sensors provide a
wealth of information about vegetation pattern, condition, and vegetation-mediated processes;
information in the microwave portion of the spectrum indicates meteorological and hydrological
parameters. The combination of these two types of information may provide an integrated
picture of ecosystem distributions and functioning at regional to global scales.

To be useful, ecosystem classifications must not only effectively partition within- and
between-class variability (often achieved with statistical clustering algorithms), they must also
capture patterns of variability that are meaningful to biota and ecological processes. Thus, the
specific environmental variables along which ecosystem classifications are defined are of
paramount importance, with different choices of variables leading to diverse results (Bailey et al.
1985). For example, a variety of ecoregion frameworks have been developed for North America,
emphasizing different gradients (e.g., Bailey 1995; Omernik 1987). Although the region cores
are broadly similar, ambiguities of where to delineate region boundaries cause them to differ in
their specifics (Bailey 2004; Omernik 2004). The capacity for discrepancies between ecosystem
classifications can be much more marked than questions of boundary placement. Because
alternative input variables may be largely unrelated, the resultant classifications may bear little to
no resemblance to each other. Both spatial patterns and scales of variation may differ with input
variables, resulting in classifications that differ in class placement, pattern, and effective spatial
resolution.

It is likely that no optimal, singular ecosystem classification exists. Rather, the choice of
classification product and its defining variables should depend upon the planning area extent
(Barton and Metzeling 2004) and the application at hand (Loveland and Merchant 2004; Wells et
al. 2002). For example, productivity, which is predominantly a result of growing-season (i.e.,
summertime) processes, is an important control of biodiversity (Evans et al. 2005; Hawkins et al.
2003); regions derived from productivity metrics, which are supported by the availability of
remotely sensed measures of vegetation productivity (Kerr and Ostrovsky 2003), may thus



provide useful areal units for representing the variation and status of biodiversity. In contrast,
wintertime conditions such as snow depth can have direct impacts on plant and animal
phenology, water balance, and habitat quality (Dussault et al. 2005; Madsen et al. 2007; Walker
et al. 1993). Consequently, regions based on snow conditions, which may be estimated via
passive microwave remote sensing (Tait 1998), may also be useful and capture different
ecological processes and limiting factors than those based on productivity. Generality may be
increased by including both summer and winter conditions in a single ecosystem classification,
avoiding idiosyncrasies that may arise from each alone. However, productivity- and snow-based
classifications need not be markedly different. Snow cover and, in particular, timing of snow
events are suspected to drive local and regional productivity patterns (Kimball et al. 2000; 2004;
Lafleur and Humphreys 2007; but see Litaor et al. 2008), which may lead to consistent patterns
whether a classification is trained with productivity, snow, or both.

How then should an ecosystem classification be selected for a particular application?
Classifications are predominantly evaluated and compared with accuracy (or agreement)
statistics computed from entries in a confusion matrix (Congalton 1991). However, this strategy
is less than ideal in many circumstances, and alternative or supplemental measures should be
considered. Products depicting markedly different spatial patterns may nevertheless yield similar
accuracy measures. For example, existing global land cover products each have accuracies
approaching 70%, yet agreement between products is relatively low (Fritz and See 2008; Giri et
al. 2005; Herold et al. 2008; Jung et al. 2006; Kaptué¢ Tchuenté et al. 2011). Moreover,
particular applications will be less influenced by overall accuracy than by the sensitivity of a
product to the patterns of interest. These may be particular land cover classes, in which case
thematic resolution, class-based accuracies, and the nature of class confusions will be most
relevant (Fritz and See 2008; Jung et al. 2006). Or the mapped classes may simply be indirect
proxies of the patterns of interest. For example, in biodiversity conservation applications,
species composition is assumed to vary with land cover (Andrew et al. 2011; Mac Nally et al.
2002); likewise, carbon models use land cover to parameterize differences in physiology, leaf
traits, architecture, albedo, etc. (Jung et al. 2006; Moody et al. 2007). In these cases, an
evaluation of land cover classifications at capturing those patterns is a more direct assessment of
applicability than are class accuracies, and is a clear departure from the confusion matrix
framework. Another shortcoming of comparisons using confusion matrices is that they require
pairing of classes from potentially distinct thematic legends (Foody 2006), usually by
aggregating classes until comparable, coarse categories are reached, with subsequent loss of
information (Herold et al. 2008; Jung et al. 2006; Kaptué¢ Tchuent¢ et al. 2011), although one-to-
many class mappings with agreement weighting schemes have also been investigated (Fritz and
See 2008). Such approaches are feasible for comparing land cover classifications, which
ultimately have similar objectives and, at some level, similar legends. Yet class pairings may
never be possible for classifications of distinct ecosystem functions. Map comparison techniques
that are independent of classification schemes exist (e.g., Foody 2006) and merit more
widespread use.

The goals of this research are to 1) define and characterize ecosystem classifications
along summertime productivity, wintertime snow conditions, and the combination of the two;
and 2) determine how well these classifications correspond, both geographically as well as along
the underlying productivity and snow gradients, and how this correspondence varies with
environmental conditions. As such, we synthesize, extend, and evaluate the frameworks of



Coops et al. (2009) and Farmer et al. (2010), who have generated ecosystem classifications of
Canada along productivity axes and of the Canadian prairies along snow conditions, respectively.

2. Methods
2.1. Study area and datasets

Canada encompasses nearly 10 million km? in area, spanning a range of physical and
environmental conditions. Northern areas can be snow covered for more than half of the year,
with all other areas of the country typically experiencing snow cover for some period of time
during the winter months. Considered nationally, the average length of the snow season is 4.2 +
1.0 months. Adaptive strategies are required by both plants and animals to cope with the
variability of resources across seasons. This study used remotely sensed datasets of vegetation
productivity (fPAR; fraction of absorbed photosynthetically active radiation; refer to Table 1 for
a list of abbreviations used in the text) and snow water equivalent (SWE) for Canada south of
75°N. This extent includes 96% of Canada’s land area (see Fig. 1), including all of the Canadian
boreal forest. It was necessary to exclude arctic islands north of 75°N due to limited satellite
coverage for the fPAR dataset.
2.1.1. Dynamic habitat index

The dynamic habitat index (DHI) is a tripartite, spatially explicit, productivity-based set
of metrics that has been developed to inform on biodiversity and natural resource monitoring and
management in Canada (Duro et al. 2007). The DHI uses monthly fPAR estimates as recorded
by the MODIS sensor (MODerate-resolution Imaging Spectrometer) at 1 km spatial resolution
(Myneni et al. 2002). Annual productivity characteristics are summarized with the minimum
annual fPAR, integrated fPAR, and fPAR seasonality (represented by the coefficient of variation
of fPAR estimates) for each pixel (Coops et al. 2008). These three annual DHI components were
produced for years 2000-2005 and temporally averaged. Elevation (shuttle radar topography
mission; Rabus et al. 2003) is often considered in conjunction with the DHI, as it has strong
influences on abiotic and biotic patterns and processes (Coops et al. 2008; Duro et al. 2007).
Seasonality, integrated annual productivity, and elevation are mapped for Canada in Fig. 1a.
For ecosystem classifications, the DHI components and elevation were aggregated to the 25 km
resolution of the snow data (below) by pixel averaging.
2.1.2. Snow water equivalent

Daily SWE measurements were estimated from Special Sensor Microwave/Imager
(SSM/I) passive microwave brightness temperatures at 37 and 19 GHz with vertical polarization
and a spatial resolution of 25 km. (For a discussion of estimating snow cover with passive
microwave radiometry and a more thorough description of this dataset and its processing, see
Farmer et al. 2010.) Annual metrics summarizing SWE amount and timing were computed with
the spline-fitting approach of Farmer et al. (2010), yielding 10 independent variables for each
pixel: 1) maximum SWE, 2) range of SWE, 3) time of minimum SWE, 4) time of maximum
SWE, 5) total SWE, 6) start of SWE accumulation, 7) start of melt, 8) end of melt, 9)
accumulation rate, and 10) melt rate. SWE metrics were computed for years 1999-2006 and
temporally averaged. All SWE processing was performed in R (R Core Development Team
2008).
2.1.3. Ecozones

The ecozone stratification of Canada (Ecological Stratification Working Group 1995)
was used for comparative purposes. Ecozones are “higher order ecosystems” that are the
coarsest product of an expert-based hierarchical ecosystem classification. Ecozones delineate



large areas expressing similar geology, topography, soil, vegetation, climate, wildlife, hydrology,
and land use. Ecozones are widely used reporting units for science and have a strong lineage in
management of natural resources in Canada (Government of Canada 1996). To facilitate
comparisons, ecozones were rasterized to 25 km spatial resolution (Fig. 1f).

2.2. Ecosystem classifications

Three ecosystem classifications were produced (this study’s workflow is diagrammed in
Fig. 2), using each dataset independently and in combination (henceforth: DHI, SWE, and SWE
+ DHI classifications), with the TwoStep multivariate classification algorithm (Zhang et al.
1997) in SPSS (SPSS Inc. 2008). This algorithm generates a large number of initial pre-clusters
along a feature-cluster tree, which are then hierarchically agglomerated into the final classes.

The log-likelihood distance measure was used to determine both pixel- and cluster-
dissimilarities, which are used to generate the feature-cluster tree and to aggregate pre-clusters
into classes, respectively. The thematic resolution (i.e., number of classes) of a classification can
have a strong effect upon its resulting patterns (Castilla et al. 2009; Huang et al. 2006) and
applications (e.g., Pharo and Beattie 2001; Pressey and Logan 1994). For each classification, we
generated 14 (DHI) or 15 (SWE, SWE + DHI) classes. This thematic resolution was chosen to
match the categorical detail of Canada’s ecozone stratification and thereby avoid confounding
comparisons between our classifications and ecozones with differences in resolution. Classes
were not required to be spatially contiguous. All classifications were initially assessed with
MANOVA, ANOVA and Tukey’s pairwise comparisons along the input variables, confirming
that, within a classification, all classes were unique from all others.

Coops et al. (2009) has previously constructed an environmental domain classification for
Canada using the DHI framework. We used this pre-existing DHI classification in our
comparisons, although it has several slight differences from the two new classifications produced
in this study: 1) it included the University of Maryland land cover product (Hansen et al. 2000),
in addition to the three DHI components and elevation, as input variables; and 2) it was produced
at the finer 1 km resolution of the DHI data. Consequently, it was resampled to the most
common non-null class within each 25 km SWE pixel for the present analyses.

Many of the SWE metrics were highly correlated, which can lead to instability in
clustering algorithm performance. Multicollinearity was removed by classifying along SWE
principal components (PCs) computed from the covariance matrix of SWE variables normalized
by mean and mean absolute deviation (MAD). MAD is the mean of the absolute value of the
residuals from the variable mean and tends to give outliers less prominence than normalizing by
the standard deviation, which is computed from squared residuals. Principal components
analyses (PCA) were performed in ENVI (ITT Visual Information Solutions 2009). The top
three PCs (Fig. 1b) contained 86% of the SWE variation. PC1 (53.1% of variation) was highly
inversely correlated with maximum, total, and range of SWE and the melt and accumulation
rates, and is therefore a representation of the amount of snow present in a pixel. In contrast, PC2
(20.6%) and PC3 (12.3%) represented snow timing; PC2, which was strongly correlated to the
time of maximum SWE and the end of the melt season, responded to late-snow-season timing;
PC3 was dominated by the time of the start of snow accumulation (inverse correlation). These
three PCs were normalized by their means and MADs, in order to weight each equally in the
classification, and input into TwoStep.

The SWE + DHI classification followed the same process as the SWE classification. A
combined SWE + DHI PCA was performed on normalized SWE, DHI, and elevation variables
(but not land cover). The first 4 PCs, containing 84% of the combined variation, were



normalized and used in the classifier. PC1 (47.0% of variation) represented shared variation
between snow and productivity, and was correlated to most SWE metrics, particularly those
representing amount rather than timing, and the three DHI components, but not elevation. PC2
(17.8%) was composed primarily of SWE variables, representing variation in SWE, especially
timing and rates, that is independent of productivity. PC3 (11.0%) and PC4 (7.7%) were both
correlated with elevation and with the time of the onset of the snow season; PC4 also included a
signal from minimum annual productivity.

Ecosystems from each classification were described geographically with maps and
environmentally with class summary statistics (mean and standard deviation) computed along the
input DHI and SWE variables, as well as land cover (Hansen et al. 2000).

2.3. Analyses

Ideally, ecosystem classifications should be evaluated against independent datasets to
determine if the resultant classes successfully describe variation in the environmental patterns
and processes of interest. However, we are constrained by a lack of spatially explicit
environmental variables that are national in scope for Canada. Furthermore, a classification’s
performance will depend upon whether it includes the variables most relevant to the specific
pattern they are evaluated against, and would thus vary between distinct evaluation datasets. In
the absence of a representative sample of response datasets, we have chosen to assess variation in
spatial pattern between classes generated from different input variables, and to comparatively
evaluate the classifications against each other as well as against the alternative inputs. These
comparisons will reveal the degree to which classifications capture patterns of independent
environmental gradients and the level of agreement between alternative ecosystem
classifications.

2.3.1. Patch characteristics

It is important to understand the effect of ecosystem classification on landscape pattern as
such patterns may be used to infer ecological processes, influencing conclusions and
recommendations. Further, the size, shape, and spatial autocorrelation of class patches are
expected to vary with the geographic structure of the input variables. To characterize spatial
patterns, each classification was converted to vector format, with individual polygons delineating
contiguous areas of the same class. These polygons, henceforth referred to as patches, were used
to compute spatial pattern metrics, including the number of patches, mean and standard deviation
of patch area, the proportion of single-pixel patches (singletons), the mean and standard
deviation of patch shape, and the degree of class dispersion at both the patch and pixel levels.
These metrics, along with their variability, represent independent and frequently important
components of landscape pattern (Cushman et al. 2008). Patch shape was measured with the
ratio of the patch perimeter to the perimeter of a maximally compact patch of the same area
(Patton 1975), adjusted for the square patches of raster data (McGarigal and Marks 1995), and is
a measure of patch shape complexity or edginess. It has a minimum value of 1 for square
patches, and increases for elongated or convoluted patches. Dispersion was estimated with the
mean nearest neighbour distance per class, standardized by the expected value under a random
distribution of the same number of points in the same area. The mean nearest neighbour ratio
approaches 1 for classes distributed randomly, is <1 for clustered classes, and >1 if classes are
over-dispersed. Mean nearest neighbour ratios were calculated both for individual pixels and
using patch centroid locations. The prevalence of singleton patches also provides an indication
of the spatial cohesion of a class. Spatial pattern metrics were calculated in ArcMap (ESRI
2008) and Statistica (StatSoft Inc. 2008).



Spatial pattern metrics were compared between classifications with ANOV As and
Tukey’s pairwise comparisons. Within a classification, the dependence of patch characteristics
on class characteristics was determined with the correlation between the mean and standard
deviation of patch metrics and the mean and standard deviation of the input environmental
variables (either DHI, SWE, or both), with classes as the analysis units.

2.3.2. Spatial correspondence

Geographic correspondence was determined with pixel-wise contingency tables between
pairs of classifications (DHI, SWE, SWE + DHI, ecozones). These were compared graphically
and summarized by the % average mutual information (%AMI) reviewed by Foody (2006) and
Pearson’s y” statistic. Both of these measures are based on the cell and marginal probabilities of
a contingency table, and do not require pairing classes between classifications. The %AMI
estimates the amount of information in a classification that is shared with an alternate product.
The Xz statistic was used as an index of the relative strength of region associations between two
classifications. Larger x* values are associated with stronger relationships between categorical
variables (i.e., observed cross-tabulated frequencies deviate more from those expected under
random distributions). We did not evaluate the significance of the * as, with such large sample
sizes, statistical significance would be trivial.
2.3.3. Environmental correspondence

Space is only one set of axes along which an area can be considered. Classifications that
strongly disagree on a per-pixel basis may nevertheless successfully explain environmental
variation in the variables along which their counterparts were defined. Correspondence in
environmental space, or the ability of a given classification to represent variation in the
alternative dataset, was assessed with reciprocal analyses of similarity (ANOSIM; Clarke 1993).
ANOSIM tests if a response variable or set of variables is more similar within than between
classes. By definition, pixels clustered by a set of variables will be more similar within than
between clusters along those variables. This analysis tested whether that also holds true along a
different set of variables. If DHI and SWE variables lead to the identification of similar
classifications, ANOSIMs of DHI components on SWE clusters and of SWE variables on DHI
clusters will tend to be significant. These analyses were performed only for the DHI and SWE
clusters, since there were no independent evaluation variables available for the SWE + DHI
clusters.

ANOSIM determines the ranks of the pairwise distances (Euclidean distance of
normalized variables in this study) between all pixels. The test statistic, ANOSIM R, is the
difference between mean within- and between-class distance ranks, standardized by the number
of comparisons, and is tested by permutation. We performed four sets of ANOSIMs for each
classification, varying the set of pixel pairs considered to be within- or between- classes. The
first, ANOSIMgo (grand, overall), used all possible pairwise combinations, resulting in a single
R statistic. In recognition that this value may be optimistic due to large underlying differences
between highly divergent regions (e.g., SWE classes that are very distinct in snow conditions
may also be very distinct in productivity conditions as a result of a spurious correlation driven by
unmeasured variables), we performed a second test, ANOSIMgx (grand, adjacent), which
considered only between-class comparisons for classes that are adjacent along an environmental
axis used to define the regions. This was performed separately considering adjacency along each
DHI (3 components + elevation) and SWE (3 PCs) axis. These ANOSIMs also result in a single
R statistic each. The last 2 ANOSIMs were performed for individual classes, yielding an
ANOSIM R for each class. Both of these tests, ANOSIMcg (class-wise, overall) and



ANOSIM¢4 (class-wise, adjacent) used only pixels in the focal class to compute within-class
distances. For between-class distances, ANOSIM¢o took a random sample of distances;
ANOSIM¢4 took a random sample of distances between any two pixels in the environmental
neighbourhood (along a given productivity or snow axis) surrounding the focal class. All
ANOSIMs were performed in R, using functions in the add-on package vegan (Oksanen et al.
2008) and coded by the authors.

The ability of SWE classes to represent the DHI components, and vice versa, was
assessed with ANOSIMgo and ANOSIMga R values. The dependence of classification
performance on environmental conditions was determined by correlating ANOSIM¢( and
ANOSIMca Rs with the region mean and standard deviation of the variables used to define the
regions, as well as the number of pixels assigned to each class.

3. Results
3.1. Class characteristics
3.1.1. Descriptions of ecosystem classifications

The four ecosystem classifications (SWE, DHI, SWE + DHI, ecozones) present different
pictures of Canada’s landmass, but all share some commonalities (Fig. 1¢-f). For instance, each
classification illustrates elongated arcing bands, trending from the Yukon south-east around
Hudson Bay and back north-east, paralleling the distribution of boreal forest. This gradient is
also evident in both the input DHI and SWE components (Fig. 1a, b). All classifications
successfully delineate the Canadian Prairies (ecozone 10), although this is assigned to
(essentially) a single class by the DHI classification and ecozones, but divided into two by those
including SWE variables. Classifications along DHI are most effective at delineating
mountainous regions in the west and the Mixedwood Plain ecozone (ecozone 8) of southern
Ontario and Quebec.

The ecosystem classifications also create fairly intuitive groupings along the main
environmental gradients considered (Fig. 3). The DHI classes are described in greater detail in
Coops et al. (2009), so here we will focus on the new SWE and SWE + DHI ecosystem
classifications.
3.1.1.1. SWE classes.

SWE classes 2, 4, and 7 are maritime regions, with classes 4 and 7 in low elevation
coastal areas. Class 7 has the highest productivity of the SWE classes. Class 2 is located
primarily in mountainous areas with a maritime climate influence, and has the highest mean
elevation of the SWE classes and high forest cover. There are three additional montane SWE
classes, which overlap with arctic tundra ecosystems (3, 6, 12). These classes have low forest
cover, late snowmelt, high seasonality, and low productivity. Class 12 in northwest Canada, in
particular, receives a large amount of snowfall, which is surpassed only by class 14, spanning the
wetlands of the Hudson Plain and northern boreal forest. Two arctic classes remain that do not
also include alpine ecosystems (5, 13). Class 13 exhibits the most limiting conditions in Canada:
the lowest productivities, latest snowmelts, and, consequently, the lowest forest cover. The
remaining SWE classes can be divided into boreal forest (8, 9, 10, 15) and prairie/sparse forest
(1, 10, 11) ecosystems. The boreal forest classes form a gradient from south to north: class 9
contains the productive mixedwood and southern boreal forests receiving relatively low snow;
class 8 in the central boreal and montane forests has very high forest cover, moderate snow, and
is relatively productive; and classes 10 and 15 in the northern boreal forest are substantially
snowier, with moderate positions on the remaining environmental axes. For the prairie and



sparse forest classes, class 1 is differentiated by lower amounts of snow, higher productivity, and
higher forest cover. Class 10, which does not have a prairie component, has a correspondingly
greater forest cover, but later snowmelt and, thus, higher seasonality.

3.1.1.2. SWE + DHI classes

Montane regions are delineated more clearly by the SWE + DHI classification, as noted
above from visual inspection of the class maps, with less overlap between mountainous classes
and maritime and arctic classes. The highest elevations in western Canada are found in SWE +
DHI class 8. Lower elevation montane ecosystems are divided between the shorter mountains of
northwest Canada (4) and the heavily forested, lower elevation systems in mountainous regions
(9). The arctic ecosystems of the SWE + DHI classification are classes 1, 2, 5, and 7. Classes 1
and 7 occur along the arctic-boreal ecotone. Class 1 is the snowiest in Canada, with moderately
late snowmelt and low forest cover. This grades into class 2, nearing Hudson Bay, which has
slightly less snow, higher productivity, and greater forest cover. Classes 5 and 7 are the least
productive and most seasonal, with the latest snowmelt and lowest forest cover. A number of
SWE + DHI classes capture the forest ecosystems of Canada (6, 10, 12, 13, 14). Classes 10 and
14 are highly productive maritime and mixedwood forests, respectively, though both include
extensive areas of the southern boreal forest as well. Class 10 receives the least snow in Canada.
Like class 10, class 13 encompasses both maritime and southern boreal forests, and has similar
snow characteristics, but is characterized by lower forest cover and, hence, lower productivity.
Classes 6 and 12 span the boreal forests. Class 12 has higher forest cover and slightly less snow.
As in the SWE classification, there are two prairie classes which also include areas of sparse
forest (3, 11). Again, these are largely differentiated by the amount of snow. Finally, class 15
contains forested ecosystems along the coasts and southern border.

3.1.2. Class spatial patterns

Each classification had highly variable spatial pattern metrics, precluding significant
differences (Fig. 4a, b). All three classifications produced a large proportion of single-pixel
patches (>55% of patches, but only ~10% of the total area; Fig. 4c), with the DHI classification
having a significantly greater proportion of singletons (67% of patches) than those including
SWE (Pearson y* = 45.76, p < 0.00001). The spatial distributions of classes for all products were
significantly clustered at both patch and pixel levels (mean nearest neighbour ratios < 1; Fig. 4d,
e), but the degree of class dispersion was relatively similar between classifications. SWE class
patches were more dispersed than SWE + DHI class patches (Fig. 4d), but no other comparisons
were significant. To test if these patterns were skewed by singleton patches, which may
numerically dominate an inventory of patches despite contributing only negligible area, we
repeated analyses with singletons excluded. The conclusions were unchanged (results not
shown).

Within classifications, patch characteristics were strongly correlated with the
environmental conditions of the class, particularly for classes constructed with SWE variables
(Fig. 5). For the DHI classification, the number of patches per class declined with the variability
of minimum annual fPAR and the variability of patch shape was greatest in classes with
homogenous elevations. SWE class patches were larger and more irregularly shaped, but with
greater variation in size and shape, in classes with more snow; and more irregularly shaped, with
a smaller proportion of singletons in classes with late snow seasons. SWE + DHI classes were
more likely to be singletons in classes with lower seasonality as well as greater variability in
productivity, and snow amount and timing, which were those classes with less snow overall. All
other SWE + DHI patch characteristics (size, shape, and their variability) were positively related
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to the amount of snow and negatively related to productivity. Class dispersion was also
correlated with environmental characteristics, but, in contrast to patch metrics, tended to be more
closely related to productivity than to snow (Fig. 6). For both classifications including
productivity, more productive classes were more clustered (i.e., had lower nearest neighbour
distances), at both the patch and pixel levels. Of the SWE variables, only snow timing was
related to class clustering. Clustering of SWE classes increased with variability in late snow
season timing. Clustering of SWE + DHI classes decreased as melt was delayed.

3.2. Class agreement

Although there was no clear one-to-one pixel-level correspondence between the
classifications, all exhibited a fair degree of spatial correspondence (Fig. 7). Both %AMI and x>
values yielded the same ranking of pair-wise map agreement. Agreement was lowest between
the SWE results and both the DHI and ecozone classifications, highest between the DHI classes
and the ecozones, and intermediate for all comparisons with the SWE + DHI classification.

Grand ANOSIMs found that both SWE classes significantly explained patterns in
productivity and DHI classes significantly explained patterns of SWE, regardless of whether
classes were compared against all others or against only their environmental neighbours (p <
0.005 for all tests; Fig. 8). ANOSIMgo R was 0.3904 for both of the reciprocal tests. For
comparison, ANOSIMgo R = 0.85 and R = 0.81 when evaluating SWE clusters on SWE
variables and DHI clusters on DHI variables, respectively. (Note that the maximum, R =1, will
only be reached when classes are not only distinct, but distant from each other in environmental
space.) Between class uniqueness, and thus ANOSIMga R, declined when considering only
adjacent classes along all DHI axes and along the first SWE PC (Fig. 8).

Most individual DHI and SWE classes were also significant when evaluated against their
counterpart SWE or DHI variables with ANOSIM¢o and ANOSIMc, (data not shown). DHI
class performance relative to SWE variables was unrelated to the regional productivity
characteristics (results not shown). The only significant correlation was between ANOSIMca R
when adjacency was considered along fPAR seasonality and class mean seasonality (r = 0.54, p
<0.05). That is, at high seasonalities, DHI classes were more likely to have different snow
characteristics than their neighbours in seasonality. In contrast, the ability of SWE classes to
represent variation in productivity was strongly related to the snow conditions of each class (Fig.
9). In particular, overall performance (ANOSIMco) was greatest in the snowiest classes and
performance when comparing classes only to their neighbours (ANOSIMc,) in terms of amount
of snow (PC1) improved with increasing within-class variability in snow timing (both beginning
and end of snow season) and was best for classes containing fewer pixels.

4. Discussion

Variation in the spatial patterns portrayed by each of the classifications (Fig. 1) is linked
to the input variables. The two classifications including DHI most successfully captured
topographic differences because they explicitly considered elevation. (Note also the limited
scatter of SWE class centroids along elevation in Fig. 3h.) The DHI classification is also the
only one that distinguished the Mixedwood Plain (ecozone 8). The forests in this region likely
differ from the coniferous forests to the north in their productivity and, especially, the seasonality
of productivity, due to the substantial presence of deciduous trees. Differences in forest type are
also apparent in the land cover product included in the DHI classification, but not the other two.
The sensitivity to topography, seasonality, and land cover seems to make the DHI product better
able to capture smaller, more complex regions (such as the mountainous regions and the

11



Mixedwood Plain). Both classifications including DHI also seem slightly more effective at
spanning the tree cover gradient (Fig. 3g-1). However, the SWE data may also contain signals of
land cover as land cover influences both the physical process of snow accumulation as well as
the microwave response viewed by the sensor (Derksen et al. 2005; Foster et al. 2005). The two
classifications including SWE split the Prairies into two parts, distinguishing areas in the rain
shadow of the Rocky Mountains because SWE is a precipitation variable.

Surprisingly, differences arising from input variables did not translate into differences in
the geometric characteristics of class patches (Fig. 4). We expected productivity-based class
patches to be smaller than those derived from snow cover. Variation in the latter largely arises
from broad-scale circulation patterns, particularly at the coarse 25 km spatial resolution of the
SWE data. In contrast, variation in productivity will stem from broad-scale climate, but also
from a variety of finer-scaled drivers, including vegetation type, soils, and disturbance. Despite
these expectations, patches of productivity-based classes were not significantly smaller than
those derived from SWE, although productivity did produce the largest proportion of single-pixel
patches. Most likely, the large, coherent DHI classes are a function of the coarse grain of the
classification inputs. There is substantial fine-grained variation in the DHI classification at its
original 1 km scale. For example, when contiguous pixels of the same class from the 1 km
classification results are aggregated into patches, 61% of the patches (19% of the area) are
isolated pixels; only 0.07% of patches have an area equal to or greater than the 625 km? SWE
pixels (and see figures in Coops et al. 2009). Yet this detailed variation does not influence the
dominant productivity regime within a 25 km pixel, which, as shown in Fig. 1c, remains constant
over broad extents.

The spatial resolution of the variables used to define a classification may be as important
as the variables themselves. Both the size and configuration of aggregation units affect observed
spatial patterns, as well as the results of statistical analyses (the modifiable areal unit problem,
MAUP: Dark and Bram 2007; Dungan et al. 2002; Fotheringham and Wong 1991; Jelinski and
Wu 1996). MAUP effects are a byproduct of classification, which may be reduced when
defining classes by minimizing variance, but also of the size of the input units that are grouped
into classes (e.g., pixels in this study). Twenty-five kilometers may be too coarse for a
productivity classification, particularly if one is interested in detailed patterning due to finer-
scaled drivers (which, in the case of slope, aspect, and elevation, are relevant to snow
characteristics as well). At coarser spatial resolutions, classes generally contain more azonal
areas, or those that do not exhibit the prevailing class characteristics. Reportedly, up to 15% of
each ecozone is azonal (Wiken 1996) as it is unavoidable for atypical areas to be incorporated
into large, spatially contiguous regions such as ecozones. This number is even higher for the
DHI classes, when the 25 km and 1 km resolutions are compared. Overall, one-third of all 1 km
pixels differed from the dominant class of their 25 km pixel. At the level of individual DHI
classes, 40 = 14% of each is azonal, ranging from 15-20% in the arctic (classes 9 and 13) and
prairie classes (class 8) to 50-60% in heterogeneous mountainous (class 4) and coastal (class 7)
classes. (Note that it is possible for more than half of a class to be azonal when assessed at finer
scales as the dominant class has only to receive more pixels than any other single class rather
than a majority of 1 km pixels). Graef et al. (2005) also report ecoregions to be highly
heterogeneous at the pixel level.

In addition to sharing similar patch characteristics, all classifications shared moderate
pixel-wise class associations. However, because each classification divided Canada in different
ways and along different environmental characteristics, classes from a particular scheme tended
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to be subdivided among several dominant classes from alternate schemes (Fig. 7). For example,
many of the boreal ecozones (e.g., ecozones 4, 5, 6, 9, 11, 15), were split among several
productivity or snow classes due to differences in the generalized distributions of these classes.
All of the quantitative productivity and snow classifications exhibit strong north-south gradients,
with elongated bands of class occurrence (Fig. 1). These distribution patterns are likely related
to prevailing atmospheric circulation patterns controlling snow cover and, indirectly, vegetation
productivity. For example, Derksen et al. (1998) demonstrated that the orientation of snow
regions was closely related to the direction of atmospheric airflow during the observation period.
In contrast, ecozones subdivide this pattern longitudinally into more compact regions, perhaps in
response to input variables displaying east-west as well as north-south structure (e.g., geology,
soils, wildlife).

Class associations also highlight similarities in the environmental patterns and physical
processes underlying each product. The strongest association was observed between
productivity classes and ecozones, suggesting that ecozones are most representative of growing
season processes, and may be less adequate at describing winter conditions. Additionally, this
level of agreement highlights that the many variables incorporated into ecozone delineation
(geology, topography, soil, vegetation, climate, wildlife, hydrology, and land use) are well
proxied by productivity, elevation, and land cover alone. This is not surprising as productivity is
an integrated vegetation response to many of the factors informing ecozone placement, including
geology, soils, and climate.

Generality is an important feature of ecosystem classifications. Incorporating a variety of
independent environmental variables into a classification is encouraged and believed to increase
the generality and reduce the artificiality of the result (Bailey et al. 1978). The intermediate
degree of association between the SWE + DHI classification and the other three products implies
that including both productivity and snow metrics as input variables does yield a compromise
between the two sets and may produce a more general environmental classification.
Nevertheless, the classifications along DHI and SWE alone were found to be somewhat general,
at least with respect to evaluations along snow and productivity conditions, respectively (Fig. 8).
The ability of productivity classes to represent variation in snow space, and vice versa, indicates
that these variables are related across Canada and that frameworks based on summertime
productivity may be somewhat meaningful for monitoring winter processes, and vice versa. The
robustness of this relationship is shown by its continued significance in the more stringent test
for differences using only nearest neighbours, although class distinctness is weaker when
restricting comparisons to environmental neighbourhoods. The exception is that ANOSIM Rs
increased when defining neighbourhoods along the two snow PCs representing timing.
However, this is unlikely to be meaningful. These PCs contain only 21% and 12% of the SWE
variation, respectively. Therefore, considering them in isolation may obscure more important
gradients; i.e., classes may be neighbours in snow timing, but quite distinct in terms of snow
amount, which is a more information-rich (53% of SWE variation) and potentially more
important variable. Although class correspondence suggests that productivity and snow are
related, the strength and even direction of the snow-productivity relationship is not likely to be
constant throughout Canada. For example, individual SWE classes were much more strongly
representative of productivity in the snowiest classes and in those with the most variable snow
timing. This suggests that snow may have the greatest effect on productivity in areas where
snow is a dominant feature, but that other limiting factors occur elsewhere. The nature of the
snow/productivity relationship over broad scales is the subject of ongoing research.
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Ecosystem classifications are rarely quantitatively compared, so it is unclear if the levels
of geographic and environmental correspondence observed between productivity regimes, snow
classes, and ecozones are typical. However, several comparative evaluations against
independent datasets do exist. Research evaluating the relevance of ecoregions for monitoring
and management appears to be most active in freshwater ecology (e.g., Cheruvelil et al. 2008;
the special issue of the Journal of the North American Benthological Society synthesized in
Hawkins et al. 2000), although tests of classifications against community types and composition
(Andrew et al. 2011; Oliver et al. 2004; Trakhtenbrot and Kadmon 2006; Wright et al. 1998),
physiography (Thompson et al. 2004), forest productivity (Carmean 1996), and forest ecotypic
variation (Parker et al. 1996) have also been conducted. These studies generally find that
ecosystem classifications capture patterns of environmental conditions, community structure, and
local adaptation successfully, albeit weakly (Hawkins et al. 2000, but see Carmean 1996). Much
of the success of spatially discrete classifications can be attributed to spatial autocorrelation of
the response variables, rather than relevance of the classification specifically (Andrew et al.
2011; Hawkins and Vinson 2000; Pyne et al. 2007; Van Sickle and Hughes 2000). In the present
study, the correspondence between productivity and snow classes is certainly due in part to
shared spatial structuring of these two characteristics and the extent that this is the case should be
the subject of future work. Alternatively, environmental conditions, species, and communities
are often patchily and widely distributed, hampering the utility of compact, spatially contiguous
regions (Hawkins and Vinson 2000; Jenerette et al. 2002; McCormick et al. 2000; Van Sickle
and Hughes 2000; Wright et al. 1998).

Neither productivity nor snow conditions are often included in ecosystem classifications.
Yet regions defined by these variables are potentially very important frameworks, particularly
for monitoring and reporting responses to climate change. Both snow (Brown 2000; Brown and
Braaten 1998; Riisdnen 2008) and productivity (Goetz et al. 2005; Myneni et al. 1997; Zhou et
al. 2001) are key response variables to climate change. Yet these and other responses show
regional variation (e.g., Angert et al. 2005; Baker and Weisberg 1997; Bunn and Goetz 2006;
Réisdnen 2008), depending upon current climate, changing precipitation, or the land cover
present. Ecosystem classifications based on climate-sensitive variables may capture these
patterns of regional variation, allowing scientists and managers to make sense of and effectively
communicate abiotic and biotic responses to climate change. We encourage more widespread
use of productivity and snow in classification frameworks, and their application to environmental
monitoring and management.

5. Conclusions

Ecosystem classifications are valuable generalizations of spatial variability that may
facilitate environmental monitoring, management, and study; however, they should be carefully
considered prior to use. A variety of ecosystem classifications constructed upon a diversity of
environmental variables exists, and each may provide widely different generalizations of an area.
Successful application will depend on whether an appropriate classification was selected.
Classifications driven by remotely sensed productivity or snow, such as those described here,
may be ideal when the environmental patterns or processes of interest are highly seasonal. Since
productivity and snow are both sensitive to variations in climate conditions, such classifications
may be especially valuable for monitoring climate change and its biotic and abiotic responses.

We found productivity- and snow-based classes to be only moderately spatially
associated and, when evaluated reciprocally, to be only half as successful at describing
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continuous variation in each other’s input variables as in their own. Furthermore, the ability of
snow classes to represent productivity varied with snow conditions. Thus, although snow and
productivity are related across Canada, this correlation is imperfect and variable over space and
environmental conditions, and classes derived from summer (winter) conditions may not
adequately represent winter- (summer-) controlled patterns and processes. When constant
regions are required for monitoring a variety of variables, an ecosystem classification
incorporating both summer and winter conditions should be used. The existing and widely used
ecozone framework was found to be most associated with summer patterns, calling its generality
into question. In contrast, the combined snow and productivity classification had intermediate
levels of association with the individual season schemes as well as the ecozones, suggesting that
it may be the most general of those stratifications produced and evaluated here.
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Table 1. Definitions of abbreviations used in the text.

acronym definition
AMI Average Mutual Information
ANOSIM ANalysis Of SIMilarity
GO Grand, Overall
GA Grand, Adjacent
CcO Class-wise, Overall
CA Class-wise, Adjacent
DHI Dynamic Habitat Index
fPAR fraction of absorbed Photosynthetically Active Radiation
MAD Mean Absolute Deviance
MAUP Modifiable Areal Unit Problem
MODIS  MODerate-resolution Imaging Spectrometer
NN Nearest Neighbour
PC Principal Component
SSM/1 Special Sensor Microwave/Imager
SWE Snow Water Equivalent
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§ high  'PC1, PG3 - high
PC2 - high PC3-moderate  PC3 - low PC2 - modarate.
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Figure 1. False color composite images of a) productivity metrics (DHI = dynamic habitat
index) and b) SWE (snow water equivalent) principal components, with an annotated gradient to
assist interpretation of the color mixing. The ecosystem classifications derived from c)
productivity, d) snow, e) productivity and snow, and f) the ecozones are also mapped. Ecozone
numbers in panel f correspond to: 1. Arctic Cordillera, 2. Northern Arctic, 3. Southern Arctic, 4.
Taiga Plain, 5. Taiga Shield, 6. Boreal Shield, 7. Atlantic Maritime, 8. Mixedwood Plain, 9.
Boreal Plain, 10. Prairie, 11. Taiga Cordillera, 12. Boreal Cordillera, 13. Pacific Maritime, 14.
Montane Cordillera, and 15. Hudson Plain. All maps are in the Lambert Conformal Conic
projection.
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Figure 2. Flowchart diagramming the creation, characterization, and comparison of ecosystem
classifications based on summer and/or winter conditions. See Table 1 for a list of abbreviations.
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Figure 3. Average characteristics of the ecosystems classified along productivity (a, d, g), snow

conditions (b, e, h), and both (c, f, 1). Scatterplots illustrate patch centroids along productivity

axes (a-c), snow gradients (d-f), and elevation and land cover (g-i). Class numbers correspond to

those mapped in Fig. 1.
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Figure 4. Patch characteristics of contiguous blocks of the same class from each classification:
a) patch area (km?), b) patch shape index (km/km), ¢) the proportion of single pixel patches, and
the mean nearest neighbour distance relative to a random distribution (km/km) for both d)
patches, and e) pixels within each class. Plots are of means with standard error bars. Analysis of
variance significance levels are indicated in the plot and, where significant differences exist,
significantly different pairs (p < 0.05) are indicated by the letter above the bar.
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Figure 5. Correlations between patch metrics (n patches, proportion of single-pixel patches and
mean and standard deviation of patch size and shape) for each class and the characteristics of that
class (mean and standard deviation of input variables). Correlation coefficients that fall outside
of the dashed lines are significant. Note that the max SWE, total SWE, and accumulation rate
metrics are scaled inversely to the processes they describe.
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Figure 6. Correlations between dispersion metrics (NN ratio: mean nearest neighbour distances
standardized by expected values given the sample size, calculated for both patches and individual
pixels) for each class and the characteristics of that class (mean and standard deviation of input
variables). Correlation coefficients that fall outside of the dashed lines are significant. Note that
the max SWE, total SWE, and accumulation rate metrics are scaled inversely to the processes
they describe.
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Figure 7. Contingency tables of pixel-wise class associations between classification pairs. DHI
(dynamic habitat index) refers to the productivity metrics and SWE (snow water equivalent) to
the set of snow metrics. These tables are presented graphically, with the entries color-coded by
count, in order to facilitate intercomparison. The % average mutual information (%AMI) and
Pearson’s ” statistics for each contingency table are also presented.
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Figure 8. Results of ANOSIMgo (overall) and ANOSIMg,4 (adjacent) analyses testing if
productivity-based clusters effectively explain variation in snow characteristics (top) and if
snow-based clusters successfully describe patterns of productivity (bottom). Productivity and
snow are abbreviated with DHI (dynamic habitat index) and SWE (snow water equivalent),
respectively. The adjacent ANOSIMs compare only between classes that are nearest neighbours
in the specified axis.
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Figure 9. Correlations between individual class ANOSIM Rs when evaluating clusters derived

from SWE metrics against DHI variables and the characteristics of that class (number of pixels

in the class, mean and standard deviation of input SWE variables). Correlation coefficients that

fall outside of the dashed lines are significant. Note that the max SWE, total SWE, and

accumulation rate metrics are scaled inversely to the processes they describe.
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