

University of Huddersfield Repository

Clegg, Oliver R., Harding, Lindsay P., Miller, John W. and Rice, Craig R.

Tricarbonylchlorido(6'7'-dihydro-5'H-spiro[cyclopentane-1,6'-dipyrido-[3,2-d:2',3'-f] [1,3]diazepine]-κ2N1,N11)-rhenium(I)

Original Citation

Clegg, Oliver R., Harding, Lindsay P., Miller, John W. and Rice, Craig R. (2013) Tricarbonylchlorido(6'7'-dihydro-5'H-spiro[cyclopentane-1,6'-dipyrido-[3,2-d:2',3'-f] [1,3]diazepine]-κ2N1,N11)-rhenium(I). Acta Crystallographica Section E, 69 (10). m526. ISSN 1600-5368

This version is available at http://eprints.hud.ac.uk/21239/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368

Tricarbonylchlorido(6',7'-dihydro-5'*H*-spiro[cyclopentane-1,6'-dipyrido[3,2-*d*:2',3'-*f*][1,3]diazepine]- $\kappa^2 N^1, N^{11}$)rhenium(I)

Oliver R. Clegg, Lindsay P. Harding, John W. Miller and Craig R. Rice

Acta Cryst. (2013). E69, m526

This open-access article is distributed under the terms of the Creative Commons Attribution Licence http://creativecommons.org/licenses/by/2.0/uk/legalcode, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Acta Crystallographica Section E: Structure Reports Online is the IUCr's highly popular open-access structural journal. It provides a simple and easily accessible publication mechanism for the growing number of inorganic, metal-organic and organic crystal structure determinations. The electronic submission, validation, refereeing and publication facilities of the journal ensure very rapid and high-quality publication, whilst key indicators and validation reports provide measures of structural reliability. The journal publishes over 4000 structures per year. The average publication time is less than one month.

Crystallography Journals Online is available from journals.iucr.org

metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tricarbonylchlorido(6',7'-dihydro-5'Hspiro[cyclopentane-1,6'-dipyrido-[3,2-d:2',3'-f][1,3]diazepine]- $\kappa^2 N^1, N^{11}$)rhenium(I)

Oliver R. Clegg, Lindsay P. Harding,* John W. Miller and Craig R. Rice

Department of Chemical & Biological Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, England Correspondence e-mail: l.p.harding@hud.ac.uk

Received 7 August 2013; accepted 16 August 2013

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.037: *wR* factor = 0.075: data-to-parameter ratio = 44.1.

In the title compound, $[ReCl(C_{15}H_{16}N_4)(CO)_3]$, the Re^I ion is coordinated in a distorted octahedral geometry by one Cl atom, two N atoms of the bidentate ligand and three carbonyl groups. The cyclopentane group is orientated in a *transoid* fashion with respect to the chloride ligand. The dihedral angle between the pryridine rings is 10.91 (12) $^{\circ}$. In the crystal, N-H...Cl hydrogen bonds link complex molecules, forming a two-dimensional network parallel to (001).

Related literature

For a review of the photophysical properties of Re-polypyridyl complexes, see: Coleman et al. (2008). For the synthesis of $[\text{Re}(3,3'-\text{diamino}-2,2'-\text{bipyridine})(\text{CO})_3\text{Cl}]$ and for the preparation of oxo-steroid derivatives of [Re(3,3'-diamino-2,2'-bipyridine)(CO)₃Cl], see: Bullock et al. (2012). For the reaction of [Re(3,3'-diamino-2,2'-bipyridine)(CO)₃Cl] with ketones, see: Clayton et al. (2008). For the structure of the cyclohexane analog of the title compound, see: Clegg et al. (2013).

Experimental

Crvstal data

$[\mathbf{P} \circ \mathbf{C}](\mathbf{C} + \mathbf{N})(\mathbf{C} \mathbf{O})]$	$V = 3612.0(2) Å^3$
M = 558.00	V = 5012.0 (2) A Z = 8
$M_r = 556.00$	L = 0 Mo K radiation
$a = 12 \ 1162 \ (5) \ \text{\AA}$	$\mu = 6.90 \text{ mm}^{-1}$
h = 11.9638(5) Å	$\mu = 0.50 \text{ mm}$ T = 150 K
c = 24.9181(9) Å	$0.50 \times 0.50 \times 0.20$ mm

Data collection

Bruker APEXII CCD	45382 measured reflections
diffractometer	10757 independent reflections
Absorption correction: multi-scan	7941 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2009)	$R_{\rm int} = 0.053$
$T_{\min} = 0.16, \ T_{\max} = 0.34$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	244 parameters
$wR(F^2) = 0.075$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 2.28 \text{ e} \text{ \AA}^{-3}$
10757 reflections	$\Delta \rho_{\rm min} = -5.29 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond	geometry (Α,	°)	
---------------	------------	----	----	--

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N3-H3A\cdots Cl1^{i}$	0.88	2.53	3.363 (3)	158
$N4-H4\cdots Cl1^{ii}$	0.88	2.65	3.419 (2)	147
		(**) 3	. 1	

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

The authors wish to thank the University of Huddersfield for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5644).

References

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bullock, S., Hallett, A. J., Harding, L. P., Higginson, J. J., Piela, S. A. F., Pope, S. J. A. & Rice, C. R. (2012). Dalton Trans. 41, 14690-14696.
- Clayton, H. J., Harding, L. P., Irvine, J. P., Jeffery, J. C., Riis-Johannessen, T., Laws, A. P., Rice, C. R. & Whitehead, M. (2008). Chem. Commun. pp. 108-110.
- Clegg, O. R., Harding, L. P., Miller, J. W. & Rice, C. R. (2013). Acta Cryst. E69, m527.
- Coleman, A., Brennan, C., Vos, J. G. & Pryce, M. T. (2008). Coord. Chem. Rev. 252 2585-2595
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2013). E69, m526 [doi:10.1107/S1600536813023076]

Tricarbonylchlorido(6',7'-dihydro-5'*H*-spiro[cyclopentane-1,6'-dipyrido[3,2d:2',3'-f][1,3]diazepine]- $\kappa^2 N^1$, N^{11})rhenium(I)

Oliver R. Clegg, Lindsay P. Harding, John W. Miller and Craig R. Rice

1. Comment

The title complex was prepared as part of a larger study into conjugation of $[\text{Re}(3,3'-\text{diamino}-2,2'-\text{bipyridine})(\text{CO})_3\text{Cl}]$ with oxo-steroids to form luminescent derivatives (Bullock *et al.* 2012). These steroids contain a cyclopentyl ring (ring D) with a ketone group in the 17-position; therefore, cyclopentanone was used as a model compound to examine the potential reactivity of such steroids with the rhenium complex. The photophysical properties of Re-polypyridyl complexes have been studied (Coleman *et al.*, 2008) as well as the reaction of $[\text{Re}(3,3'-\text{diamino}-2,2'-\text{bipyridine})(\text{CO})_3\text{Cl}]$ with ketones (Clayton *et al.*, 2008).

Single-crystal X-ray analysis of the product gave the structure shown in Fig. 1. The rhenium centre adopts a distorted octahedral coordination geometry and is coordinated by two nitrogen atoms from 3,3'-diamino-2,2'-bipyridyl and two carbonyl ligands in the equatorial positions (Re—N distances 2.158 (2) - 2.169 (2) Å, Re—C distances 1.924 (3) - 1.925 (3) Å). Carbonyl and chloride ligands occupy the axial positions (Re—C distance 1.891 (3) Å, Re—Cl distance 2.5046 (6) Å). The cyclopentyl ring is orientated in a *trans*-oid fashion with respect to the chloride ligand on the rhenium centre. In the crystal, N—H…O hydrogen bonds (see, Table 1) link complex molecules to form a two-dimensional network parallel (001).

A similar compound has been prepared using cyclohexanone instead of cyclopentanone. This compound is essentially isostructural with the compound reported here (Clegg *et al.* 2013).

2. Experimental

To a solution of $[\text{Re}(3,3'-\text{diamino}-2,2'-\text{bipyridine})(\text{CO})_3\text{Cl}]$ in dichloromethane was added cyclopentanone (10 μ L, *ca* 2 eq.) and a few grains of camphorsulfonic acid. The solution was stirred at room temperature for 2 h. The resulting precipitate was filtered *in vacuo*, washed with dichloromethane and dried, affording the product as a yellow solid. Slow evaporation of an acetonitrile solution of the complex gave yellow crystals suitable for X-ray analysis.

3. Refinement

All non-hydrogen atoms were refined anisotropically. Hydrogen atoms on sp^2 and sp^3 carbons were placed in calculated positions (C—H = 0.95 - 0.99Å) and refined with riding constraints and with isotropic displacement parameters 1.2 *x* their parent carbon atoms. H atoms on the nitrogen atoms were treated similarly with N—H = 0.88Å.

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov *et al.*, 2009); software used to prepare material for

publication: OLEX2 (Dolomanov et al., 2009).

Figure 1

The molecular structure of the title compound with displacement ellipsoids shown for non-H atoms at the 50% probability level.

Tricarbonylchlorido(6',7'-dihydro-5'H-spiro[cyclopentane-1,6'-dipyrido[3,2-d:2',3'-f][1,3]diazepine]- $\kappa^2 N^1, N^{11}$)rhenium(I)

Crystal data

[ReCl(C ₁₅ H ₁₆ N ₄)(CO) ₃]
$M_r = 558.00$
Orthorhombic, Pbca
<i>a</i> = 12.1162 (5) Å
<i>b</i> = 11.9638 (5) Å
<i>c</i> = 24.9181 (9) Å
$V = 3612.0 (2) Å^3$
Z = 8
F(000) = 2144

Data collection

Bruker APEXII CCD diffractometer Graphite monochromator Detector resolution: 8.3333 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.16, T_{\max} = 0.34$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.075$ S = 1.0410757 reflections 244 parameters $D_x = 2.052 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9921 reflections $\theta = 2.9-39.3^{\circ}$ $\mu = 6.90 \text{ mm}^{-1}$ T = 150 KBlock, yellow $0.50 \times 0.50 \times 0.20 \text{ mm}$

45382 measured reflections 10757 independent reflections 7941 reflections with $I > 2\sigma(I)$ $R_{int} = 0.053$ $\theta_{max} = 39.4^\circ$, $\theta_{min} = 2.3^\circ$ $h = -21 \rightarrow 20$ $k = -21 \rightarrow 13$ $l = -44 \rightarrow 41$

0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.002$
$w = 1/[\sigma^2(F_o^2) + (0.0093P)^2 + 8.4209P]$	$\Delta \rho_{\rm max} = 2.28 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -5.29 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Re1	0.454601 (7)	0.268496 (9)	0.14683 (4)	0.01301 (3)	
Cl1	0.61326 (5)	0.24039 (6)	0.08383 (3)	0.01986 (12)	
N1	0.39870 (16)	0.38723 (19)	0.08695 (8)	0.0143 (4)	
N2	0.53943 (17)	0.4231 (2)	0.16399 (9)	0.0156 (4)	
N3	0.4418 (2)	0.6806 (2)	0.04288 (10)	0.0216 (5)	
H3A	0.4175	0.7169	0.0145	0.026*	
N4	0.61142 (17)	0.6801 (2)	0.09197 (9)	0.0170 (4)	
H4	0.6735	0.6957	0.0752	0.02*	
01	0.55829 (19)	0.1241 (2)	0.23572 (10)	0.0301 (5)	
O2	0.3300 (2)	0.0584 (2)	0.10992 (12)	0.0425 (7)	
O3	0.2621 (2)	0.3006 (3)	0.22352 (12)	0.0467 (7)	
C1	0.3219 (2)	0.3577 (2)	0.05113 (10)	0.0177 (5)	
H1	0.2898	0.2854	0.0533	0.021*	
C2	0.2877 (2)	0.4305 (3)	0.01061 (10)	0.0191 (5)	
H2	0.2351	0.4073	-0.0154	0.023*	
C3	0.3314 (2)	0.5352 (3)	0.00911 (10)	0.0182 (5)	
H3	0.3084	0.5854	-0.0182	0.022*	
C4	0.41063 (19)	0.5711 (2)	0.04738 (9)	0.0149 (4)	
C5	0.44682 (18)	0.4917 (2)	0.08588 (9)	0.0131 (4)	
C6	0.53279 (19)	0.5069 (2)	0.12741 (9)	0.0133 (4)	
C7	0.60801 (19)	0.5965 (2)	0.13002 (10)	0.0153 (4)	
C8	0.6856 (2)	0.5981 (3)	0.17185 (12)	0.0211 (5)	
H8	0.737	0.6578	0.1742	0.025*	
C9	0.6876 (2)	0.5138 (3)	0.20945 (12)	0.0242 (6)	
H9	0.7393	0.515	0.2381	0.029*	
C10	0.6127 (2)	0.4277 (3)	0.20445 (11)	0.0219 (5)	
H10	0.6129	0.3697	0.2305	0.026*	
C11	0.5101 (2)	0.7430 (2)	0.07960 (11)	0.0173 (5)	
C12	0.5445 (3)	0.8552 (3)	0.05556 (13)	0.0249 (6)	
H12A	0.481	0.8927	0.0382	0.03*	
H12B	0.604	0.8453	0.0287	0.03*	
C13	0.5857 (3)	0.9228 (3)	0.10410 (14)	0.0303 (7)	
H13A	0.5668	1.0029	0.1	0.036*	

H13B	0.6667	0.9157	0.108	0.036*	
C14	0.5256 (3)	0.8717 (3)	0.15337 (13)	0.0319 (7)	
H14A	0.5796	0.84	0.179	0.038*	
H14B	0.4815	0.9295	0.1721	0.038*	
C15	0.4503 (2)	0.7797 (3)	0.13103 (13)	0.0228 (5)	
H15A	0.3758	0.8091	0.1229	0.027*	
H15B	0.4435	0.7168	0.1567	0.027*	
C16	0.5196 (2)	0.1764 (3)	0.20172 (11)	0.0189 (5)	
C17	0.3787 (2)	0.1363 (3)	0.12295 (12)	0.0228 (5)	
C18	0.3353 (2)	0.2923 (3)	0.19437 (12)	0.0238 (6)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Re1	0.01383 (4)	0.01096 (5)	0.01425 (4)	0.00013 (3)	0.00075 (3)	-0.00102 (3)
Cl1	0.0199 (2)	0.0217 (3)	0.0180 (2)	0.0056 (2)	0.00425 (19)	0.0036 (2)
N1	0.0139 (7)	0.0123 (10)	0.0166 (8)	0.0004 (7)	-0.0027 (6)	-0.0025 (7)
N2	0.0174 (8)	0.0125 (10)	0.0170 (8)	0.0000 (7)	-0.0035 (7)	0.0010(7)
N3	0.0285 (11)	0.0178 (13)	0.0183 (9)	-0.0037 (9)	-0.0082 (8)	0.0047 (8)
N4	0.0163 (8)	0.0146 (11)	0.0202 (9)	-0.0006 (7)	0.0012 (7)	0.0025 (8)
O1	0.0363 (12)	0.0265 (13)	0.0275 (11)	0.0024 (9)	-0.0035 (9)	0.0085 (10)
02	0.0472 (15)	0.0211 (14)	0.0590 (18)	-0.0087 (11)	-0.0202 (13)	-0.0053 (12)
O3	0.0349 (13)	0.058 (2)	0.0469 (16)	0.0043 (13)	0.0198 (12)	-0.0117 (15)
C1	0.0174 (9)	0.0164 (13)	0.0193 (10)	-0.0012 (8)	-0.0041 (8)	-0.0063 (9)
C2	0.0177 (10)	0.0242 (15)	0.0156 (10)	0.0013 (9)	-0.0036 (8)	-0.0039 (9)
C3	0.0194 (10)	0.0227 (15)	0.0126 (9)	-0.0005 (9)	-0.0032 (8)	0.0007 (9)
C4	0.0163 (9)	0.0160 (13)	0.0125 (9)	-0.0004 (8)	-0.0002 (7)	-0.0004 (8)
C5	0.0143 (8)	0.0128 (11)	0.0121 (8)	0.0008 (7)	-0.0019 (7)	-0.0009 (7)
C6	0.0166 (9)	0.0100 (11)	0.0132 (9)	-0.0001 (7)	-0.0015 (7)	-0.0010(7)
C7	0.0157 (9)	0.0118 (12)	0.0183 (10)	0.0010 (8)	-0.0021 (8)	-0.0019 (8)
C8	0.0201 (10)	0.0182 (14)	0.0250 (12)	-0.0054 (9)	-0.0067 (9)	-0.0023 (10)
С9	0.0241 (12)	0.0233 (16)	0.0252 (13)	-0.0047 (10)	-0.0120 (10)	0.0025 (11)
C10	0.0249 (12)	0.0205 (15)	0.0205 (11)	-0.0004 (10)	-0.0085 (9)	0.0022 (10)
C11	0.0217 (10)	0.0126 (13)	0.0176 (10)	0.0001 (9)	-0.0019 (8)	0.0020 (8)
C12	0.0297 (13)	0.0180 (15)	0.0271 (13)	-0.0026 (11)	-0.0042 (11)	0.0073 (11)
C13	0.0381 (17)	0.0156 (15)	0.0373 (17)	-0.0025 (12)	-0.0048 (13)	-0.0031 (13)
C14	0.0504 (19)	0.0193 (16)	0.0259 (15)	0.0032 (14)	-0.0048 (13)	-0.0067 (12)
C15	0.0252 (12)	0.0195 (16)	0.0237 (12)	0.0053 (10)	0.0018 (9)	-0.0016 (10)
C16	0.0207 (10)	0.0160 (14)	0.0200 (11)	-0.0019 (9)	0.0019 (8)	-0.0006 (9)
C17	0.0267 (12)	0.0186 (15)	0.0232 (12)	-0.0020 (10)	-0.0037 (10)	0.0000 (10)
C18	0.0208 (11)	0.0261 (17)	0.0245 (12)	0.0018 (10)	0.0032 (9)	-0.0062(11)

Geometric parameters (Å, °)

Re1—C18	1.891 (3)	С3—Н3	0.95
Re1—C17	1.924 (3)	C4—C5	1.419 (4)
Re1-C16	1.925 (3)	C5—C6	1.479 (3)
Re1—N2	2.158 (2)	C6—C7	1.409 (4)
Re1—N1	2.169 (2)	С7—С8	1.404 (4)
Re1—Cl1	2.5046 (6)	C8—C9	1.377 (4)

Acta Cryst. (2013). E69, m526

N1—C1	1.337 (3)	С8—Н8	0.95
N1—C5	1.380 (3)	C9—C10	1.378 (4)
N2—C10	1.345 (3)	С9—Н9	0.95
N2—C6	1.358 (3)	C10—H10	0.95
N3—C4	1.368 (4)	C11—C12	1.528 (4)
N3—C11	1.442 (4)	C11—C15	1.536 (4)
N3—H3A	0.88	C12—C13	1.538 (5)
N4—C7	1.379 (4)	C12—H12A	0.99
N4—C11	1.473 (3)	C12—H12B	0.99
N4—H4	0.88	C13—C14	1.553 (5)
O1—C16	1.153 (4)	С13—Н13А	0.99
O2—C17	1.149 (4)	С13—Н13В	0.99
O3—C18	1.150 (4)	C14—C15	1.535 (5)
C1—C2	1.396 (4)	C14—H14A	0.99
C1—H1	0.95	C14—H14B	0.99
$C^2 - C^3$	1 361 (4)	C15—H15A	0.99
C2H2	0.95	C15—H15B	0.99
$C_2 C_2$	1 420 (3)		0.99
05-04	1.420 (3)		
C18 Rel C17	87 23 (13)	N4 C7 C8	118.7(2)
C_{10} Ref C_{17}	87.25 (13) 87.36 (13)	N4 C7 C6	110.7(2)
C_{10} Ref C_{10}	87.30 (13)	$\begin{array}{c} \mathbf{N} = \mathbf{C} \\ $	122.7(2)
C19 $Re1$ $N2$	00.03(12)	C_{0} C_{0} C_{0} C_{0}	110.0(2)
C_{10} —ReI—N2	90.39(12)	C_{2}	120.3 (5)
C1/-Re1-N2	1/3.32(11)	C_{2} C_{3} H_{8}	119.8
C16—ReI—N2	98.89 (10)	C/-C8-H8	119.8
CI8—ReI—NI	95.38 (11)	C8—C9—C10	118.3 (2)
CI/—Rel—NI	100.15 (11)	C8—C9—H9	120.8
Cl6—Rel—Nl	172.58 (10)	С10—С9—Н9	120.8
N2—Re1—N1	73.97 (8)	N2—C10—C9	122.2 (3)
C18—Re1—Cl1	179.06 (11)	N2—C10—H10	118.9
C17—Re1—Cl1	93.60 (9)	С9—С10—Н10	118.9
C16—Re1—Cl1	93.12 (8)	N3—C11—N4	110.3 (2)
N2—Re1—Cl1	82.74 (6)	N3—C11—C12	111.3 (2)
N1—Re1—Cl1	84.05 (6)	N4—C11—C12	107.7 (2)
C1—N1—C5	121.4 (2)	N3—C11—C15	114.0 (2)
C1—N1—Re1	120.25 (19)	N4—C11—C15	111.4 (2)
C5—N1—Re1	118.36 (15)	C12—C11—C15	101.8 (2)
C10—N2—C6	120.8 (2)	C11—C12—C13	104.0 (2)
C10—N2—Re1	119.9 (2)	C11—C12—H12A	111.0
C6—N2—Re1	118.13 (16)	C13—C12—H12A	111.0
C4—N3—C11	127.0 (2)	C11—C12—H12B	111.0
C4—N3—H3A	116.5	C13—C12—H12B	111.0
C11—N3—H3A	116.5	H12A—C12—H12B	109.0
C7—N4—C11	119.3 (2)	C12—C13—C14	105.2 (3)
C7—N4—H4	120.3	C12—C13—H13A	110.7
C11—N4—H4	120.3	C14—C13—H13A	110.7
N1-C1-C2	121.6 (3)	C12—C13—H13B	110.7
N1—C1—H1	119.2	C14—C13—H13B	110.7
C2—C1—H1	119.2	H13A—C13—H13B	108.8

C3—C2—C1	118.6 (2)	C15—C14—C13	105.9 (3)
С3—С2—Н2	120.7	C15—C14—H14A	110.5
С1—С2—Н2	120.7	C13—C14—H14A	110.5
C2—C3—C4	121.6 (2)	C15—C14—H14B	110.5
С2—С3—Н3	119.2	C13—C14—H14B	110.5
С4—С3—Н3	119.2	H14A—C14—H14B	108.7
N3—C4—C5	127.7 (2)	C14—C15—C11	103.1 (2)
N3—C4—C3	114.9 (2)	C14—C15—H15A	111.1
C5—C4—C3	117.4 (2)	C11—C15—H15A	111.1
N1-C5-C4	119.3 (2)	C14—C15—H15B	111.1
N1-C5-C6	113.3 (2)	C11—C15—H15B	111.1
C4—C5—C6	127.5 (2)	H15A—C15—H15B	109.1
N2—C6—C7	119.5 (2)	O1-C16-Re1	177.8 (3)
N2—C6—C5	114.9 (2)	O2—C17—Re1	177.4 (3)
C7—C6—C5	125.5 (2)	O3—C18—Re1	176.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A	
N3—H3A····Cl1 ⁱ	0.88	2.53	3.363 (3)	158	
N4—H4···Cl1 ⁱⁱ	0.88	2.65	3.419 (2)	147	

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*+3/2, *y*+1/2, *z*.