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ABSTRACT
We consider a scheduling problem for packet based systems
with time-varying channel conditions. Designing schedul-
ing mechanisms that take advantage of time-varying channel
conditions, which are different for different users, is neces-
sary to improve system performance; however this has to
be done in a way that provides some level of fairness among
the users. Such scheduling mechanisms are termed as oppor-
tunistic. We generalize the opportunistic scheduling mech-
anisms in the literature on two fronts. First, we formulate
and solve an opportunistic scheduling problem with multi-
ple general long term QoS constraints and a general system
objective function. We call the solution of this opportunis-
tic scheduling problem as a generalized water filling solution.
Then, we generalize this problem to include multiple inter-
face systems in which several users can be served simulta-
neously. Apart from the long term QoS constraints speci-
fied by each user, multiple interface systems are constrained
with other physical limitations imposed by the system struc-
ture. Our main contribution is to show that the structure of
the optimal opportunistic scheduling policy is carried over
to the problem with general constraints and multiple inter-
faces. We also study the stability of the multiple interface
systems and propose a throughput optimal scheduling rule
for such systems.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling Techniques;
C.2.1 [Computer Communication Networks]: Network
Architecture and Design—Wireless Communication;
G.3 [Probability and Statistics]: Stochastic Processes

General Terms
QoS Provisioning, Performance evaluation and modeling,
Optimization, Theory

Keywords
Opportunistic scheduling, QoS scheduling, Multiple Inter-
face Systems

1. INTRODUCTION
Wireless channels, in contrast to their wireline counterparts
have time-varying location-dependent characteristics and dif-
ferent wireless users experience different channel conditions
at a given time. These channels are affected by user shad-
owing and path losses due to changing environments and
due to user mobility. In CDMA based systems, wireless
channels are affected by the co-channel interference due to
other users. Also in the case of satellite systems, the chan-
nel conditions vary due to the weather conditions and satel-
lite movements. In prior works [10, 4], it has been argued
that the variations in the channel conditions should be ex-
ploited to increase the system throughput. The basic idea
behind exploiting the channel variations is to schedule a user
having the best channel condition at a given time. Such
scheduling mechanisms are called Opportunistic Scheduling
Mechanisms. If the service requirements of all the users
are flexible, such opportunistic scheduling methods can re-
sult in reduced interference, higher spectrum utilization and
increased system throughput. CDMA-HDR (IS-856) is an
example of a high data rate system that can take advan-
tage of time-varying channel conditions through the use of
an opportunistic scheduling mechanism.

The problem of packet scheduling for systems with time-
varying channel conditions can be illustrated as follows. (see
Figure 1). Consider a base station with fixed transmission
power and a packet based downlink scheduling mechanism.
The wireless channel for each user differs depending on the
location, the surrounding environment, and mobility. As-
sume that each user reports its downlink channel condition
to the base station in a periodic fashion. Thus the base
station knows exactly the channel condition and hence the
data rate it can offer to each user on the downlink channel
if only that user is served at a given time. After finishing a
packet transmission, the base station must choose the next
(single) user to whom it will send the next packet. It will use
the transmission rate as determined by that user’s channel
condition. Such systems are called single interface systems.

There are systems of interest which cannot be modeled in
the above framework. Such systems can be described as
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Figure 1: Opportunistic Scheduling: A typical wire-
less base station downlink

multiple interface systems where the user channel conditions
are time-varying over all the interfaces and the base station
has the freedom to serve several users on several interfaces
simultaneously. For example, in multi-carrier CDMA sys-
tems every user has a time-varying channel on each carrier.
In multiple-antenna systems, multiple users can be served on
different antennas. In OFDM systems, fading and shadow-
ing are different for each carrier. In multiple beam satellite
systems, a satellite can transmit to different ground termi-
nals over different channels. Depending on the specifics of
the system, the number of interfaces can vary from two to
more than thousand.

To describe the scheduling problem in such systems, again
consider a packet based downlink scheduling (see Figure 2).
All the transmissions on different interfaces start and end
at the same time. Each user has different channel condi-
tions over different interfaces. Assume that each user re-
ports its channel condition on every interface to a single
base station. The base station must schedule several users
for transmission over multiple interfaces in a way that sat-
isfies the physical constraints. The physical constraints can
differ from system to system taking into account the differ-
ent technologies used at the base station, but these physical
constraints must be satisfied at all times. We do not assume
that the different interfaces use the same technology, but
we do assume that the base station has complete knowledge
of the current channel state for each user on each interface.
This excludes the case in which each interface is managed
by a different base station. It is not necessary that all users
have all the interfaces. If a particular user does not support
a particular kind of interface, the data transmission rate for
that user over that kind of interface is always assumed to
be zero. Thus, without loss of generality we assume that all
users support all interfaces.

This paper is organized in the following way. In Section 2,
we discuss previous relevant work in this area. In Section 3,
we formulate our multiple constraint opportunistic schedul-
ing problem over a single interface and provide a generalized
water-filling solution for this problem. We also discuss rel-
evant system considerations in the same section. Section 4
formulates the opportunistic scheduling problem over mul-
tiple interfaces and provides a similar water-filling solution
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Figure 2: Multiple Interface Opportunistic Schedul-
ing

for it. For opportunistic scheduling over multiple interfaces
Section 5 provides a throughput optimal scheduling rule that
guarantees stable user queues. We conclude in Section 6.

2. PREVIOUS WORK
The problem of exploiting the channel state variations to
increase the system throughput has been in focus in re-
cent years. The typical representative term used to de-
scribe the performance gain due to these channel state varia-
tions across different users over time, is multi-user diversity.
Multi-user diversity has a similar effect to that of a space
or time diversity, enabling some improvement in the system
performance. This multi-user diversity has been described
from an information theoretic viewpoint in [19] and the ref-
erences contained therein. Specifically in that paper the au-
thors describe a water-filling mechanism, which is asymptot-
ically optimal in maximizing the system throughput. Water-
filling power control has also been proposed for the CDMA
forward power control problem (see [7] for more details).
The water-filling method schedules the user with the high-
est data rate at a given time. A bias (different for different
users) is added to the time-varying data rate for each user
to equalize the differences between the service offerings due
to such greedy selection. In [4] the authors present a water-
filling scheduling scheme for the Qualcomm/HDR system
which is also proportionally fair. In [20] the authors sug-
gest to increase or even introduce random variations in the
channel conditions using multiple dumb antennas so that
the multi-user diversity can be fully exploited. They analyze
such a system and give the asymptotic bounds for the total
channel capacity. The main drawback of these approaches
is that individual QoS requirements cannot be taken into
account in designing a scheduling policy.

In [14, 16] the authors extend wireline scheduling policies to
wireless networks and present wireless fair scheduling poli-
cies which give short term and long term fairness bounds.
While this approach provides fairness guarantees, it assumes
that the channel quality is either good or bad. In [12] the
authors present scheduler called WCFQ (Wireless Credit-
based Fair Queuing) to provide (only) temporal fairness
among the users with statistical fairness bounds. Their ap-
proach is based on CBFQ (Credit Based Fair Queuing), a
scheduler for wired systems. WCFQ trades off the fairness
and throughput to exploit the channel time variations by



mapping channel condition into to cost function. In [17]
the authors present and study a practical scheme to exploit
channel time variations in 802.11 based ad-hoc networks.
While maintaining same level of fairness, they provide a
modification in 802.11 protocol to obtain a better through-
put than that of plain 802.11 protocol.

In [1] the authors discuss the scheduling problem with fixed
deadlines and prove that the greedy algorithm performs no
worse than half of offline optimal schedule in terms revenue.
This approach considers the problem on a packet by packet
basis and hence we feel that this approach is inappropriate
for the real wireless scheduling systems.

In [2, 18, 6] the authors study throughput optimal schedul-
ing rules. If there exists any scheduling rule which can guar-
antee stable queues then a throughput optimal scheduling
rule also guarantees stable queues. Thus, throughput op-
timal scheduling rules have the maximum system stability
region in the space defined by the average incoming rates.
Throughput optimal scheduling rules in time-invariant case
are studied in [3]. In [15] the authors study a specific case of
multi-beam satellite systems, suggesting a throughput opti-
mal scheduling rule and they extend these results for wireless
networks. In [11] and [10] the authors introduce three differ-
ent QoS constraints, which they call Resource Sharing Fair-
ness Constraint, Performance Based Fairness Constraint and
Minimum Performance Fairness Constraint. They provide
optimal opportunistic scheduling mechanism for these spe-
cial constraints. In [18] the authors present a technique to
extend the throughput optimal scheduling rules to guarantee
the minimum data rate constraint. Most of these results ex-
cept [13] consider only the single interface case. Specifically,
it is inherently assumed that only one user will be scheduled
at a given time. In [13] the authors consider a throughput
maximization problem with deterministic and probabilistic
GPS-like fairness constraint for multiple interface systems.
But their approach is limited by specific objective and con-
straints. Also, most of the works concentrate on a single
form of fairness constraint.

Our work which considers multiple constraints and multiple
interfaces unifies many of the results and puts all of them
into a single framework. Thus the main contributions of this
paper are as follows.

• For general multiple long term QoS constraints, we
show that the optimal scheduling policy for a single
interface system has a argmax solution. We call this
solution structure a generalized water-filling solution.

• We show that the scheduling policy for multiple inter-
face systems with general long term QoS constraints
also has the similar generalized water-filling structure.

• For multiple interface systems, we prove that a Modi-
fied Largest Weighted Work First (M-LWWF) schedul-
ing policy is throughput optimal (under a Markovian
state model).

3. OPPORTUNISTIC SCHEDULING OVER
A SINGLE INTERFACE

To formulate the scheduling problem for a time-varying chan-
nel over a single interface with multiple QoS constraints,
we make the following simplifying assumptions. We assume
that the system operates on a timeslot by timeslot basis.
The width of each timeslot is fixed and the channel condi-
tions do not vary during a timeslot. In the real systems the
physical frame transmission size can be selected from a fi-
nite discrete set. Hence depending on the current data rate,
the transmission of a physical frame can take more than one
timeslot to transmit a physical frame. However we assume
that the physical frame transmission size can be varied ac-
cording to the transmission rate so that transmissions begin
and end exactly at timeslot boundaries. This is also assumed
in [11, 10, 18, 2, 15, 19, 20]. We also assume that all the
transmissions are successful. In real systems, the users send
the necessary channel state information to the base station
in a periodic fashion. Hence we assume that the base station
knows the exact channel state and the exact data rate with
which it can transmit to each user. We assume that at most
one user can be served in a timeslot. We also assume that
all the users are greedy and each user always has data to
receive on the downlink.

3.1 Constraints and Objectives
The QoS requirements for different users can be different and
each user can potentially specify its own requirements. In
general, these requirements can be grouped into short term
and long term constraints. In this paper we only consider
the long term requirements because long term requirements
are of more importance than the short term requirements
for elastic applications. (For more details of opportunis-
tic scheduling policies with short term fairness constraints
please see [8].) The widely referred long term QoS con-
straints are of two different types.

• Processor sharing constraint: User i specifies a weight
φi and expects to get at least a φi fraction of the server
time. Thus this fairness constraint can be viewed as
a fairness criterion similar to the generalized proces-
sor sharing. For a stable system, obviously we need∑

i φi ≤ 1.

• Data Rate constraint: A user asks for a minimum data
rate guarantee to sustain its applications. This is a
more appealing QoS criterion from the user stand-
point, as most of the non-elastic applications need
some minimum data rate. However a user might re-
quest a high data rate but may experience very poor
channel conditions. Hence, it is not easy to specify the
feasibility of the system under general minimum per-
formance constraints because we do not assume any
knowledge of the channel conditions.

We have mentioned only few possible fairness or QoS re-
quirements. But potentially there can be many more and
combinations of those constraints can also be specified. For
example, a wireless node may specify two constraints, one
for maximum power consumption and other for minimum
data rate requirement. The main constituent of the energy
consumption is the energy consumed in radio electronics.
To satisfy the maximum power consumption constraint, an
upper limit on the processor time share can be calculated.



Thus rather than having a lower bound on the processor
share (as in GPS), there could potentially be an upper bound
on the processor share to reduce the power consumption. By
putting an upper limit on the processor time share a mobile
device can guarantee maximum power drain, which trans-
forms into a minimum on time for this mobile device without
replenishing its energy sources. Thus the two constraints in
this scenario become maximum processor share constraint
and minimum data rate constraint.

3.2 Notation
We start by introducing the notation and then state the
general constraints associated with all the users. We use
similar terminology and the notation as in reference [10].

• N : This denotes the set of users, usually indexed by
i. The users will be indexed from 1 to N .

• µi(t): This denotes the data rate for user i in timeslot
t. Thus ~µ(t) = [µ1(t), · · · , µN (t)] denotes the vector of
the data rates for all users at time t.

• Ki: This denotes the set of constraints for user i. The
constraints are usually indexed by j.

• fi, g
j
i : fi denotes the utility function and gj

i denotes
the jth constraint function associated with user i.

• Q(~µ(t)): This denotes a policy to select a user to serve
in timeslot t, given ~µ(t).

We denote the indicator function by the letter I, thus I
Q( ~µ(t))=i

is 1 if in timeslot t user i is selected for service, otherwise
zero. We assume that each user is only interested in long
term QoS constraints. Then for user i, the jth long term
QoS requirement constraint is stated as follows. (We omit
the timeslot variable t by some abuse of notation.)

∀i ∈ N , j ∈ Ki E{gj
i (µi)IQ(~µ)=i} ≥ Gj

i

For the processor sharing constraint, the functions gj
i can be

taken as unit functions, gj
i (µi(t)) = 1. Thus the processor

sharing constraint can be written as

∀i, E{IQ(~µ)=i} ≥ Gi ≡ φi

In words this constraint can be phrased as, on the long term
a user i gets a base station time share greater than or equal
to φi. Similarly for the data rate constraint gj

i can be taken

as gj
i (µi(t)) = µi(t) and hence the data rate constraint can

be written as

∀i, E{µiIQ(~µ)=i} ≥ Gi ≡ Ri

We define a general system objective as follows.

maxQ

∑
i∈N

E{fi(µi(t))IQ(~µ(t))=i}

Usually the objective of the system is to maximize the total
system throughput. In that case the utility functions fi can
be taken as fi(µi(t)) = µi(t). Intuitively this would force
the optimal policy to choose a user having a better channel
(higher data rate) to maximize the system throughput.

3.3 Problem Formulation and the Solution
Thus the single interface scheduling problem can be formu-
lated as an optimization problem as follows.

maxQ

∑
i∈N

E{fi(µi)IQ(~µ)=i} (1)

such that ∀i ∈ N , ∀j ∈ Ki E{gj
i (µi)IQ(~µ)=i} ≥ Gj

i

Let us denote an optimal policy by Q∗. Then we can show
the following,

Theorem 1. The solution of the above single interface
constrained opportunistic scheduling problem, if one exists,
is of the following form.

Q∗ = argmaxi{fi(µi) +

Ki∑
j=1

λj
ig

j
i (µi)} (2)

∃λj
i ≥ 0 s.t. E{gj

i (µi)IQ(~µ)=i} > Gj
i ⇒ λj

i = 0

Proof. The proof follows directly by formulating the La-
grangian as done in [10]. Consider any feasible policy Q.
Then there exist nonnegative constants λj

i such that the fol-
lowing holds. (We have removed the argument of the policy
Q from the notation for simplicity. We denote the constraint
set for user i by Ki.)∑
i∈N

E{fi(µi)IQ=i}

≤
∑
i∈N

E{fi(µi)IQ=i}+
∑
j∈Ki
i∈N

λj
i

[
E{gj

i (µi)IQ=i} −Gj
i

]

=
∑
i∈N

E
[(

fi(µi) +
∑
j∈Ki

λj
ig

j
i (µi)

)
IQ=i

]
−

∑
j∈Ki
i∈N

λj
iG

j
i

≤
∑
i∈N

E
[(

fi(µi) +
∑
j∈Ki

λj
ig

j
i (µi)

)
IQ∗=i

]
−

∑
j∈Ki
i∈N

λj
iG

j
i

=
∑
i∈N

E{fi(µi)IQ∗=i}+
∑
j∈Ki
i∈N

λj
i

[
E{gj

i (µi)IQ∗=i −Gj
i

]

=
∑
i∈N

E{fi(µi)IQ∗=i}

Thus we have proved that throughput of the policy defined
in equation 2 is greater than or equal to that of any other
policy.

The constants λ’s are the Karush-Kuhn-Tucker (KKT) mul-
tipliers and depend on the multidimensional distribution of
µi(t)’s. The optimal policy is always of an argmax type for
the type of constraints and objectives we have defined. The
arguments for the argmax are the weighted and shifted sums
of functions of the current data rate for each user. If all the
users specify only the processor sharing constraint, the op-
timal policy becomes argmaxi{µi + λi}. Thus the optimal
policy (with processor sharing constraints) adds a bias equal
to the KKT multipliers to the data rate values resulting in
the optimal water-filling solution. If all the users specify
only a minimum data rate constraint, the optimal policy be-
comes argmaxi{µi(1 + λi)}. Thus the optimal policy (with
a data rate constraint) multiplies the data rate values with



the KKT multipliers. These two special cases have been
studied in [11]. In general, in the solution to the general-
ized opportunistic scheduling problem, we affine translate
the functions of the data rates and then use an argmax rule
to obtain the optimal policy. We call the general optimal
solution a generalized water-filling solution.

An example of a single interface opportunistic scheduling
problem with multiple constraints is as follows. Suppose
that the objective of the opportunistic scheduling problem is
to maximize the goodput. By goodput we mean that we con-
sider the transmission of only user data and not any headers
(overhead associated with the transmission). Assume that
the header size is of H bytes per transmission. Also all the
users specify two constraints. The first constraint is the
usual processor sharing constraint with weight of φi for user
i, and second is a minimum goodput rate constraint (i.e.,
data rate without headers) of Ri. Thus the problem can be
formulated as follows.

maxQ

∑
i∈N

E{(µi −H)IQ(~µ)=i}

s.t. ∀i, E{IQ(~µ)=i} ≥ φi; E{(µi −H)IQ(~µ)=i} ≥ Ri

The solution of this problem is,

Q∗ = argmaxi{µi + λ1
i + λ2

i (µi −H)}
i.e., Q∗ = argmaxi{µi(1 + λ2

i ) + λ1
i −Hλ2

i }

The λ’s are the KKT multipliers as defined in Theorem 1.
Thus the optimal scheduling policy is again an argmax pol-
icy of the affine translated data rate values.

We now discuss various issues related to the optimal solution
of the opportunistic scheduling problem.

3.4 Discussion
The first issue is how to calculate the KKT multipliers in a
real system so that we obtain the desired optimal scheduling
policy. In [11, 10] the authors present a stochastic approx-
imation algorithm to calculate such constants. The basic
idea behind these algorithms is to start with all zero KKT
constants. Then in each timeslot, along a sample path, a
correction term proportional to the error term (the differ-
ence between the actual constraint bound Gj

i and the so far
achieved average constraint value) is added. A similar ap-
proach can be taken to calculate the λ′s in the equation 2.
We plan to use similar stochastic approximation algorithm
to calculate these constant in our future work. Such algo-
rithms are not computationally complex and hence can be
used in each timeslot. The results of [11, 10] show that these
algorithms converge quite fast.

Note that if the system is unfeasible then the stochastic ap-
proximation method will not converge. Thus we must guess
the feasibility heuristically if the stochastic approximation
algorithm seems to diverge. In fact, in this sense the water-
filling solution is limited because it does not give any infor-
mation about the system feasibility. Also after an arrival
of a new user or after a departure of a user all the KKT
multipliers change and must be recalculated.

The optimal solution can generate a tie between two (or
more) users. If the probability distributions of the data rate

values are continuous (assuming the functions fi, gi are one
to one), ties can be broken with any randomization rule. But
if the data rate values have a discrete distributions then we
must specify a randomization rule to break the ties so as to
satisfy the constraints. A simple approach of stochastic ap-
proximation will lead to oscillations around the constants in
the optimal solution. In such tie cases, a heuristic technique
for obtaining the randomization probabilities can be devel-
oped. We note that in practical systems the data rate values
are discrete and hence there is a need for the randomization
probabilities.

The solution for the opportunistic scheduling assumes that
all the users are greedy and hence the solution methodology
is good for the heavy traffic scenario. Also note that the
optimal solution with the processor sharing constraints does
not guarantee the exact generalized processor sharing (which
guarantees distribution of excess server capacity among the
active users in proportion to their weights) if some users are
inactive. Also other types of guarantees, e.g., short term
fairness constraints and buffer overflow constraints cannot
be provided with this water-filling approach.

Finally note that we have assumed that each transmission
takes only one timeslot but in actual systems the physical
frame transmission can take multiple timeslots. Thus, the
practical problem is more complex.

4. OPPORTUNISTIC SCHEDULING OVER
MULTIPLE INTERFACES

The next generation of wireless communication devices will
be equipped with more than one interface. Each interface
provides different transmission characteristics. Such devices
have been already discussed in the literature but within a
context of connectivity and mobility. A device may have
more than one interface because a single technology might
not be sufficient in terms of coverage or because in different
environments different technologies might be more suitable.
We consider a general opportunistic scheduling problem over
multiple interfaces with long term user QoS constraints (sim-
ilar to the QoS constraints described in previous section)
and physical constraints. The physical constraints are im-
posed by the system structure and must be satisfied in each
timeslot. For example, consider the different interfaces as
different physical antennas. There are K physical interfaces
(antennas) for each user. The communication bandwidth is
divided in K bands and each antenna can be tuned to any
band. Thus each antenna can be used for any interface, but
an antenna can be used for only one interface at a given
time. Thus in the above case, a physical constraint can be
specified as follows. If an interface k is assigned to user i in
a given timeslot, then another interface l cannot be assigned
to user i and another user j cannot be assigned to the inter-
face k in the same timeslot. This is precisely the scenario
in the multi-beam satellite systems. In such systems, there
are K beams and N earth based stations. A beam can be
used to serve any one of the stations in a given timeslot. At
most one beam could be used to serve a station. A more
complex example of physical constraint can be a modified
version of the above physical constraint as follows. Suppose
that the base station is limited by the maximum total power
it can use for the transmission in any given timeslot. In this
example, the base station has to choose a power distribution



among the different interfaces such that the total transmit-
ted power must be less than the maximum allowed power
consumption. (For example, power assignment problem for
up-link scheduling in CDMA systems is considered in [9] and
power assignment problem in multi-beam satellite networks
is considered in [15].)

We denote by K the set of interfaces and index the inter-
faces by the letter k. Thus ~µi = (µ1

i , · · · , µK
i ) and [µ] is the

N × K matrix where µk
i denotes the current data rate for

user i ∈ N over interface k ∈ K. For notational convenience
only, we assume that each user has only one QoS constraint
(referenced by gi). A stationary policy ~Q = (Q1, · · · , QK)
denotes a vector function on [µ], which assigns each inter-
face to a particular user in each timeslot according to the
specified rule for Q. Though other physical constraints can
also be taken into account in a similar fashion, in the follow-
ing discussion we assume the following physical constraint:
any feasible policy cannot assign two users to the same in-
terface or two interfaces to the same user in any timeslot,

i.e., k 6= k̂ ⇔ Qk([µ]) 6= Qk̂([µ]).

The multiple interface opportunistic scheduling problem can
be defined as follows.

maxQ

∑
i∈N

∑
k∈K

E{fi(µ
k
i )IQk([µ])=i} (3)

such that ∀i
∑
k∈K

E{gi(µ
k
i )IQk([µ])=i} ≥ Gi

if k 6= k̂ ⇔ Qk([µ]) 6= Qk̂([µ])

Now define a function Kargmaxi,k(fi,k) which is a solution
of the following optimization problem.

maxai,k

∑
i∈N

∑
k∈K

E{ai,kfi,k} (4)

s.t. ai,k ∈ {0, 1}, k 6= k̂ ⇔ ai,k + ai,k̂ ≤ 1

i 6= î ⇔ ai,k + aî,k ≤ 1

In words, Kargmaxi,k(fik) is a function defined as follows:
Choose at the most K entries from the matrix [fik] of N×K
entries, satisfying the physical constraints, such that the
sum of the selected terms is maximum. For the constraints
we have considered, we choose a maximum of one entry per
column per row. Hence, this special case of Kargmaxi,k is
a weighted bipartite graph matching problem (or a maximal
weight matching problem). The nodes from one part of the
graph represent users and the nodes from another part rep-
resent the interfaces. The weights of each link is specified
by the the term fi,k.

Let us denote an optimal policy by ~Q∗. Then we claim that,

Theorem 2. The solution of the multiple interface con-
strained opportunistic scheduling problem defined in equation
3, if one exists, is of the following form.

~Q∗ = Kargmaxi,k{fi(µ
k
i ) + λigi(µ

k
i )} (5)

∃λi ≥ 0 s.t.
∑
k∈K

E{gi(µ
k
i )IQk([µ])=i} > Gi ⇒ λi = 0

Where, the Kargmaxi,k(fik) is a function defined as above.

Proof. Consider any feasible policy Q. Then there exist
nonnegative constants λi such that the following holds.∑
i∈N
k∈K

E{fi(µ
k
i )IQk=i}

≤
∑
i∈N
k∈K

E{fi(µ
k
i )IQk=i}+

∑
i∈N
k∈K

λi

[
E{gi(µ

k
i )IQk=i} −Gi

]
=

∑
i∈N
k∈K

E
[(

fi(µ
k
i ) + λigi(µ

k
i )

)
IQk=i

]
−

∑
i∈N
k∈K

λiGi

≤
∑
i∈N
k∈K

E
[(

fi(µ
k
i ) + λigi(µ

k
i )

)
IQ∗k=i

]
−

∑
i∈N
k∈K

λiGi (6)

=
∑
i∈N
k∈K

E{fi(µ
k
i )IQ∗k=i}+

∑
i∈N
k∈K

λi

[
E{gi(µ

k
i )IQ∗k=i} −Gi

]
=

∑
i∈N
k∈K

E{fi(µ
k
i )IQ∗k=i}

Equation 6 follows from the the definition of ~Q∗ in equa-
tion 5 and by the property of Kargmax function defined in
equation 4.

Thus the same generalized water-filling structure is carried
over to the optimal policy for multiple interface opportunis-
tic scheduling problem. The solution can be considered
as a multidimensional water-filling solution. We note that
even when the constants in the optimal solution are given,
Kargmax solves a weighted bipartite graph matching prob-
lem in every timeslot. Even for simple constraints the opti-
mal policy for the multiple interface opportunistic schedul-
ing problem needs complex computations in each timeslot.
As opposed to this, the optimal policy for the single in-
terface opportunistic scheduling problem simply selects the
largest entry. In a special case where each user has the same
data rate over all the interfaces in every timeslot (different
users still have different data rates) the optimal policy is of
the form Kargmaxi(fi(µi)+λigi(µi)), where Kargmax be-
comes a function which simply selects K highest entries. We
note that for different physical constraints, Kargmax is a
different function and an optimization problem in itself. For
example, for the physical constraints such as power alloca-
tion constraints, the Kargmax is a function which chooses
a power allocation strategy in each timeslot such that the
sum of the selected fi(µ

k
i )+λigi(µ

k
i ) terms is maximum. In

such cases, we propose to use two approaches to solve the
Kargmax optimization problem and compare the results in
our future work. The first approach is the optimal, compu-
tationally complex solution of Kargmax optimization prob-
lem and the second is a suboptimal, computationally sim-
ple solution of actual Kargmax optimization problem. The
constants λ′s will be calculated with stochastic approxima-
tion algorithm as in previous single interface problem.

5. THROUGHPUT OPTIMAL SCHEDULING
RULE FOR MULTIPLE INTERFACE

Stability of the system is the most important issue for any
system design. By stability we mean that the queue length



should remain finite. Intuitively this can be ensured if the
service rate is greater than the incoming traffic rate for each
queue. In simple static queuing systems this translates into
ensuring that each user gets a enough time share of the
server yielding a service rate greater than the incoming user
traffic rate. But in time-varying dynamic systems, ensuring
only this is not enough as there is no simple linear relation
between the amount of the processor share and the corre-
sponding service rate a user gets. Hence, it is also important
to optimally time the service offering when the channel con-
ditions are better for a user. Such stable policies might de-
pend on the average incoming traffic rates and any method
which requires the exact incoming rates to be known to ob-
tain a stable scheduling policy critically depends on esti-
mating the incoming rates. Throughput optimal scheduling
polices on the other hand, are the policies which guarantee
stability under any incoming traffic rates, if at all there is a
stable scheduling policy.

For the single interface case a throughput optimal scheduling
rules has been given in [2]. In this section we generalize the
throughput optimal scheduling rules termed as M-LWWF,
i.e., Modified Largest Weighted Work First. This rule for
the single interface case is stated as follows. In any given
timeslot, serve a user having maximum aiqi(t)µi(t). Here,
ai’s are any positive (nonzero) constants, qi(t) is the queue
size for a user i at time t. Thus Q∗ = argmaxi{aiqiµi} is a
throughput optimal scheduling rule for the single interface
case.

For the multiple interface case we generalize this theorem as
follows.

Theorem 3.

~Q∗(t) = Kargmaxi,k{aiqi(t)µ
k
i (t)} (7)

is a throughput optimal scheduling rule, i.e., if there exist
any scheduling rule that makes all user queues stable then
the above rule also makes all user queues stable. (Kargmax
is a function which chooses at most K terms satisfying the
physical constraints, such that the sum of all of those terms
is maximum.)

Proof. Refer to the Appendix.

Note that we do not assume that the users are greedy as
we have assumed in Theorems 1 and 2. For more details
on throughput optimal rules refer to [3, 18, 15]. This rule
can be used to guarantee some simple user QoS constraints
such as data rate constraints. A virtual token queue with
a token generation rate of Ri can be implemented. Then
the throughput optimal scheduling policy applied to this
virtual token queue process guarantees a data rate Ri to a
user i. For a tie situations, we do not need to specify the
randomization probabilities as any randomization method
will be throughput optimal.

6. CONCLUSIONS
In this paper, we studied the scheduling problem with dif-
ferent time-varying channel conditions for each user. We
generalized the opportunistic scheduling problem to include

multiple general user QoS requirements and showed that the
argmax policy with a water-filling method provides an op-
timal solution. We then studied the opportunistic schedul-
ing problem for multiple interface systems with user QoS
constraints and the physical constraints imposed by the sys-
tem structure. We showed that the optimal policy for this
problem is also of the argmax and water-filling nature. In
our future work, we plan to simulate and study above al-
gorithms for the realistic wireless channel conditions. For
multiple interface systems we plan to develop efficient algo-
rithms to estimate the optimal policy-constants using multi-
dimensional stochastic approximation algorithms. We also
generalized the throughput optimal scheduling rule for the
multiple interface systems with general physical constraints
via fluid limit techniques.
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APPENDIX
A. PROOF OF THEOREM 3
We shall prove the claim that a policy Kargmaxi(aiqiµik) is
throughput optimal for any positive constants ai. (We have
adopted a slight change of notation for convenience. Instead
of µk

i , we use µi,k for the data rate for user i, on interface
k.) We use a fluid approach similar to the one used in [2].
The method is similar with few differences for taking into
account the constraints imposed by the problem structure.
Specifically, “a user cannot be assigned more than one in-
terface and an interface cannot be assigned more than one
user”, will be taken into account in the proof. We start with
the following assumptions. The combined service rate pro-
cess for all user-interface pairs is assumed to be an aperiodic,
irreducible, finite, ergodic Markov chain with a unique sta-
tionary distribution denoted by π = (π1, · · · , π|M|), where
the superscript denotes the channel state. We also assume
that the combined arrival process forms a similar aperiodic,
irreducible, finite, ergodic Markov chain and we denote the

mean arrival rate for user i in one timeslot by λi. We con-
sider only those scheduling rules which map the system state
(which is a combination of the channel state, arrival state,
each user’s queue state with the associated delays), to ev-
ery possible N ×K{0,1} matrix B satisfying the constraints∑

i bik ≤ 1,
∑

k bik ≤ 1 with a stationary probability distri-
bution. We also assume that the system state evolves as a
aperiodic, irreducible, Discrete Time Markov Chain.

A.1 Fluid Approximation
As in section 5, 6 of [2] define the following random functions
associated with the system state process S(t).

• Fi(t) denotes the total amount of service arrivals up to
time t for a user i.

• F̂i(t) denotes the total amount of service departures up
to time t for a user i.

• Gm(t) denotes the number of timeslots up to time t the
channel is in state m.

• Qi(t) = Fi(t) − F̂i(t) denotes the queue size for user i
up to time t.

• Ui(t) = inf{s ≤ t : Fi(s) > F̂i(t)} and Wi(t) = t −
Ui(t). Wi(t) denotes the waiting time of the oldest
unfinished service requirement for user i at time t. Ui(t)
denotes the arrival time of the oldest unfinished service
requirement at the head of the queue for user i.

We define ‖S(t)‖ =
∑

i(Qi(t) + Wi(t)). We assume a se-
quence of such random functions for which the initial con-
dition ‖S(t)‖ =

∑
i(Qi(0) + Wi(0)) = n. Let Sn(t) denotes

such a process. Thus ‖Sn(0)‖ = n. We assume that ar-
rivals happen from time −n onward for process Sn; but
the service starts from time 0 only. All the above pro-
cesses Fi, F̂i, G

m, Qi, Ui, Wi are superscripted with n to de-
note that these are processes with the above defined ini-
tial condition. Let Xn(t) be the vector of all these pro-
cesses. To obtain the fluid approximation (refer to [5]) de-
fine the scaled processes for all these processes as follows.
xn(t) = 1

n
Xnbntc. Also extend the definition of processes

F n
i , W n

i , Un to t = [−n, 0] to take into account the fact that
some arrivals happen before zero time so as to satisfy the
initial system condition.

A.2 Theorem on Fluid Approximation
For any sequence of Xl(t), l ∈ {0, 1, 2, · · · }, there exists a
further subsequence of processes Xn, {n} ⊂ {0, 1, 2, · · · }
such that the following holds ∀i ∈ N , m ∈ M, w.p. 1.
There exist nonnegative, nondecreasing, RCLL (right con-
tinuous with left limits) functions fi ∈ [−1,∞) and Lipschitz
continuous in [0,∞). Also there exist nondecreasing, non-

negative Lipschitz continuous functions f̂i, g
m,∈ [0,∞) and

Lipschitz continuous nonnegative functions qi ∈ [0,∞).

Because of the ergodic assumption on the structure of the
arrival Markov chain following holds. (In the following parts
of proof u.o.c. denotes uniform convergence on compact
intervals, c.c.p. denotes convergence at continuity points.)

for t ≥ 0, fn
i (t)

u.o.c.→ fi(t); fi(t)− fi(0) = λit

for t ≥ −1, fn
i (t)

c.c.p.→ fi(t);
∑

i

fi(0) ≤ 1



Because of the ergodic assumption on the channel state
Markov chain following holds.

for t ≥ 0, gn,m(t)
u.o.c.→ gm(t); gm(t)− gm(0) = πmt

For [t1, t2] ⊂ [0,∞), f̂n
i (t2) − f̂n

i (t1) ≤ µmax(t2 − t1 + 2
n
)

holds trivially. Using this fact and noting the fact that f̂i(t)
are nondecreasing, a further subsequence can be found such
that,

∀ t ≥ 0, f̂n
i (t)

u.o.c.→ f̂i(t) ≤ fi(t); f̂i(0) = 0

qn
i (t)

u.o.c.→ qi(t) = fi(t)− f̂i(t)

Hence t ≥ −1,

wn
i (t)

c.c.p.→ wi(t); un
i (t)

c.c.p.→ ui(t); wi(t) = t− ui(t)

Whenever qi(t) > 0, choose t1, t2 s.t. ∀t ∈ [t1, t2], qi(t) > 0,
which is possible because of the Lipschitz continuity of qi(t).

Let 0 < δ < inft∈[t1,t2] qi(t). As qk
i (t) converges uniformly

to qi(t), we can choose subsequence {j} such that ∃L, ∀l >
L, ∀t ∈ [t1, t2], ql

i(t) = 1
l
Ql

i(jt) > δ.

The above statement implies that ∀t ∈ [t1, t2], Ql
i(lt) > lδ >

µmax, as l can be made arbitrarily large. This means that a
service is not wasted due to the empty queues.

Now assume that, ∀i, qi(t) 6= 0 and ~q(t) is such that,

∀i, j, k, k̂, m, aiµ
m
i,kqi(t) 6= aj,k̂µm

j qj(t). Then Kargmax is

uniquely defined for ∀m. Also ∃ε ≥ 0 such that, if |~q(t) −
~̃q(t)| ≤ ε ⇒ Kargmax is still uniquely defined ∀m ∈ M
and Kargmaxi,k{aiµ

m
ikqi(t)} = Kargmaxi,k{aiµ

m
ik q̃i(t)}.

Hence for such ~q(t), ∃t1, t2, s. t., ∀t ∈ [t1, t2], Sik
Q∗(~q(t), mt)

remains constant for a given channel state m, where Sik
Q∗ is

defined to be the service rate offered by policy Q∗ to the user
i on interface k when the queue size is ~q(t) and the channel
state is m. Also the following relationship holds true.∣∣∣F̂ l

i (lt2)− F̂ l
i (lt1)−

t=t2∑
t=t1

∑
k

Sik
Q∗( ~Q(lt), mlt)

∣∣∣ ≤ 2µmax

By the Strong Law of Large Numbers, for large enough l,

t=t2∑
t=t1

∑
k

Sik
Q∗( ~Q(lt), mt) = l(t2 − t1)

∑
m,k

πmSik
Q∗(~q(t), m)

Hence, we can write the following equation,

f̂i(t2)− f̂i(t1) = (t2 − t1)
∑
m,k

πmSik
Q∗(~q(t), m) (8)

Also we claim that f̂i(t1) > fi(0), t ∈ [t1,∞),⇒ λiwi(t) =
qi(t). This claim is similar to the Little’s theorem and we

prove it as follows. As ui(t) = infs{s ≤ t : fi(s) > f̂i(t)} and

fi(s) = λis + fi(0) ⇒ infs{s ≤ t : λis + fi(0) > f̂i(t)} ⇒
s = f̂i(t)−fi(0)

λi
. So we get ui(t) = t − wi(t) = f̂i(t)−f(0)

λi
.

Thus the above equation follows as fi(t) = λit+fi(0). Note
that Lipschitz continuity implies absolute continuity which
implies derivative exists w.r.t. Lebesgue measure almost ev-
erywhere. In further discussion whenever we take a deriva-
tive we assume that the derivative at that point is defined

(which is true a.e.). In particular we have,

qi(t) > 0, ⇒ d

dt
f̂i(t) =

∑
mk

πmSik
Q∗(~q(t), m)

A.3 Quadratic Lyapunov Function
Let L(y) = 1

2

∑
i aiy

2
i for a vector y. Thus, L(q(t)) =

1
2

∑
i aiqi(t)

2. Clearly L is a Lipschitz continuous function

w.r.t. t and L(q(0)) ≤ 1
2

∑
i ai.

We claim that, L(q(t)) > 0 ⇒ d
dt

L(q(t)) = L
′
(q(t)) < 0.

The proof is as follows. Assume qi(t) > 0 for ∀i without
loss of generalization. Let Q be any other stationary fea-
sible (randomized) rate stable policy which depends only
on the current channel state m. We can prove that for
such a policy d

dt
f̂i(t) =

∑
mk πmSik

Q (~q(t), m). Where, Si
Q

is now understood to be the expected (because Q may be
a randomized policy) service rate offered to user i. Hence
∀i, λi <

∑
mk πmSik

Q (~q(t), m). Then,

L
′
(q(t))

=
d

dt

1

2

∑
i

ai(fi(t)− f̂i(t))
2

=
∑

i

aiqi(t)(λi − f̂
′
i (t))

=
∑

i

aiqi(t)λi −
∑

i,m,k

aiqi(t)π
mSik

Q {~q(t), m}

+
∑

i,m,k

aiqi(t)π
m

[
Sik

Q {~q(t), m} − Sik
Q∗{~q(t), m}

]
=

∑
i

aiqi(t)
[
λi −

∑
m,k

πmSik
Q {~q(t), m}

]
+

∑
m

πm
[ ∑

i,k

aiqi(t)S
ik
Q {~q(t), m} −

∑
i,k

aiqi(t)S
ik
Q∗{~q(t), m}

]
The first term in the last equation is strictly negative by the
assumption that policy Q is rate stable. Now consider the
second term. As the policy Q∗ is a Kargmax policy the

second term is also bounded above by zero. Thus L
′
(q(t))

is strictly negative which proves the claim. Thus L(q(t)) is
a decreasing function a.e. and as it is Lipschitz continuous,
for any given ε > 0,∃ T s.t. ∀t ≥ T, L(q(t)) < ε. This
also implies that for large t,

∑
i qi(t) ≤ δ. Then as λi are

nonzero by assumption, f̂i(t) = fi(t) − qi(t) > fi(0), and
hence wi(t) = qi(t)/λi. Thus for large enough T,∀t > T ,∑

i

(qi(t) + wi(t)) ≤ (1 +
1

λmin
)δ < 1

⇒ lim sup
n→∞

∥∥Sn(nT )
∥∥ < 1

Hence the conditions for applying theorem 4 in [2] are satis-
fied and this proves the throughput optimality of the Kargmax
rule. We also note that, this method can also be used to
prove the conjecture at the end of the section 4 in [15].
Specifically we need to prove equation 8 for the power alloca-
tion physical constraints. In general if the constraints placed
on the data rate values by the time varying channel condi-
tions and by the other physical limitations are independent
of the queue sizes, then our proof can be applied to show
that a Kargmaxi,k(aiqi(t)µi,k(t)) type of policy satisfying
the physical constraints is throughput optimal.


