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Abstract
We apply an iterative reproducing kernel Hilbert space method to get the solutions of
fractional Riccati differential equations. The analysis implemented in this work forms a
crucial step in the process of development of fractional calculus. The fractional
derivative is described in the Caputo sense. Outcomes are demonstrated graphically
and in tabulated forms to see the power of the method. Numerical experiments are
illustrated to prove the ability of the method. Numerical results are compared with
some existing methods.
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1 Introduction
In this work, we present an iterative reproducing kernel Hilbert spaces method (IRKHSM)
for investigating the fractional Riccati differential equation of the following form [, ]:

cDα
+u(η) = p(η)u(η) + q(η)u(η) + r(η),  ≤ η ≤ T , ()

with the initial condition

u() = , ()

where p(η), q(η), r(η) are real continuous functions, and u(η) ∈ W 
 [, T].

The Riccati differential equation is named after the Italian nobleman Count Jacopo
Francesco Riccati (-). The book of Reid [] includes the main theories of Ric-
cati equation, with implementations to random processes, optimal control, and diffusion
problems [].

Fractional Riccati differential equations arise in many fields, although discussions on
the numerical methods for these equations are rare. Odibat and Momani [] investigated
a modified homotopy perturbation method for fractional Riccati differential equations.
Khader [] researched the fractional Chebyshev finite difference method for fractional
Riccati differential equations. Li et al. [] have solved this problem by quasi-linearization
technique.

There has been much attention in the use of reproducing kernels for the solutions to
many problems in the recent years [, ]. Those papers show that this method has many
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outstanding advantages []. Cui has presented the Hilbert function spaces. This useful
framework has been utilized for obtaining approximate solutions to many nonlinear prob-
lems []. Convenient references for this method are [–].

This paper is arranged as follows. Reproducing kernel Hilbert space theory is given in
Section . Implementation of the IRKHSM is shown in Section . Exact and approximate
solutions of the problems are presented in Section . Some numerical examples are given
in Section . A summary of the results of this investigation is given in Section .

2 Preliminaries
The fractional derivative has good memory influences compared with the ordinary cal-
culus. Fractional differential equations are attained in model problems in fluid flow, vis-
coelasticity, finance, engineering, and other areas of implementations.

Definition . The Riemann-Liouville fractional integral operator of order α is deter-
mined as []

Jα
+y(x) =


�(α)

∫ x


(x – r)α–y(r) dr, ()

where �(·) is the gamma function, α ≥  and x > .

Definition . The Caputo derivative of order α is given as []

cDα
+y(x) =


�(n – α)

∫ x



∂n

∂xn
y(r)

(x – r)n–α
dr, ()

where n –  < α ≤ n and x > .

We need the following properties:

(i) Jα
+

cDα
+y(x) = y(x) –

m–∑
k=

yk(+)xk

k!
.

(ii) cDα
+Jα

+y(x) = y(x).

3 Reproducing kernel functions
We describe the notion of reproducing kernel Hilbert spaces, show some particular in-
stances of these spaces, which will play an important role in this work, and define some
well-known properties of these spaces in this section.

Definition . Let S �= ∅, B : S × S → C is a reproducing kernel function of the Hilbert
space H iff []

(i) ∀τ ∈ S, B(·, τ ) ∈ H ;

(ii) ∀τ ∈ S,∀φ ∈ H ,
〈
φ(·), B(·, τ )

〉
= φ(τ ).



Sakar et al. Advances in Difference Equations  (2017) 2017:39 Page 3 of 10

Definition . The inner product space W 
 [, T] is presented as []

W 
 [, T] =

{
f (t)|f , f ′ are absolutely continuous (AC) real-valued functions,

f ′′ ∈ L[, T], f () = 
}

,

where L[, T] = {f | ∫ T
 f (t) dt < ∞},

〈
f (t), g(t)

〉
W 

 [,T] = f ()g() + f (T)g(T) +
∫ T


f ′′(t)g ′′(t) dt ()

and

‖f ‖W 


=
√

〈f , f 〉W 


, f , g ∈ W 
 [, T],

are the inner product and norm in W 
 [, T].

Theorem . W 
 [, T] is an RKHS. There exist Rx(t) ∈ W 

 [, T] for any f (t) ∈ W 
 [, T]

and each fixed x ∈ [, T], t ∈ [, T], such that 〈f (t), Rx(t)〉W 


= f (x). The reproducing kernel
Rx(t) can be written as []

Rx(t) =

⎧⎨
⎩

R(x, t), t ≤ x,

R(t, x), t > x,
()

where

R(x, t) = t
(
(x – T)Tt + x

(
T – xT + xT + 

))
/
(
T).

Definition . W 
 [, T] is given as []

W 
 [, T] =

{
f (x)|f is AC real-valued function, f ′ ∈ L[, T]

}
,

〈
f (t), g(t)

〉
W 

 [,T] = f ()g() +
∫ T


f ′(t)g ′(t) dt,

()

and

‖f ‖W 


=
√

〈f , f 〉W 

, f , g ∈ W 

 [, T],

are the inner product and norm in W 
 [, T].

W 
 [, T] is am RKHS, and its reproducing kernel function is obtained as

Tx(t) =

⎧⎨
⎩

 + t, t ≤ x,

 + x, t > x.
()
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4 Solutions to the fractional Riccati differential equations in RKHS
The solution of ()-() has been obtained in the RKHS W 

 [, T]. To get through with the
problem, we investigate equation () as

u(η) = f
(
η, u(η)

)
,  < η < T , ()

where

f
(
η, u(η)

)
=


�(α)

∫ η


(η – τ )α–(p(τ )u(τ ) + q(τ )u(τ ) + r(τ )

)
dτ ,  < α ≤ .

Let L : W 
 [, T] → W 

 [, T] be such that Lu(η) = u(η). Then L is a bounded linear oper-
ator. We define ϕi(η) = Tηi (η) and ψi(η) = L∗ϕi(η). By the Gram-Schmidt orthogonalization
process we obtain

ψ̄i(η) =
i∑

k=

βikψk(η) (βii > , i = , , . . .). ()

Theorem . If {ηi}∞i= is dense on [, T], then {ψi(η)}∞i= is a complete system of W 
 [, T],

and we have ψi(η) = LtRη(t)|t=ηi .

Proof We obtain

ψi(η) =
(
L∗ϕi

)
(η) =

〈(
L∗ϕi

)
(t), Rη(t)

〉

= 〈ϕi(t), LtRη(t)〉 = LtRη(t)|t=ηi .

It appears that ψi(η) ∈ W 
 [, T]. For each fixed u(η) ∈ W 

 [, T], let 〈u(η),ψi(η)〉 = 
(i = , , . . .), which means that

〈
u(η), L∗ϕi(η)

〉
=

〈
Lu(·),ϕi(·)

〉
= (Lu)(ηi) = . ()

Remark that {ηi}∞i= is dense on [, T], and hereby (Lu)(η) = . We obtain u ≡  by L–. So,
the proof of Theorem . is complete. �

Theorem . If {ηi}∞i= is dense on [, T] and the solution of () is unique, then the solution
of ()-() is obtained as

u(η) =
∞∑
i=

i∑
k=

βikf
(
ηk , u(ηk)

)
ψ̄i(η). ()

Proof {ψ̄i(η)}∞i= is a complete orthonormal basis of W 
 [, T] by Theorem .. Therefore,

we acquire

u(η) =
∞∑
i=

〈
u(η), ψ̄i(η)

〉
W 

 [,T]ψ̄i(η)

=
∞∑
i=

i∑
k=

βik
〈
u(η), L∗Tηk (η)

〉
W 

 [,T]ψ̄i(η)
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=
∞∑
i=

i∑
k=

βik
〈
Lu(x), Tηk (η)

〉
W 

 [,T]ψ̄i(η)

=
∞∑
i=

i∑
k=

βik
〈
f
(
η, u(η)

)
, Tηk (η)

〉
W 

 [,T]ψ̄i(η)

=
∞∑
i=

i∑
k=

βik f
(
ηk , u(ηk)

)
ψ̄i(η).

This completes the proof. �

The approximate solution un(η) can be gained by the n-term intercept of the exact so-
lution u(η) as

un(η) =
n∑

i=

i∑
k=

βikf
(
ηk , u(ηk)

)
ψ̄i(η). ()

Remark . We notice the following two cases in order to solve equations ()-() by using
RKHS.

Case : If equation () is linear, that is, p(η) = , then an approximate solution can be
obtained directly from equation () .

Case : If equation () is nonlinear, that is, p(η) �= , then an approximate solution can
be obtained by using the following iterative method. According to equation (), the exact
solution of equation () can be denoted by

u(η) =
∞∑
i=

Aiψ̄i(η), ()

where Ai =
∑i

k= βik f (ηk , u(ηk)). In fact, Ai, i = , , . . . , in () are unknown, and we will ap-
proximate Ai using known Bi. For a numerical computation, we define the initial function
u(η) =  (we can choose any fixed u(η) ∈ W 

 [, T]) and the n-term approximation to
u(η) by

un(η) =
n∑

i=

Biψ̄i(η), ()

where the coefficients Bi of ψ̄i(η) are given as

B = βf
(
η, u(η)

)
,

u(η) = Bψ̄(η),

B =
∑

k=

βkf
(
ηk , uk–(ηk)

)
,

u(η) =
∑

i=

Biψ̄i(η), ()

...
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un–(η) =
n–∑
i=

Biψ̄i(η),

Bn =
n∑

k=

βnkf
(
ηk , uk–(ηk)

)
.

In equation (), we can see that the approximation un(η) satisfies the initial condition ().
The approximate solution is computed from :

uN
n (η) =

N∑
i=

i∑
k=

βik f
(
ηk , un–(ηk)

)
ψ̄i(η). ()

Theorem . If u(η) ∈ W 
 [, T], then there exist E >  and ‖u(η)‖C[,T] = maxη∈[,T]|u(η)|

such that ‖u(i)(η)‖C[,T] ≤ E‖u(η)‖W 
 [,T], i = , .

Proof We obtain u(i)(η) = 〈u(t), ∂ i
ηRη(t)〉W 

 [,T] for any η, t ∈ [, T] and i = , . Then, we
get ‖∂ i

ηRη(t)‖W 
 [,T] ≤ Ei, i = , , by Rη(t).

Therefore, we acquire

∣∣u(i)(η)
∣∣ =

∣∣〈u(η), ∂ i
ηRη(x)

〉
W 

 [,T]

∣∣
≤ ∥∥u(η)

∥∥
W 

 [,T]

∥∥∂ i
ηRη(η)

∥∥
W 

 [,T]

≤ Ei
∥∥u(η)

∥∥
W 

 [,T]

for i = , .
Thus, we get ‖u(i)(η)‖C[,T] ≤ max{E, E}‖u(η)‖W 

 [,T] for i = , . This completes the
proof. �

Theorem . The approximate solution un(η) and its first derivative u′
n(η) are uniformly

convergent in [, T].

Proof From Theorem ., for any η ∈ [, T], we get

∣∣u(i)
n (η) – u(i)(η)

∣∣ =
∣∣〈un(η) – u(η), ∂ i

ηRη(η)
〉
W 

 [,T]

∣∣
≤ ∥∥∂ i

ηRη(η)
∥∥

W 
 [,T]

∥∥un(η) – u(η)
∥∥

W 
 [,T]

≤ Ei
∥∥un(η) – u(η)

∥∥
W 

 [,T], i = , ,

where E and E are positive constants. Hence, if un(η) → u(η) in the sense of the norm of
W 

 [, T] as n → ∞, then the approximate solutions un(η) and u′
n(η) uniformly converge

to the exact solution u(η) and its derivative u′(η), respectively. �

5 Numerical examples
To give a clear overview of this technique, we give the following informative examples.
All of the computations have been applied by utilizing the Maple software package. The
results attained by the method are compared with the exact solution of each example and
are found to be in good agreement.
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Table 1 Comparison of IRKHSM solution with other methods for Example 5.1 (α = 1)

ηi Exact Sol. IRKHSM Method in [5] Method in [16] MHPM [3]

0.2 0.197375 0.197375 0.19738 0.197375 0.197375
0.4 0.379949 0.379949 0.379956 0.379948 0.379944
0.6 0.537049 0.537049 0.537061 0.537049 0.536857
0.8 0.664037 0.664037 0.664053 0.664036 0.661706
1.0 0.761594 0.761614 0.761618 0.761594 0.746032

Table 2 Comparison of IRKHSM solution with other methods for Example 5.1 (α = 0.9)

ηi IRKHSM Method in [5] Method in [16] Method in [17] MHPM [3]

0.2 0.238794 0.237652 0.2387891 0.2393 0.2391
0.4 0.422593 0.421766 0.4225830 0.4234 0.4229
0.6 0.566181 0.565673 0.5661715 0.5679 0.5653
0.8 0.674636 0.674464 0.6746270 0.6774 0.6740
1.0 0.754607 0.754632 0.7545890 0.7584 0.7569

Table 3 Comparison of IRKHSM solution with other methods for Example 5.1 (α = 0.75)

ηi IRKHSM Method in [5] Method in [16] Method in [17] MHPM [3]

0.2 0.310008 0.307359 0.3099755 0.3117 0.3138
0.4 0.481693 0.480346 0.4816318 0.4855 0.4929
0.6 0.597829 0.597542 0.5977827 0.6045 0.5974
0.8 0.678851 0.679657 0.6788495 0.6880 0.6604
1.0 0.736512 0.738213 0.7368368 0.7478 0.7183

Example . We debate the fractional Riccati differential equation

cDα
+u(η) =  – u(η),  ≤ η ≤ T , ()

u() = . ()

The exact solution of ()-() is given by

u(η) =
eη – 
eη + 

()

when α = . Using IRKHSM for equations ()-() and taking T = , ηi = i
N , i = , , . . . , N ,

the numerical solution uN
n (η) is computed. Comparison of our result with other methods

at some selected grid points for N = , n = , and α = , α = ., α = . are given in
Tables -, respectively.

Example . We investigate the fractional Riccati differential equation as

cDα
+u(η) =  + u(η) – u(η),  ≤ η ≤ T , ()

u() = . ()

The exact solution of ()-() is given as

u(η) =  +
√

 tanh

(√
η +

log((– +
√

)/( +
√

))


)
()
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Table 4 Comparison of absolute errors for some methods for Example 5.2 (α = 1)

ηi VIM [18] OHAM [19] MHPM [3] IRKHSM

0.2 1.03E–6 2.90E–4 1.20E–5 9.23E–5
0.4 3.33E–5 2.50E–3 3.03E–4 7.35E–5
0.5 7.26E–5 4.40E–3 1.55E–3 7.62E–5
0.6 9.98E–5 5.50E–3 4.69E–3 7.56E–5
0.8 1.54E–5 3.80E–3 1.88E–2 3.94E–5
1.0 3.47E–3 3.40E–3 3.43E–2 7.12E–5

Table 5 Comparison of IRKHSM solution with other methods for Example 5.2 (α = 0.9)

ηi IRKHSM Method in [5] Method in [16] Method in [17] MHPM [3]

0.2 0.314571 0.312985 0.314869 - -
0.4 0.697246 0.695357 0.697544 - -
0.5 0.903363 0.901484 0.903695 0.8621 0.9010
0.6 1.107569 1.10576 1.107866 - -
0.8 1.477434 1.47606 1.477707 - -
1.0 1.765103 1.76417 1.764520 1.7356 1.8720

Table 6 Comparison of IRKHSM solution with other methods for Example 5.2 (α = 0.75)

ηi IRKHSM Method in [5] Method in [3] Method in [20]

0.2 0.473076 0.469516 0.428892 0.584307
0.4 0.936880 0.933596 0.891404 1.024974
0.5 1.147576 1.14488 1.132763 1.198621
0.6 1.333068 1.33098 1.370240 1.349150
0.8 1.622033 1.62153 1.794879 1.599235
1.0 1.817550 1.81865 2.087384 1.801763

when α = . Using IRKHSM for equations ()-() and taking T = , ηi = i
N , i = , , . . . , N ,

the numerical solution uN
n (η) is computed. The absolute errors of some methods are given

in Table . Comparison of our result with other methods at some selected grid points for
N = , n = , and α = ., α = . are given in Tables  and , respectively.

Example . We solve the fractional Riccati differential equation

cDα
+u(η) = ηu(η) – ηu(η) + η, ()

u() = . ()

The exact solution of ()-() is given as

u(η) = η ()

when α = . Using IRKHSM for equations ()-() and taking T = , ηi = i
N , i = , , . . . , N ,

the numerical solution uN
n (η) is computed. Comparison of the IRKHSM solutions u

(η) for
Example . with different values of α is given in Figure . The absolute error of IRKHSM
solution u

(η) for Example . with α =  is shown in Figure .

6 Conclusion
IRKHSM were successfully implemented to get approximate solutions of the fractional
Riccati differential equations. Numerical results were compared with the existing meth-
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Figure 1 Comparison of the IRKHSM solutions for
Example 5.3.

Figure 2 Absolute error of IRKHSM solution for
Example 5.3.

ods to prove the efficiency of the method. The IRKHSM is very powerful and accurate in
obtaining approximate solutions for wide classes of the problem. The approximate solu-
tion attained by the IRKHSM is uniformly convergent. The series solution methodology
can be implemented to much more complicated nonlinear equations. This method can be
extended to solve the other fractional differential equations.
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