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admits a global solution in appropriate functional spaces. The solution is shown to be
unique. The technique is established as an analytic technique of the fixed point
theorem. We suppose that all the functions are analytic in the open unit disk. The
fractional differential operator is considered from the point of view of the
Riemann-Liouville differential operator. Moreover, a numerical scheme for this
solution is calculated.

1 Introduction

It is well known that the Schrodinger equation comes in two kinds. The first type is the one
in which time explicitly appears, and so it describes how the wave function of a particle
will promote in time. In general, the wave function performs like a wave, and thus the
equation is often called the time dependent Schrodinger wave equation. The second type
is the equation in which the time has been extracted and thus is referred to as the time
independent Schrodinger equation.

In recent years, the fractional calculus is considered as the best tool for the general-
izations of fractional differential equations [1-5]. In 2000, Laskin imposed the fractional
Schrédinger equation, in which the normal Schrodinger equation is generalized in anal-
ogy with fractional diffusion. Laskin professed to exactly solve this equation in the case
of the one-dimensional infinite square well [6]. In 2006, Guo and Xu claimed to have in-
troduced solutions again for the infinite one-dimensional square well (agreeing with the
Laskin original solution), and for one-dimensional scattering off a barrier potential [7].
Again in 2007, Laskin utilized a different method of analysis to pose solutions for the
linear, delta function, and Coulomb potentials in one dimension [8]. Recently, different
studies have been published [9-11].

Numerical methods, for finding solutions of the time-fractional nonlinear Schrodinger
equation in one and two dimensions, have appeared in quantum mechanics. Recently, Ford
et al. prepared a numerical method for the fractional Schrédinger type equation of spatial
dimension two [12]. The existence and uniqueness of fractional Schrédinger equations are
studied by many authors (see [13]).
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In this paper, we establish the existence and uniqueness of fractional system involving
nonlinear Schrédinger equations. This system of time-fractional partial differential equa-
tions arises in quantum mechanics. It describes how the quantum state of some physical
system changes with time. We show that the system under consideration admits a global
solution in appropriate functional spaces. The solution is shown to be unique. The tool
based on an analytic technique from the fixed point theory and the fractional calculus is
taken in the sense of the Riemann-Liouville differential operator. We suppose that all the
functions are analytic in the open unit disk.

2 Generalized calculus
A fractional of arbitrary order originates from the Riemann-Liouville definition of a gen-
eralized integral with order « as follows [3, 4]:

t _ \a-1
azr0= %f(r)dr-

The derivative operator of arbitrary order for the function f of order « > 0 is read by

—-7)
rl-a)

DEf(t) = d/dt)/ f( 7)dr.
When a = 0, we shall denote (D¢f(¢) := D¢f(£) and oI7f(£) := I7f(¢) in the follow-up.
Newly, Alsaedi et al. [14] derived an inequality for fractional derivatives as follows.

Lemma 2.1 Let one of the following assumptions be satisfied:

e ueC(0,T) andve CP([0,T]), x < B <1,

+veC([0,T) and u € CP([0,T]), x < B <1,

e ueCP0,T) and ve C¥([0,T]),a < B < B +86, 8,8 €(0,1),
where CY ([0, T]) = {u: [0, T] = R/|u(t) — u(t — h)| = O(h?) uniformly for0 <t—h<t <T}.
Then we have

DY (uv)(t) = u(£)D; v(t) + v(£)Df u(t)
" (u(s) — u(t))(v(s) - V(t))

ra- a) (t —s)x+l
u(t)v(t)
CT(l-a)t™

point-wise.

Remark 2.1 In virtue of Lemma 2.1, if v and u have the same sign and are both increasing
or both decreasing, then

Df (uv)(t) < u(t)D7v(t) + v(£) D u(t)
and for u = v, we get

DX () (1) < 2u(t) DY u(t).
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3 Fractional system
Consider the two dimensional fractional system (the nonlinear case can be found in [15])

1 2
8= 501+ L1 4 i+ ool + 2, (3.1a)
o _l ﬁz 2 2 i
02 =3 590 + 12 + valonlon + yulnl g + 2, (3.1b)

whereze U :={ze C:|z| <1}, t > 0 and 97 is the Riemann-Liouville differential operator
which is defined by 97 ¢(£) = D? ¢(t), subject to the initial conditions

(#100,) = 60, $5(0,) = 99 € ).

The parameter set can be listed as

+ i is the imaginary unit;

« o €(0,1] is the fractional order;

« A is the Laplacian;

+ B >0 is referred as the magnetic trapping strength;

+ 1> 0 is the mean-field exponent;

« A € R is the external driven field constant;

+ yy is for the intra specific scattering lengths;

+ @1, ¢ are wave functions of a quantum system.
The system can be written in the compact form

0P ® = AD + F(®) + BO,  ®(,0)=°,

where

Ao 1A+ 1Bz 0 B- 0 A
- 0 A+ 1g22)0 “\x o)’
2 2

F(®) = J/11|¢1|:¢1 + V2|2 > '
Yi2|11° P2 + vaa|Pa|H o

It is clear that F(®) and B® are locally Lipschitz continuous in the unit disk.

4 Existence solution

In this section, we deduce the existence and uniqueness for the system (3.1a)-(3.1b) with
the initial condition ¢;(0,-) = ¢?, $2(0,-) = ¢3.

Theorem 4.1 Consider (¢, ¢3) € H(U)?and |y;| < |y2l,j = 1,2.1f]f’(a—Tf1) <1, fora positive
number o, then there exists a unique global solution (¢, ¢2) for the system (3.1a)-(3.1b) such
that

(¢1,¢2) € L*([0, T1, H') N L*([0, T], H?) x L>([0, T],H') N L*([0, T],H?).  (4.1)
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Moreover,
(871,07 ¢2) € (L*([0, T); L%) x C([0, T} L?) x L*([0, TT;L?) x C([0, T;L?)).  (4.2)

Proof The proof takes place in six steps. The first five steps concern prior estimates. Step 6
addresses uniqueness.

Step 1. Formal first energy estimates. Multiplying (3.1a) by ¢, integrating over the unit
disk U, and applying Remark 2.1, we obtain the first estimate

d
S Y] Hﬂ(t

i lyul
<& [ e + e |

+|m|fu|¢z(t,~>|2|¢1(t,-)|2dz+A/u¢1¢2

_B |7/11|
-2

nll7, +

LRI
+|J/12|/ ‘¢2(t,')‘2‘¢1(t,')|2+)»/ $r1¢a. (4.3)
u u

Similarly, we multiply (3.1b) by ¢, and integrate over U to get

1., 1]d¢ P 2 +
X |2t )] + EHB_;(t")HLz <= /u 1221 + M—Z\wz(t,-)ufﬂi

+ sl /u|¢1<t,~)|2|¢z(t, )| dz+ )»/u¢1¢2

2
< %n@niz 'm' Sloate ] e

+|m|fu\qsl(t,-)!zwz(t,-)!z+A/u¢1¢>z. (4.4)

Combining (4.3) and (4.4), we have

0
S92 + 16212) +—(H A

=

)

2
<F = (|yn|||¢1||;‘;i +lynl] 626 |1n)

nllZ2 + 2l72) +

+2|7/12|/;1|¢1(t»')|2|¢2(ty')|2+2)»/U¢1¢2

n+2
L2 + |V22| ”¢2(t: )

B> 2 2
< & ot s+ Jont 1)

2(|)’11| |1 (2, -)

n+2
L/1+2)

20yl ¢t )| o [ @208 o + 200118 )| 2 ]| 628 ) |-
Employing the Gagliardo-Nirenberg inequality and utilizing the inequality

(e, )12, +1

le )], < 5
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yield

1
5

1)+ 5 (196 + [90ate)]12)

< 52 2 2
= (IgnlZ2 + I1g21172)

K, 2
+2( )
+2Al (8, )] 2 | @28 ) | 2
_PB )
= 7(”@51( ) H¢2( ’ )
K, 2
+2( )
+ Ky (| 2)

+ M (IB1l17s + d2l122) + 1AL,

where K, > 0 and K > 0. Now let ||V (¢, )||L2 := max{||Vei(t, )| 2,||V<1)1(t )|| ,} and
Va(t, )} = max{[[Voa(t, )II2,, | Vea(t, )II}}, we conclude that

1 1
22 (I s + a6 ) ) + 5 (I Vente z2)
B
(IAI + —)(I|¢1||Lz + 1 p2l72)
K my
(2 ) (190162 e e 3) +

By applying the generalized Gronwall lemma to the last assertion, we find that

T
2
)+/0 ([1(6.-)

|62t )| }2) it

sup ([|a(t, )2 + | ot o2t | 0) at
te[0,T]

S/T(

/UW@aMh

HL2 ||¢2(t )”Lz)dﬂ' Co, 1>

where Co,r is a constant depending on «, B, , K\, K, |y12|, T, |1, ¢, and 3.
Step 2. L*™®-bounds. In this step, we proceed to compute the L*°-bounds on ¢; and ¢,.
Multiplying (3.1a) by A¢; = 3 ¢1 and integrating over U yield

%3?( ; 2)+_( )

‘—qw,-) 1,
zZ

2 82
f’f e >+|yu|/|¢1|’* o

" ¢’1

)
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82
& ¢>1

(t)/

+|)/12|/ 16l

2
§K< "¢
u

e
072
+

¢1—' vl [ o5

82
(t,) + f|¢1|“ ]

(t, ))

where « is a positive constant depending on §, A, y11, and yi5. In view of the Young and

)

32¢1

the Cauchy-Schwarz inequalities, we deduce that

%P1
072

a
8_Z¢l(t! ) (tr')

2 ‘

L2 )z

~ 2 +2 2 2
<K(lpulla + lnllis + Idall7s Nnlls + 2ll72),

where ¥ is a positive constant concerning &, 8, i, A, 11, and y12. Again by employing the
Gagliardo-Nirenberg inequality
2

2¢1

+

a
8—Z¢1(t’ )

= 2 2
<®(lonll7> + ldall72),

12

where ¥ is a positive constant depending on «, B, i, A, y11, and 5. By the regularity
assumptions on the initial conditions that %d)l ;=0 € L*(U), we therefore have

¢ € L([0, T), H') N L*([0, T), H?).
Similarly, multiplying (3.1b) by A¢, = =2 and integrating over U leave us with
¢> € L([0, T1,H') N L*([0, T, H?).
Step 3. Second estimate: converge solution. Consider the system
0] 1 = —%A%n + %2|Z|2¢1n + Y11l Pual” b1n + V12l 2> P1n + Ao, (4.5a)

) 1 2
007 ¢2n = _§A¢2n + % 21> Pon + Vi2|P1a*Pon + Vo2l 2al" Pon + Adrn, (4.5b)

subject to the initial conditions
(#14(0,) = B, $24(0,) = $3, € U).

In a similar manner to Step 1, we can see that the approximate solution (¢1,,$2,) is
bounded in L? x L?. Multiplying (4.5a) by A¢y, = 2 ¢1” and integrating over U

1 a( 3 2)
—3%( || =—
2 0z 12
2 2
(5e]) 51
2 12

82¢1n 2¢1n 2n¢1n

022

(t7 ) ¢1n ¢1n (t’ )

(¢, +|)/11|/|¢1n|“
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¢1n ¢2n 3 ¢1n

(t,)

(t,)+ /wm

¢1n

+m4/wm
(/ ¢M32”¢1n (t-) + /|¢1n
o)

where o is a positive constant relating on S, A, 11, and y15. By applying the Young and

2y

82¢1VI

¢1n

¢1n d’ln (t )

2
¢2n ¢ln

the Cauchy-Schwarz inequalities and the Gagliardo-Nirenberg inequality, respectively, we

), (4.6)

where T is a positive constant depending on «, B8, i, A, 11, and y1,. Similarly for ¢,, we

propose that

2 (pln

el
5, Pt (,-

2
=~ 2 2
< 6(|I¢1nIILz +[p2nllp2 +
12

impose
52
¢ n
<(wmw+wmm+ 2 ). (4.7)
Combining (4.6) and (4.7), then we have
(I )
o\ | = +
0z 2
2 2
P1n R
sa@@m;+wm@+ 1@) T (& ), (4.8)

where o :=6 +05.
Step 4. Third estimate. In this step we argue for an estimate the upper bound of the
fractional derivative operator ;. Now we introduce the functions

82¢1n a2¢72n

(t, )

(-

2
W, (f) := ‘ ‘

m=wwm

o]

12

Operating on (4.8) by I* and employing the Sobolev inequality yield

D,(t) < Do + o( tmd)n(r)dr + tﬂ\lﬁ,(r)dr)

o TI'(a) o T(a)
o T t (t— 7'.)01—1
< dpy + Tla il )tes[lépT]CD (t)+o/0 W\Dn(r)dt. (4.9)

A computation implies that

o a—1
sup ®,(t) < 9 + JT"‘ f - T) v, (t)dt

1- oI -
te(0,7] C(a+1) T(a+l)
Lt =)t
=My + M; sup —— W, (1)dr. (4.10)

e, o T(a)
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By induction, we find that for all ¢ € [0, T] and n

sup sup &,(t) < ME,;(MT), (4.11)
n te[0,T]

where M is a positive constant depending on &, o, ®¢. Thus, we have
S‘;P(”afl(bln(t, ')HLz + ] 0¢ pon(z, ’)HLZ) <Mry,. (4.12)
Step 5. Convergence of the approximate solution. Let
A= [ pualts )12 + | Banlts )] 12
the Young inequality shows
O Au(t) < L(A(E) + Apa(t)). (4.13)

Applying the Gronwall lemma to (4.13), we attain
~ t
Au(t) < Ly / Nya(s)ds, (4.14)
0

where Za is a constant depending on all the coefficients of the system (3.1a)-(3.1b) and its

initial condition. Thus we have

Lot)™!
L) sup Aq(s);

Au(t) <
! (n=1)! sef0,7]

therefore, the sequence (¢1,, ¢2,) is a Cauchy sequence in the space L®([0, T], L*(LI))>.
This completes the existence proof. The next step shows the uniqueness.

Step 6. Uniqueness. Let (¢1, ¢2) and (¢, ¢2) be two solutions for the system (3.1a)-(3.1b)
with the same initial condition (¢?,¢9) € H'(U). Assume that u = ¢ — ¢ and v = ¢ — ¢
satisfy the system

1 2
id%u = —iAu + '% |z u + v lul*u + yio|v)2u + Av, (4.15a)
nat B 2 "
LatV=—§Av+ 7|z| v+ ylul“v+ ya|vHv + A (4.15b)

As in Step 1, we multiply (4.15a), (4.15b) by u, v, respectively, integrate over U and sum

up, and we conclude that
1, 2 2
5 00 (@) + e 12)

2
(ot 19916 ) (11 5 ) Qe )+ 9] 2)

K, ” "
+ (M s +1<>|m|(||Vu(t,~>||L; Jaute, ) + Vv 77 v ) 50)-
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By applying the generalized Gronwall lemma, we conclude that
sup ([t )2 + [v(6)]2) < s
te[0,T]

where p is an arbitrary constant depending on «, 8, i, K, K, |yial, T, ||, 7, and ¢5.
Hence we complete the proof. d

5 Numerical scheme
The system is solved in a bounded interval J = [a, b], where a < b. We utilize a grid with

size 4 and grid point z; = zg + jh, j = 0,...,m, where m + 1 € N is an odd number of grid

points. Consequently, /1 = 2%, The time grid is posed by ¢, = ns, n € Ny, where s > 0 is the

m

time step measure. We put (¢k);’ := ¢x(zj, t,), where k =1,2,j=0,...,m, and n € Ny. We
split the system (3.1a)-(3.1b) into the three subsystems

i0f 1 = %2|Z|2¢>1 +ynldil" 1 + vizla > b1, (5.1a)
i0] o = %2|z|2¢2 + V2|1 P b2 + va2ldal“ o, (5.1b)
197 gy = —%Aq&k, k=1,2, (5.2)
10y p1 = Aepo, 0] ¢y = Ay, (5.3)

assumed on [, t,,1] and subject to some initial conditions. We may solve these systems
as follows:

Step 1. Equations (5.1a) and (5.1b) can be solved by using numerical methods (see [16]);
thus we get an approximate solution in the interval [t,, ¢, + %],

i 2
(0 %Ea,l( . (%zf cynl@]” + y12|<¢2);?|2))<¢1>;“, (5.

where

© k
z
Bur®) =2 Faxs )

is the Mittag-Leffler function. Similarly for (¢2);?.
Step 2. Equation (5.2) can be solved, in the interval [¢,, £,.1], by using the method sug-
gested in [17], yielding

oo P 2 1
00 _ s 2\ . [(mmz o [ mTw
(1) —mizlEaJ( 5 (2) M>sm< 5 >f0(¢k)j (t,W)sm( 5 )dw, (5.5)

for some initial conditions depending on (¢k);->.

Step 3. The equations of (5.3) are solved in the interval [¢,, £,,1] implying

($1)°° = cosa (h)(@);° + ising (1)(62):°,

($2)°° = ising (h) (@)} + c0sa (h) ()"

(5.6)

where cos,, and sin, are the fractional trigonometric functions [3].
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Figure 1 Numerical solutions of the system (3.1a)-(3.1b). Solutions of the system (3.1a)-(3.1b), for
different values of & € (0, 1). They are plotted in three dimensions, t € [0, 5], with the initial wave function of a
quantum system ¢? = ¢S =0andz=(x,y), 0 <x<1,0<y<1.Theiterations k of the algorithm are taken
from 1t0 1,000. (@) @ = 0.1, (b) & = 0.5, (c) & = 0.75, and (d) & = 0.9. We conclude that the increasing value of
o implies increasing wavelets of solutions.

Step 4. We solve the problem (5.1a) and (5.1b) in the interval [¢, + 5, £,.1] employing
(¢>1);?°° to introduce (¢1)1-°°°°.

Step 5. Similarly, we solve (5.2) and (5.3) in the interval (¢, + 3, Z,.1] to imply (¢k)]’7+1 (see
Figure 1).
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