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Abstract

Introduction: Wnt and Notch signaling pathways are critically involved in relative cell fate decisions within the
development of cutaneous tissues. Moreover, several studies identified the above two pathways as having a significant
role during wound healing. However, their biological effects during cutaneous tissues repair are unclear.

Methods: We employed a self-controlled model (Sprague-Dawley rats with full-thickness skin wounds) to observe
the action and effect of Wnt/B-catenin and Notch signalings in vivo. The quality of wound repair relevant to the
gain/loss-of-function Wnt/f3-catenin and Notch activation was estimated by hematoxylin-and-eosin and Masson
staining. Immunofluorescence analysis and Western blot analysis were used to elucidate the underlying mechanism of
the regulation of Wnt and Notch signaling pathways in wound healing. Meanwhile, epidermal stem cells (ESCs) were
cultured in keratinocyte serum-free medium with Jagged! or in DAPT (N-[(3,5-difluorophenyl)acetyl]-L-alanyl-2-
phenyllglycine-1,1-dimethylethyl) to investigate whether the interruption of Notch signaling contributes to the
expression of Wnt/B-catenin signaling.

Results: The results showed that in vivo the gain-of-function Wnt/B-catenin and Notch activation extended the
ability to promote wound closure. We further determined that activation or inhibition of Wnt signaling and Notch
signaling can affect the proliferation of ESCs, the differentiation and migration of keratinocytes, and follicle regeneration
by targeting c-Myc and Hes 1, which ultimately lead to enhanced or delayed wound healing. Furthermore, Western blot
analysis suggested that the two pathways might interact in vivo and in vitro.

Conclusion: These results suggest that Wnt and Notch signalings play important roles in cutaneous repair by targeting
c-Myc and Hes T separately. What's more, interaction between the above two pathways might act as a vital role in

regulation of wound healing.

Introduction

The skin is the largest organ in the human body and
stems aggression of external microorganisms and dehy-
dration. As a response to and result of injury, several
dynamic and interactive processes occur and eventually
lead to wound healing, which involves regeneration of
the normal structure and function of the organ. The
success of the wound repair depends on the differenti-
ation and proliferation of involved cells, including
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epidermal stem cells (ESCs), keratinocytes, and fibro-
blasts, together with the assistance of various biological
signals. Moreover, these signals contribute significantly
to regulate biological actions of cells within epithelial
tissue. Therefore, under the incorrect guidance of signals,
activities of the above cells change and the resulting
wound healing is abnormal (that is, either lingering or
excessive). According to increasing advances in wound-
healing research, Wnt and Notch signaling pathways play
a key role in the regulation of migration, proliferation, and
differentiation of cells functionally relevant to skin tissue
repair.

Depending on different contents, Wnt ligands (like
Wntl) signal by the canonical or non-canonical Wnt
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signaling pathways. For the canonical Wnt signaling
pathway, B-catenin is the key mediator. When the canon-
ical Wnt signaling is initiated, cytoplasmic and nuclear
levels of P-catenin can increase and ultimately activate
target genes (like c-Myc). Wnts are important for many
fundamental cellular processes in the regulation of devel-
opment and homeostasis [1]. Wnt action determines ESCs
in mice to maintain the stem cell state or their entry into
the differentiation stage [2], and the loss of Wnt causes
ECSs to differentiate into keratinocytes and sebocytes.
¢-Myc, a downstream target of canonical Wnt/[-catenin
signaling, functions as a regulator of stem cell mainten-
ance. The downregulation of c-Myc can induce the deple-
tion of ESCs in vivo [3] but can cause differentiation of
ESCs in vitro [4]. On the other hand, Notch signaling is
also involved in regulating cell fate; in light of different cell
types and contexts, Notch signaling induces cell differenti-
ation or maintains cells in an undifferentiated proliferation
state [5]. Accompanied by Notch ligands (like jaggedl)
binding to Notch receptors (like Notchl), a Notch intra-
cellular domain (NICD) can be released and translocated
to the nucleus, where it modulates target genes such as
Hairy and enhancer of split 1 (HesI). Notch signaling has
been reported to be observed in the cells of the epidermis,
and blocking Notch signaling leads to the downregulation
of expression of differentiation markers [6]. Hesl is a
known target of Notch signaling and plays an important
role in the maintenance of proliferating cells. When intes-
tinal adenomas expressed HeslI at a low level, many tumor
cells exited the cell cycle and did not continue to prolifer-
ate [7] in vivo. However, it was unclear whether HeslI is
similarly important for regulating epidermal cells within
wound healing.

Given identifications of Wnt/p-catenin and Notch
signalings in skin, the application of the two pathways
may be a potential avenue to improve wound healing
and inhibit scar formation. However, the exact roles
and underlying molecular mechanisms for the above
two pathways related to wound repair are not com-
pletely clear, which undoubtedly block the exploration
of the ultimate solution to both underhealing and over-
healing. Therefore, the aim of this study is to observe
the actions of Wnt/B-catenin and Notch signalings and
to investigate effect of the two signalings for wound
healing. The results of this study can offer a theoretical
foundation for the treatment of lingering wound heal-
ing and excessive wound healing.

Methods

Ethics statement

All animal experiments were approved by the Institutional
Animal Care and Use Committee at Sun Yat-Sen Univer-
sity and performed according to National Institutes of
Health guidelines. Sprague—Dawley (SD) pregnant rats
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were obtained from the Experimental Animal Center of
Sun Yat-Sen University and kept under standard condi-
tions according to the regulation of ethics committee of
the Medical Sciences Department.

Wound model and wound analysis

We used a label-retaining technique to assay the num-
ber of stem cells. By definition, ESCs rarely divide and
have unlimited capacity for self-renewal. Thus, 75 new-
born SD rats (10-11 days old) were injected with 50 pg/g
5-bromodeoxyuridine (BrdU) (Sigma-Aldrich, St. Louis,
MO, USA) four times every 12 hours to identify ESCs [8].
As ESCs possess a longer period between divisions, they
should be the only cells to retain the BrdU label after the
60-day chase period. Therefore, two full-thickness skin
wounds that were 2 cm in diameter and 1-1.5 cm off the
midspinal line were established on the each side of the
dorsum of rats (60 days old). The wound was covered with
a transparent semi-occlusive dressing (Tegaderm, 3M,
Saint Paul, MN, USA) to prevent desiccation. The above
wounds were randomly divided into six groups. Lith-
ium chloride (LiCl), Dickkopf-1 (DKK1), recombinant
human nuclear factor-kappa-B (rhNF-«B), and DAPT
(N-[(3,5-difluorophenyl)acetyl]-L-alanyl-2-phenyl]glycine-
1,1-dimethylethyl) (all from Sigma-Aldrich) were topically
and respectively applied to the wound under the occlusive
dressing once daily until wound closure according to the
requirement, allowing the solution to bathe the wound
[9-11], but there was no treatment in the control group.
LiCl and DKK1 are the Wnt agonist and antagonist,
whereas rhNF-kB and DAPT are the Notch agonist and
antagonist. LiCl is a glycogen synthase kinase 3 beta
(GSK3p) inhibitor that weakens the GSK3p-mediated deg-
radation of P-catenin through phosphorylation of GSK3p
[12]. It was used in some studies to activate the canonical
Wnt signaling pathway [13]. Alternately, DKK1 can bind
to Wnt co-receptors LRP 5/6 and prevent the interaction
of Wnt proteins and their receptors. Therefore, it was
used to negatively regulate the Wnt/B-catenin signaling
pathway [14]. Although rhNF-«B is not a Notch agonist, it
can trigger the Notch signaling pathway by directly
inducing the expression of Jaggedl. DAPT, a y-secretase
inhibitor, inhibits Notch signaling by blocking the cleavage
of NICD necessary for activation of transcription of down-
stream target genes. DAPT has also been shown in a
previous study to inhibit Notch signaling [15].

Wounds were observed until closure or animals were
killed. Fifteen rats were euthanized and their wounds were
photographed on days 0, 7, 14, 21, and 30. The excisional
wounds, together with a peripheral rim of normal skin,
were excised for further study. Wounds were digitally
photographed at the time of generation (day 0) and again
on days 7, 14, 21, and 30 or until wound closure. The
wound areas were measured by using National Institutes
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of Health Image] software and standardized by compari-
son with the original wound size. The residual wound area
rate was calculated as [(day n area) / (day O area)] x 100 %
(n=0,7,14, 21, or 30).

Histological analysis and immunofluorescence analysis
For further histological study, tissues were fixed on for-
maldehyde and dehydrated and embedded in paraffin
and sectioned at 4 pm. The sectioned tissues were
deparaffinized and stained with hematoxylin and eosin
(H&E) and Masson. The skin tissue was examined in
random order under blindfold conditions with standard
light microscopy.

Sections were blocked in 10 % goat serum for 30 min
at 37 °C. For double labeling, two compatible primary
antibodies were simultaneously applied overnight at 4 °C.
The following primary antibodies were applied: mouse
monoclonal anti-BrdU antibody (1:50, Sigma-Aldrich) and
rabbit anti-HesI antibody and rabbit anti-c-Myc antibody
(both 1:50, Bioss, Woburn, MA, USA). The samples were
then incubated for 1 h in 0.01 M phosphate-buffered sa-
line (PBS), pH 7.4, containing the following secondary
antibodies: goat anti-mouse IgG labeled with Alex Fluor
488 or goat anti-mouse IgG labeled with Alexa Fluor 594
(all 1:100, Maibio, Shanghai, China). Finally, the nuclei
were stained with 4,6-diamidino-2-phenylindole (DAPI).
To provide negative controls, we performed staining in
the absence of the primary antibodies by adding only PBS
to the sections. Sections were documented with a fluores-
cence microscope (Leica, Wetzlar, Germany).

Epidermal stem cell isolation and culture

After the rats were sacrificed (fetal, 19- to 21-day gesta-
tional age), the skin from the dorsum of each rat was
taken. After that, the skin tissue was successively rinsed,
immersed, digested, and incubated. After peeling off the
epidermis and cutting into the microskin, the skin sample
was digested with 0.25 % trypsin (cat. no. SH3008742.01,
HyClone, Logan, USA) to prepare a single cell suspension,
which was stopped with the addition of an equal volume
of high-glucose Dulbecco’s modified Eagle’s medium
(DMEM). After filtering and removal of the supernatant
of the cells, the cells were resuspended in high-glucose
DMEM. After 15 min at 37 °C, the above ones were de-
tected under an inverted phase-contrast microscope. The
suspended cells were collected besides the adherent
cells. After 24 h, the culture medium of the remaining
cells was changed to keratinocyte serum-free medium
(K-SFM) (cat. no. 17005042, Gibco, part of Thermo
Fisher Scientific Inc., Waltham, MA, USA). When the
culture reached 70 % to 80 % confluence, the cells were
digested in 0.25 % trypsin at 37 °C with 5 to 10 min of
oscillation and passaged at a ratio of 1:2.
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Signaling pathway analysis in epidermal stem cells

ESCs were plated in six-well plates at a density of
10,000 cells/cm? in K-SFM. The medium of the cells
was supplemented with either Jagged1/FC (1000 ng/
mL; R&D Systems, Minneapolis, MN, USA) or DAPT
for interfering with the action of the Wnt/pB-catenin
and Notch signaling pathway. Cells in the medium with
PBS were used as the control group.

Western blot analysis

Proteins of cell lysates or the skin homogenates were
separated by 5 % SDS-PAGE electrophoresis and trans-
ferred into nitrocellulose membranes. After blocking
with TBS/5 % nonfat dry milk, the membrane was incu-
bated with the following antigens: rabbit anti-Wnt-1 anti-
body (Bioworld, Dublin, OH, USA), rabbit anti-B-catenin
antibody (Cell Signaling Technology, Danvers, MA, USA),
rabbit anti-c-Myc antibody (Bioss), rabbit anti-Jaggedl
antibody (Bioss), rabbit anti-Notch1 antibody (Cell Signal-
ing Technology), and rabbit anti-HesI antibody (Bioss).
Immunoreactive bands were visualized by peroxidase-
conjugated secondary antibodies. The signal from im-
munoblotting bands was captured (G:BoxiChemi camera;
Mshot, Guangzhou, China) and quantified by using
GIS1000 software. Quantitative Western blot measure-
ments of target protein were normalized by corresponding
measures of GAPDH derived from the same samples in
each blot.

Statistical analysis

Data are expressed as the mean + standard error of the
mean. Comparisons of changes in levels of signaling
component expression between control and experimental
groups at the same time point were conducted by using
Student’s ¢ test. The differences between the groups at
different time points were compared by one-way analysis
of variance followed by the Bonferroni test. All statistical
analyses were performed by using SPSS 20.0 software
(SPSS, Chicago, IL, USA), and a P value of less than 0.05
was considered statistically significant.

Results

Effects of several disturbing reagents on Wnt/f3-catenin
signaling pathway and Notch signaling pathway during
wound healing

To achieve the gain- and loss-of-function studies of Wnt/
B-catenin and Notch signalings during wound healing,
LiCl, DKK1, rhNF-kB, and DAPT were respectively ap-
plied to the wounded skin. The disturbing reagents above
were topically and respectively applied to the wound
under the transparent semi-occlusive dressing (3M) once
daily until wound closure in experimental groups, allowing
the solution to bathe the wound. In the control group,
there was no treatment. Wntl, -catenin, c-Myc, Notchl,
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Jaggedl, and Hes!, as Wnt/[B-catenin and Notch signaling
components, were examined by Western blot to evaluate
the action of two signaling pathways during the wound re-
pair process. As shown in Fig. 1, the expression levels of
two signaling components increased sharply from the start
to the 7th day and then decreased from the 14th to the
30th day. Compared with the results of the control group,
the results showed that the expression levels of Wnt/p-ca-
tenin signaling components were higher after in vivo LiCl
treatment from the 7th to the 30th day post-burn, whereas
the addition of recombinant Dkk1 resulted in lower levels
(at least P < 0.05, Fig. 1a, b).

Similarly, when comparing relative protein values of
Notch signaling components between the rhNF-kB/DAPT
group and the control group, the values in the rhNF-kB
group were much higher than that in the control group,
and that in the DAPT group was significantly lower at the
above time points (at least P <0.05, Fig. 1c, d). Because the
high levels of Wntl expression and nuclear accumulation
of B-catenin are defined as features of an activated Wnt/p-
catenin signaling [16]. Furthermore, interaction between
Notch 1 and Jaggedl can promote migration of the Notch
intracellular domain (NICD) into the nucleus. NICD is the
indicator of Notch pathway activation. Accordingly, the
above results document the mentioned agents (LiCl,
DKK1, rhNF-kB and DAPT) do affect the activity of these
pathways during wound repair.

In addition, we noticed that the activation of the Wnt/[3-
catenin pathway promoted an upregulated protein expres-
sion of Notch components from the 7th to the 30th day
but that its inhibition resulted in downregulated levels of
Notch components. A similar situation appeared in the
rhNF-kB group and the DAPT group at the above time
points. Furthermore, the above differences were consid-
ered significant (at least P <0.05, Fig. 1e-h). That means a
cross-talk among the above pathways may exist.

The observation of wound healing among the groups
The roles of Wnt/B-catenin and Notch signalings in wound
healing were first investigated by comparing the rate of der-
mal wound repair in all groups. Full-thickness skin wounds
were made on each side of the dorsum of the rats and were
randomly divided into the experimental groups (the LiCl
group, the DKK1 group, the rhNF-kB group, and the DAPT
group) and the control group. Wounds were observed until
closure or animals were killed and were digitally photo-
graphed at the time of generation (day 0) and again on days
7, 14, 21, and 30 or until wound closure. The residual
wound area rate was calculated as [(day n area) / (day O
area)] x 100 % (n = 0, 7, 14, 21, or 30).

In LiCl-/rhNF-kB-treated rats, 2-cm full-thickness der-
mal wounds were healed significantly, with the lesions be-
ing reduced by over 60 % within 14 days compared with
control rats, and were completely healed within 30 days
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(Fig. 2b, c). Furthermore, gross observation of wounds
indicated that rats treated with LiCl or rhNF-«B had better
wound-healing quality, such as scarless healing, which is
barely detected in control rats (Fig. 2a). However, healing
exhibited a significant delay in DKK1-/DAPT-treated rats,
compared with the control rats, with the lesion size being
decreased by less than 30 % at 14 days. On day 30 after
wounding, the wounds in DKK1-/DAPT-treated rats were
incompletely closed (Fig. 2a).

Wnt/B-catenin signaling pathway and Notch signaling
pathway mediate hair follicle formation, re-epithelialization,
and the generation and deposition of collagen during
wound healing

To further evaluate the quality of wound healing, we
observed hair follicle regeneration, re-epithelialization,
and the generation and deposition of collagen during cu-
taneous wound closure by H&E and Masson staining.
Detailed histopathological analysis of relative sections
showed that the neoformative epidermis layer was sig-
nificantly thicker in the LiCl/rhNF-xB group than in the
control group, resulting in more cell layers, more epider-
mal ridges, more formation of primitive hair follicle
structures and sebaceous glands, and a more regular and
ordered collagen arrangement (Fig. 3). Downregulation
of Wnt/B-catenin and Notch signaling component ex-
pression impairs epidermis re-formation, the collagen
arrangement, and skin appendage regeneration in the
DKK1/DAPT group compared with the control group
(Fig. 3).

Collectively, the analysis of the histopathological sections
suggests that these pathways have an active help in the
regulation of hair follicle re-formation, re-epithelialization,
and the arrangement and deposition of collagen but that
the suppression of the two pathways in vivo resulted in
poor-quality wound healing.

Wnt/B-catenin signaling pathway and Notch signaling
pathway stimulate the proliferation of epidermal stem
cells during wound healing

In wound repair, ESCs play a vital role by providing
the source for replenishing lost cells during wound
healing [17, 18]. For this, we employed BrdU, c-Mjyc,
and HesI as markers by double-immunofluorescence
staining to detect the relationship between ESC prolif-
eration with the two signalings. Among this, BrdU
marks ESCs [3]. BrdU/c-Myc double-positive cells and
BrdU/HesI double-positive cells were bare in all groups in
the normal skin tissue (Fig. 4c, d). After wounding, the
number of positive cells gradually increased in response
to wounding, reaching peak level on the 7th day and
downregulated thereafter. The positive cells were detected
in hair follicle cell nucleus and skin basal cell nucleus
(Fig. 4a, b). Furthermore, the number of BrdU/c-Myc
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Fig. 1 The activities of Wnt and Notch pathways and interaction were analyzed by immunoblot. Wnt activity in wound tissue is increased in
response to lithium chloride (LiCl) treatment and is decreased in response to Dickkopf-1 (DKK1) (a, b). Representative immunoblot and results of
densitometric analysis of blots (a, b) showed relative levels of Wnt signaling components at the indicated post-wounding time points. Notch activity in
wound tissue is increased in response to recombinant human nuclear factor-kappa-B (rhNF-kB) treatment and is decreased in response to N-[N-(3,5-
difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) (c, d). Representative immunoblot and results of densitometric analysis of blots (c, d)
showed relative levels of Notch signaling components at the indicated post-wounding time points. Wnt and Notch pathways interact during wound
healing in wound tissue samples (e-h). Representative immunoblot and results of densitometric analysis of blots (e, f) showed relative levels of Notch
signaling components from LiCl-/DKK1-treated and control rats at the indicated post-wounding time points. Representative immunoblot and results of
densitometric analysis of blots (g, h) showed relative levels of Wnt signaling components from rhNF-kB-/DAPT-treated and control rats at the indicated

post-wounding time points. *P < 0.01, **P < 0.05 compared with the control value (n = 5)

double-positive cells was predominantly upregulated in
the LiCl group compared with that in the control cul-
ture, and that of the DKK1 group was distinctly down-
regulated compared with that of the control group on
day 7 (Fig. 4a, b). Meanwhile, the number of BrdU/HesI
double-positive cells was markedly increased in the
rhNF-kB group compared with the control culture,
whereas that of the DAPT group was significantly de-
creased compared with that of the control group during
wound repair (at least P <0.05, Fig. 4c, d). That means
that Wnt/B-catenin and Notch signals could signifi-
cantly stimulate the proliferation of ESCs during the
wound-healing process.

Expression changes in Wnt1, B-catenin, and c-Myc after
Jagged1 treatment

To investigate whether the interruption of Notch sig-
naling contributes to the expression of Wnt/B-catenin
signaling in ESCs, ESCs were cultured in K-SFM with
Jaggedl or in DAPT. The changes in protein expression
of Wntl, B-catenin, and c-Myc after Jaggedl treatment
were quantitatively analyzed by Western blot. As
shown in Fig. 5, the expression levels of proteins in
Wnt/B-catenin signaling were decreased after DAPT
treatment and those in the Jaggedl group were signifi-
cantly elevated. Because we have found that the Notch
signaling pathway stimulated the proliferation of ESCs

-
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chloride (LiCl)-treated rats, Dickkopf-1 (DKK1)-treated rats, recombinant human nuclear factor-kappa-B (rhNF-kB)-treated rats, and N-[N-(3,5-difluoro-
phenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT)-treated rats. a Images of a representative mouse from each group taken on post-injury
days 0, 7, 14, 21, and 30 are shown. b Wound areas are shown for control wounds, LiCl-treated wounds, and DKK1-treated wounds. The computation
was that the indicated area was divided by the initial area. Results represent mean + standard error of the mean (SEM) (n = 10 for each group).
¢ Wound areas are shown for control wounds, rhNF-kB-treated wounds, and DAPT-treated wounds. The computation was that the indicated
area was divided by the initial area. Results represent mean + SEM (n = 10 for each group). *P < 0.01 compared with the control value
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Fig. 3 Histological features of wound healing in rats with decreased or increased Wnt and Notch activity. Images of skin tissue sections stained
with hematoxylin and eosin (a) and Masson (b) showing histological changes during the wound-healing process in control, lithium chloride (LiCl)-treated,
Dickkopf-1 (DKKT)-treated, recombinant human nuclear factor-kappa-B (rhNF-kB)-treated, and N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl
ester (DAPT)-treated rats at post-injury days 7, 14, and 30. Compared with control rats, LiCl-treated and rhNF-kB-treated rats exhibited a significant epidermal
thickening, an orderly collagen, and regeneration of the skin appendages with enhanced wound healing. DKK1-treated and DAPT-treated rats exhibited
delayed and poor-quality wound healing in comparison with control rats. Original magnification, 100x. Arrow pointed to neoformative epidermis layer

during wound healing (Fig. 4c, d), it is possible that the
elevated level of Wnt activity is the accompaniment of
the proliferation of ESCs. Based on these findings, it
can be speculated that Wnt activity synchronizes with
Notch activity in ESCs (Jagl is also an activator for the
Notch pathway). Whether Jagl activates Wnt directly
needs further study and we will try our best to study
this in the future.

Communication between the Wnt/B-catenin signaling
pathway with the Notch signaling pathway during wound
healing

To further identify the communication between the
Wnt signaling pathway with the Notch signaling path-
way within adult mammalian wound repair, thNF-kB
and DAPT were simultaneously added into the wound
tissue at the time of the experimental observations.
As shown in Fig. 6, treatment with rhNF-xB and DAPT
produced a significant increase in the expression of
Jaggedl and a marked decrease in the expression of
Notchl and Hesl. Simultaneously, Wnt/p-catenin sig-
naling components presented a pronounced increase in
expression in response to the expression of Jaggedl
in vivo.

Discussion

The signaling pathways are responsible for regulating the
entire wound-healing process, which includes the Wnt/p3-
catenin and Notch signaling pathway. Several pieces of
evidence have shed light on this. The activation of the
above two pathways during wound repair has been ob-
served in our previous study [19]. In the present study, we
also showed that in vivo the gain-of-function Wnt/B-ca-
tenin and Notch activation extended the ability to pro-
mote wound closure but that the inhibition of the relative
pathways obviously led to delayed and poor-quality wound
healing (Fig. 2). In the skin, Wnts are important mediators
of wound regeneration and participate in various pro-
cesses, from the development of the dermis to the forma-
tion of skin appendages [20]. Overexpression of Wnt
signaling molecules promotes cellular proliferation, migra-
tion, and extracellular matrix (ECM) degradation which
reflect the basic phases of wound regeneration. Similarly,
the Notch signaling pathway is documented by Bielefeld
et al. to be a regulator of epidermal differentiation [21]. A
high level of Notch signaling activity promotes the differ-
entiation of ESCs into keratinocyte and interfollicular
lineages [22]. In view of the above findings, it is suggested
that expression and activation of the above two signalings
do have an active role in facilitating wound healing and
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Fig. 4 The relationships of the Wnt and Notch signaling pathway and the proliferation of epidermal stem cells was analyzed by immunofluorescence.
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reducing scarring. However, the mechanism by which
the function of Wnt/B-catenin and Notch signaling
pathway relevant to cutaneous wound is realized is un-
known. To identify the biological functions and mecha-
nisms of the two pathways, we detected the biological
action of the cells of various types based on the gain- and
loss-of-function studies of Wnt/B-catenin and Notch sig-
naling during the entire wound-healing process.

As we all know, ESCs have an important role in wound
repair [23, 24] and are considered to be the source for
replenishing lost cells during wound healing. ESCs can
switch rapidly and reversibly between quiescence and
activity following injury or drug treatment or both [25]. In
response to injury, activated ESCs can migrate to the
wound site, proliferate, and differentiate into keratinocytes

that reconstruct the epidermal barrier [23]. Thus, we car-
ried out BrdU/c-Myc labeling and BrdU/Hes! labeling to
determine the proliferation rate of ESCs and the interac-
tions between ESCs and Wnt/(3-catenin or Notch signaling
in the cutaneous lesions. ¢c-Myc and Hesl are respective
downstream targets of Wnt/p-catenin and Notch signal-
ing. Our results suggest (Fig. 4) that the two signalings via
¢-Myc and Hesl have advantages over stimulating the pro-
liferation of ESCs during wound healing. This finding is
consistent with previous work demonstrating that ¢-Myc
increases proliferation [3]. The putative mechanisms are
that Wnt signaling targets ¢-Myc gene, which regulates
transition from G; to S phases of the cell cycle [26] and
shortens the epidermal stem cell cycle duration. In
addition, activation of Wnt/p-catenin pathway induces the
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B-catenin

c-Myc

GOPAH

Con DAPT JAG1

Fig. 5 The interruption of Notch signaling contributes to the
expression of Wnt/B-catenin signaling, which was detected by Western
blot. When epidermal stem cells were cultured in keratinocyte serum-
free medium with Jagged1 or N-[N-(3 5-difluorophenacetyl)-L-alanyl}-S-
phenylglycine t-butyl ester (DAPT), the expression of protein in the Wnt
pathway was accordingly increased or decreased. Con control

dedifferentiation of aged epidermal cells into stem cell-like
cells and is accompanied by the increased expression of
¢-Myc [27]. It is worthy of note that we address Notch
signaling enhance ESCs proliferative action, which is dif-
ferent from prior studies [28]. A possible explanation may
be that Notch signaling promotes ESCs proliferative action
by targeting Hesl, given that Notch signaling has been
shown to promote proliferation and maintain the undiffer-
entiated state in some stem cells (like melanocyte stem
cells) by targeting Hes! [29].

To assess the ability of Wnt/B-catenin and Notch sig-
naling in the regulation of keratinocytes, we carried out
H&E staining of the lesions at several specific times after
wounding. Histological analysis of the lesions reveals
(Fig. 3) that augmenting the two signals appears to en-
hance re-epithelialization within the damaged tissue. As
it is thought that ¢-Myc overexpression could promote
oriented differentiation of ESCs [30]. Several scholars
have demonstrated that ¢-Myc knock-out mice display
hindered re-epithelialization, because of the inability of
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ESCs to produce daughter keratinocytes [31]. Hence, we
speculate that the epithelialization-stimulating effect of
Wnt/B-catenin signaling is mediated by c-Myc, promot-
ing ESC differentiation into keratinocytes [4]. However,
there appears to be a contradiction in the regulation of
Notch signaling to re-epithelialization. Although it has
been reported that activation of Notch signaling inhib-
ited the migration of keratinocytes, many scholars also
provided emerging evidence that levels of Jagged-1 and
Notchl increased during the differentiation process and
might trigger keratinocyte terminal differentiation and
cornification in vitro [32, 33]. Furthermore, the men-
tioned studies are in agreement with our results that
Notch signaling accelerated re-epithelialization in skin
wounds (Fig. 3). Indeed, epithelialization is the result of
three overlapping keratinocyte functions: proliferation,
migration, and differentiation [34]. Accordingly, consider-
ing our observation, we speculate that the enhancement of
differentiation and cornification has a significant advan-
tage over the inhibition of migration in the regulation of
keratinocyte action by Notch signaling. Moreover, the ca-
nonical function of Hesl can promote senescence and
differentiation of NHOKSs (normal human oral keratino-
cytes) [35].

Although the loss of an adult follicle is considered
permanent, full-thickness excisional wounds in rats were
found to heal with de novo hair follicle regeneration and
this process requires the involvement of Wnt/{-catenin
and Notch signalings in our results (Fig. 3). Indeed,
recent in vivo studies have demonstrated that overex-
pression of Wnt ligands in the epidermis increases the
number of regenerated hair follicles but that inhibition
of Wnt signaling after re-epithelialization completely
abrogates this wounding-induced folliculogenesis [36].
Coincidentally, a high level of activated B-catenin mark-
edly promotes ESC differentiation into hair follicle mor-
phogenesis [37]. Besides, the inhibition of downstream
target ¢-Myc significantly restrains the development of
anagen hair follicles, whereas c-Myc activation promotes
hair growth [38]. In this study, ¢-Myc expression was
also observed in neoformative hair follicle cell nucleus of
wounded skin (Fig. 4). Thus, we theorize that the activa-
tion of Wnt signaling after injury could achieve the
promotion of follicle regeneration by inducing p-catenin
to target c-Myc. Additionally, Notchl is involved in regu-
lating invagination of hair follicles into the dermis and
maintaining postnatal hair homeostasis, which indicate
that Notch signaling in the wound-healing process is re-
quired for hair follicle regeneration [39]. Hair follicles
express low levels of Notch signaling target gene Hes! in
the resting phase but express high levels in the anagen
phase follicles [40]. Considering Hesl expression in
neoformative hair follicles and its upregulation tightly
following Notch activation (Fig. 4), we hypothesize that
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Jagged1. *P < 0.01, **P < 0.05 compared with the control value (n = 5)

Fig. 6 Jagged1 mediates the communication between Wnt and Notch pathways within wound repair. Representative immunoblot and results of
densitometric analysis of blots showed relative levels of Wnt and Notch signaling components from recombinant human nuclear factor-kappa-B
(rhNF-kB) and N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT)-treated and control mice at the indicated post-wounding
time points. The detailed analysis indicated a significant increase in the expression of Jagged1 with a marked decrease in the expression of
Notch1 and HesT, whereas the components of Wnt signaling presented a pronounced increase in expression following the expression of

Notch signaling is responsible for determining hair fol-
licle formation by promoting the transcriptional activa-
tion of HeslI.

In the proliferative phase of wound healing, fibroblasts
produce ECM required by closing the lesion. Among
this, collagen is a key component of ECM [21]. ECM
acts as not only the support platform for the migration
of keratinocyte in the proliferative phase but also a
major determinant for the quality of wound closure and
scarring in the remodeling phase marked by collagen
deposits [21]. In the present study, we observed that
Wnt/B-catenin signalings promoted the generation and
more orderly and regular arrangement of collagen dur-
ing wound healing in parallel with Notch signaling
(Fig. 3). In the case of Wnt activity, relative function for
the regulation of ECM formation and deposition in skin
repair has already been identified. A similar study has
indicated that B-catenin protein levels and transcrip-
tional activity are elevated in dermal fibroblasts in the
proliferative phase and gradually return to baseline in
the remodeling phase [41]. Elevated B-catenin levels in-
duce increased dermal collagen deposition and myofi-
broblast formation [42], whereas knockdown of [3-catenin
in Pax7-expressing cells in murine wounds leads to fewer
dermal fibroblast-like cells [43]. The above mechanism
was found to involve the p-catenin-dependent Wnt path-
way signals [42, 44]. In turn, Outtz et al. [45] found that
Notchl hemizygous mice exhibited increased collagen
deposition in healing wounds. In systemic sclerosis (SSc),
activation of Notch signaling resulted in an SSc-like pheno-
type with increased release of collagen and differentiation of
resting fibroblasts into myofibroblasts, which required the
presence of Jaggedl and Hes!I [46]. Taking our results into
account (Fig. 3), we suspect that Notch is involved in colla-
gen deposition and scar formation by regulating the tran-
scriptional activation of Hesl1.

Based on the gain- and loss-of-function studies of
Wnt/B-catenin and Notch in the mouse models (Fig. 1),
it is likely that the pathways exist to interact in regulat-
ing wound healing. In ESCs cultured in K-SFM with
Jaggedl, we observed significantly elevated expression
levels of Wnt/B-catenin signaling components (Fig. 5).
It can be speculated that Wnt activity also synchronizes
with Notch activity in ESCs. Actually, f-catenin, as an es-
sential component of intercellular junctions, can positively
regulate Jaggedl transcriptional activity, which is required

by ectopic hair follicle formation in adult epidermis [39].
Besides, the cross-talk does occur between the Wnt and
Notch signaling pathways in colorectal cancer, and
Jagged1 is presumed to be the pathological link between
these pathways in colorectal cancer [26, 47, 48]. To further
identify the communication between the Wnt signaling
pathway and the Notch signaling pathway within adult
mammalian wound repair, thNF-kB and DAPT were
simultaneously added into the wound tissue at the time of
the experimental observations. Those who need a spe-
cification is that although the direct agonist of Notch
action is Jaggedl rather than NF-«B, Jaggedl expression
can be upregulated specifically by transcriptional NF-
KB [49]. Therefore, NF-kB can indirectly regulate the
Notch pathway. Furthermore, we want to observe the
relationship between individualized expression change
in Jaggedl with Wnt activity. In addition, it is already
reported that applying Jagl to wound induces a similar
response [32] as described in the present article. There-
fore, we choose NF-«B instead of Jaggedl to activate
the Notch pathway. (DAPT inhibits the promotion of
the y-secretase enzyme [50] for proteolytic cleavages of
Notchl which finally restrain transcription.) Western
blot analysis did indicate that expression of Wnt/[p-ca-
tenin signaling components was upregulated, coupled
with the elevated levels of Jagged1l and downregulation
in the expression of Notchl and HesI (Fig. 6). It has
been suggested that jaggedl may play a role in the
interplay between Wnt and Notch pathways in wound
repair. But current evidence is not adequate to directly
document jaggedl active Wnt pathway. Besides, it is still
unknown that whether NF-kB also acts through other
mechanisms (not Notch activation) to activate Wnt path-
way. Thus, we will make more efforts to explore and
document the role of Jaggedl in the regulation of Wnt/
[-catenin and Notch signaling in skin in future studies.

Conclusions

This report provides new evidence for the potential
function of Wnt and Notch signalings in regulating
wound repair and their interaction. But our work has
just begun. The communication among them is com-
plex, and the mechanism that mediates Wnt and Notch
pathways remains unclear. Further research is needed
to elucidate the mechanism of Notch/Wnt interaction
in cutaneous repair, which allows the development of
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new therapeutic strategies for delayed healing and patho-
logical scarring.
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