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Abstract
We expand the Askey-Wilson (AW) density in a series of products of continuous
q-Hermite polynomials times the density that makes these polynomials orthogonal.
As a by-product we obtain the value of the AW integral as well as the values of
integrals of q-Hermite polynomial times the AW density (q-Hermite moments of AW
density). Our approach uses nice, old formulae of Carlitz and is general enough to
venture a generalization. We prove that it is possible and pave the way how to do it.
As a result, we obtain a system of recurrences that if solved successfully gives a
sequence of generalized AW densities with more and more parameters.
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1 Introduction and preliminaries
1.1 Introduction
We consider a sequence of nonnegative, integrable functions gn : [–, ] �→ R

+ defined by
the formula

gn
(
x|a(n),q) = fh(x|q)

n∏
j=

ϕh(x|aj,q),

where a(n) = (a, . . . ,an), functions fh and ϕh defined by (.) and (.) denote respec-
tively the density of measure that makes the so-called continuous q-Hermite polynomi-
als orthogonal and the generating function of these polynomials calculated at points aj,
j = , . . . ,n. Naturally functions gn are symmetric with respect to vectors a(n).
Our elementary but crucial for this paper observation is that examples of such functions

are proportional to the densities of measures that make orthogonal respectively the so-
called continuous q-Hermite (q-Hermite, n =  [, Eq. (..)]), big q-Hermite (bqH,
n =  [, Eq. (..)]), Al-Salam-Chihara (ASC, n =  [, Eq. (..)]), continuous dual
Hahn (CH, n =  [, Eq. (..)]), Askey-Wilson (AW, n =  [, Eq. (..)]) polynomials.
This observationmakes functions gn important and, what ismore exciting, allows possible
generalization of both AW integral and AW polynomials, i.e., go beyond n = .
Similar observations were made in fact in [] when commenting on formula (..).

Hence one can say that we are developing a certain idea of [].
Let us notice that this is a second attempt to generalize AW polynomials. The other one

was made in [] by generalizing certain properties of generating functions of q-Hermite,
bqH, ASC, CH and AW polynomials.
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On the other hand, by the observation that these functions are symmetric in variables
a(n) we enter the fascinating world of symmetric functions.
The paper is organized as follows. Next Section . presents notation that will be used

andbasic families of orthogonal polynomials thatwill appear in the sequel.We also present
here important properties of these polynomials.
Section  is devoted to expanding functions gn in the series of the form

gn
(
x|a(n),q) = An

(
a(n),q

)
fh(x|q)

∑
j≥

T (n)
j (a(n),q)
(q)j

hj(x|q),

where {hn} denote q-Hermite polynomials, {T (n)
j } are the sequences of certain symmetric

functions and finally {An} are the values of the integrals
∫ 

–
gn

(
x|a(n),q)dx,

and symbol (q)j is explained at the beginning of the next subsection.
We do this effectively for n = , . . . , , obtaining known results in a new way. In Section 

we show that sequences defined above do exist, andwe present theway how to obtain them
recursively. We are unable, however, to present nice compact forms of these sequences
resembling those obtained for n≤ , thus posing several open questions (see Section .)
and leaving the field to younger and more talented researchers.
The partially legible, althoughnot very compact, formwas obtained for

∫ 
– g(x|a(),q)dx

(see (.)).
For q = , the case important for the rapidly developing so-called free probability, we

give a simple, compact form for
∫ 
– g(x|a(), )dx (see Theorem (ii)) paving the way to

conjecture the compact form of (.).
Tedious proofs are shifted to Section .

1.2 Preliminaries
q is a parameter. We will assume that – < q ≤  unless otherwise stated. Let us define
[]q = , [n]q =  + q + · · · + qn–, [n]q! =

∏n
j=[j]q, with []q! =  and

[
n
k

]
q

=

{ [n]q !
[n–k]q ![k]q ! , n≥ k ≥ ,
, otherwise.

We will use the so-called q-Pochhammer symbol for n≥ ,

(a;q)n =
n–∏
j=

(
 – aqj

)
,

(a,a, . . . ,ak ;q)n =
n∏
j=

(aj;q)n,

with (a;q) = .
Often (a;q)n as well as (a,a, . . . ,ak ;q)n will be abbreviated to (a)n and (a,a, . . . ,ak)n

if that will not cause misunderstanding.

http://www.advancesindifferenceequations.com/content/2014/1/316


Szabłowski Advances in Difference Equations 2014, 2014:316 Page 3 of 19
http://www.advancesindifferenceequations.com/content/2014/1/316

It is easy to notice that (q)n = ( – q)n[n]q! and that

[
n
k

]
q

=

{
(q)n

(q)n–k (q)k
, n≥ k ≥ ,

, otherwise.
(.)

The case q =  will be considered only when it might make sense and will be understood
as the limit q → –.

Remark  Notice that [n] = n, [n]! = n!,
[ n
k
]
 =

(n
k
)
, (a; )n = ( – a)n and [n] =

{  if n≥ ,
 if n = ,

[n]! = ,
[ n
k
]
 = , for  ≤ k ≤ n, (a; )n =

{  if n = ,
 – a if n ≥ .

We will need the following sets of polynomials.
The Rogers-Szegö polynomials that are defined by the equality

wn(x|q) =
n∑

k=

[
n
k

]
q

xk (.)

for n≥  and w–(x|q) = . They will play an auxiliary role in the sequel.
In particular one shows (see, e.g., []) that the polynomials defined by

hn(x|q) = einθwn
(
e–iθ |q), (.)

where x = cos θ , satisfy the following -term recurrence:

hn+(x|q) = xhn(x|q) –
(
 – qn

)
hn–(x|q), (.)

with h–(x|q) = , h(x|q) = .
These polynomials are the so-called continuous q-Hermite polynomials. A lot is known

about their properties. For good reference, see [, ] or []. In particular we know that for
|q| < ,

sup
|x|≤

∣∣hn(x|q)∣∣ ≤ wn(|q).

Remark  Notice that hn(x|) equals the nth Chebyshev polynomial of the second kind.
More about these polynomials, one can find in, e.g., []. To analyze the case q = , let us
consider rescaled polynomials hn, i.e.,Hn(x|q) = hn(x

√
 – q/|q)/(–q)n/. Then equation

(.) takes a form

Hn+(x|q) = xHn(x|q) – [n]qHn–(x|q),

which shows that Hn(x|q) =Hn(x), where {Hn} denote the so-called probabilistic Hermite
polynomials, i.e., polynomials orthogonal with respect to the measure with density equal
to exp(–x/)/

√
π . This observation suggests that although the case q =  lies within our

interest, it requires special approach. In fact it will be solved completely in Section . For
now we will assume that |q| < .

http://www.advancesindifferenceequations.com/content/2014/1/316
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In the sequel the following identities discovered by Carlitz (see Exercise .(b), (c) of
[]), true for |q|, |t| < ,

∞∑
k=

wk(|q)tk
(q)k

=


(t)∞
,

∞∑
k=

w
k(|q)tk
(q)k

=
(t)∞
(t)∞

, (.)

will enable us to show absolute and uniform convergence of practically all series consid-
ered in the sequel.
We have also the so-called linearization formula [, Eq. (..)], which can be dated

back in fact to Rogers and Carlitz (see [, Eq. (..)] with β =  or [] for Rogers-Szegö
polynomials), as follows:

hn(x|q)hm(x|q) =
min(n,m)∑

j=

[
m
j

]
q

[
n
j

]
q

(q)jhn+m–k(x|q), (.)

that will be our basic tool.
We will use the following two formulae of Carlitz presented in [] that concern proper-

ties of Rogers-Szegö polynomials. Let us define two sets of functions

ζn(x|a,q) =
∑
m≥

am

(q)m
wn+m(x|q),

λn,m(x, y|a,q) =
∑
k≥

ak

(q)k
wn+k(x|q)wm+k(y|q),

defined for |x|, |y| ≤ , |a| <  and n, m being nonnegative integers. Carlitz proved ([, Eq.
(.)], after correcting an obvious misprint) that

ζn(x|a,q) = ζ(x|a,q)μn(x|a,q), (.)

ζ(x|a,q) = 
(a,ax)∞

, (.)

where functions μn are polynomials that are defined by

μn(x|a,q) =
n∑
j=

[
n
j

]
q

(a)jxj, (.)

and that ([, Eq. (.)], casem =  also given in [, Exercise .(d)])

λm,n(x, y|a,q)
λ,(x, y|a,q) =

m∑
j=

n∑
k=

[
n
k

]
q

[
m
j

]
q

(ax)j(ay)k(xya)k+j
(xya)k+j

xm–jyn–k , (.)

with

λ,(x, y|a,q) = (xya)∞
(a,ax,ay,axy)∞

. (.)

It is elementary to prove the following two properties of the polynomials μn, hence we
present them without proof.

http://www.advancesindifferenceequations.com/content/2014/1/316
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Proposition 

xnμn
(
x–|a,q) = n∑

j=

[
n
j

]
q

(–a)jq(
j
)wn–j(x|q), (.)

wn(x|q) =
n∑

k=

[
n
k

]
q

akxn–kμn–k
(
x–|a,q). (.)

To perform our calculations, we will also need the following two functions.
The generating function of the q-Hermite polynomials that is given by the formula below

(see [, Eq. (..)]):

ϕh(x|t,q) df=
∑
j≥

tj

(q)j
hj(x|q) = ∏∞

k= v(x|tqk)
, (.)

where v(x|t) =  – tx + t. Notice that v(x|t) ≥  for |x| ≤  and that from (.) it follows
that series in (.) converges for |t| < . Notice also that from (.) it follows that

sup
|x|≤

ϕh(x|t,q) = /
(|t|)∞. (.)

The density of themeasure with respect to which polynomials hn are orthogonal is given
in, e.g., [, Eq. (..)]. Following it we have

∫ 

–
hn(x|q)hm(x|q)fh(x|q)dx = (q)nδnm,

where δmn denotes Kronecker’s delta, and

fh(x|q) = (q)∞
√
 – x

π

∞∏
k=

l
(
x|qi), (.)

where l(x|a) = ( + a) – ax. Notice that

sup
|x|≤

fh(x,q)≤ (q)∞(–q)∞/π , (.)

following (.) since l(x|q)≤ ( + q) for |x| ≤ .

Remark  We have

fh(x|) = 
√
 – x/π , ϕh(x|a, ) = /

(
 – ax + a

)
for |x|, |a| < .
After proper rescaling and normalization similar to the one performed in Remark , the

case q =  leads to

exp
(
–x/

)
/
√
π , exp

(
ax – a/

)
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for x,a ∈ R, as respectively the density of orthogonalizing measure and the generating
function. For details, see [] or [].

2 Main results
Since in our approach symmetric polynomials will appear, let us introduce the following
set of symmetric polynomials of k variables:

S(k)n (a, . . . ,ak|q) =
∑

j,...,jk–≥
j+···+jk–≤n

[
j, . . . ,n –

k–∑
m=

jm

]
q

aj · · ·ajk–k–a
n–j–···–jk–
k , (.)

where we denoted by [j, j, . . . ,n –
∑k–

m= jm]q the so-called q-multinomial coefficient de-
fined by [n, . . . ,nm]q = (q)n+···+nm/

∏m
k=(q)nk .

Remark  Notice that S(k)n (a, . . . ,ak|) = (
∑k

j= aj)n.

Proof Obvious since (q)n∏k–
m=(q)jm(q)n–j–···–jk–

|q= = n!
(n–

∑k–
m= jm)!

∏k–
m= jm !

. �

Proposition  Let q ∈ (–, ), then:
(i)

∑
n≥

tn

(q)n
S(k)n (a, . . . ,ak|q) = ∏k

j=(ait)∞
. (.)

(ii) For |t| <  and ∀j = , . . . ,k,

S(k)n (a, . . . ,ak|q) =
n∑

m=

[
n
m

]
q

S(j)m (a, . . . ,aj)S(k–j)n–m (aj+, . . . ,ak|q). (.)

If q = , then

∑
n≥

tn

n!
S(k)n (a, . . . ,ak|) = exp

(
t

k∑
j=

aj

)
.

(iii)

∣∣S(k)n (a, . . . ,ak|q)
∣∣ ≤

(
max
≤j≤k

|aj|
)n
S(k)n (, . . . , |q).

Proof (i) Notice that

∑
n≥

tn

(q)n
S(k)n (a, . . . ,ak|q) =

∑
n≥

∑
j,...,jk–≥
j+···+jk–≤n

(ta)j · · · (tak–)jk– (tak)n–j–···–jk–∏k–
m=(q)jm(q)n–j–···–jk

.

Secondly recall that 
(a)∞ =

∑
j≥

aj
(q)j

. Now the assertion is easy. (ii) follows either from
direct calculation or (i) and the properties of generating functions. (iii) We use (.). �

http://www.advancesindifferenceequations.com/content/2014/1/316
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Recall (i.e., [] or []) that there exist sets of orthogonal polynomials forming a part
of the so-called AW scheme that are orthogonal with respect to measures with densities
mentioned below. Although our main interest is in providing a simple proof of the so-
called AW integral, we will list related densities for better exposition and for indicating
the ways of possible generalization of AW integrals and polynomials.
So let us mention first the so-called big q-Hermite polynomials {hn(x|a,q)}n≥– whose

orthogonalizing measure has density for |a| < . The density fbh of the orthogonalizing
measure has a form (see [, Eq. (..)]) which can be written with the help of functions
fh and ϕh, namely

fbh(x|a,q) = fh(x|q)ϕh(x|a,q), (.)∫ 

–
hn(x|a,q)hm(x|a,q)fbh(x|a,q)dx = (q)nδmn. (.)

The form of polynomials hn(x|a,q) and their relation to q-Hermite polynomials is not
important for our considerations. It can be found, e.g., in [, Eq. (..)] or in [, Eqs.
(.), (.)]. So, for the sake of completeness, let us remark that from (.) it follows
immediately that for |x| ≤ , |a| < ,

fbh(x|a,q) = fh(x|q)
∑
n≥

an

(q)n
hn(x|q).

Here and below, where we will present similar expansions, convergence is almost uniform
since all these expansions are in fact the Fourier series and that the Rademacher-Menshov
theorem can be applied following (.).
Let us notice immediately that following (.) we have

∫ 

–
hn(x|q)fbh(x|a,q)dx = an.

Secondly let us mention the so-called Al-Salam-Chihara polynomials {Qn(x|a,b,q)}n≥–

that are orthogonal with respect to the measure that for |a|, |b| <  has the density of the
form (compare [, Eq. (..)])

fQ(x|a,b,q) = (ab)∞fh(x|q)ϕh(x|a,q)ϕh(x|b,q). (.)

We have the following lemma that illustrates our method and we will give a very simple
proof of the well-known Poisson-Mehler formula as a corollary.

Lemma  For |x| ≤ , |a|, |b| < , we have

fQ(x|a,b,q) = fh(x|q)
∞∑
j=

S()j (a,b)
(q)j

hj(x|q). (.)

Proof Following (.) and (.) we have

fQ(x|a,b,q) = (ab)∞fh(x|q)
∑
j,k≥

ajbk

(q)j(q)k
hj(x|q)hk(x|q).

http://www.advancesindifferenceequations.com/content/2014/1/316
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Now we use (.) and (.) and change the order of summation to get

fQ(x|a,b,q) = (ab)∞fh(x|q)
∑
m≥

(ab)m

(q)m

∑
j,k≥m

aj–mbk–m

(q)j–m(q)k–m
hj–k+m–k(x|q)

= (ab)∞fh(x|q)
∑
m≥

(ab)m

(q)m

∑
n,i≥

anbi

(q)i(q)n
hn+i(x|q)

= fh(x|q)
∑
s≥

hs(x|q)
(q)s

s∑
n=

[
s
j

]
q

anbs–n.
�

As an immediate corollary of our result, we have
∫ 

–
hn(x|q)fQ(x|a,b,q)dx = S()n (a,b|q). (.)

Remark  Let a = ρeiη , b = ρe–iη and denote y = cosη. Then
(i) S()n (a,b|q) = ρnhn(y|q),
(ii) v(x|a)v(x|b) = ( – ρ) – xyρ( + ρ) + ρ(x + y).

Proof (i) is an immediate consequence of (.). (ii) We have v(x|a)v(x|b) = ( – ρxeiη +
ρeiη)( – ρxe–iη + ρe–iη). �

As a slightly more complicated corollary implied by Lemma , we have the following
famous Poisson-Mehler (PM) expansion formula.

Corollary  For |x|, |y| < , |ρ| < , we have

(ρ)∞∏∞
k=( – ρqk) – xyρqk( + ρqk) + ρqk(x + y)

=
∑
j≥

ρ j

(q)j
hj(x|q)hj(y|q). (.)

Proof We take a = ρeiη , b = ρe–iη and denote y = cosη. Now we use (.) and Remark (ii)
to get the left-hand side multiplied by fh. Then we apply Lemma  and Remark (i) to get
the right-hand side of our PM formula also multiplied by fh. Finally we cancel out fh which
is positive on (–, ). �

Remark  The calculations we have performed while proving Lemma  are very much
like those performed in [] while proving Theorem .. concerning the Poisson kernel
(or Poisson-Mehler) formula. There exist many proofs of the PM formula (see, e.g., []
or a recently obtained very short one in []). In fact formula (.) can be dated back to
Carlitz who in [] formulated it for Rogers-Szegö polynomials. The one presented above,
which seems to be one of the shortest, was obtained as a by-product and, as it has already
been mentioned, is almost the same as the one presented in [].

Notice that considering (.) with a = ρeiη , b = ρe–iη and y = cosη leads in view of Re-
mark (i) to

∫ 

–
hn(x|q)fQ(x|a,b,q)dx = ρnhn(y|q),

http://www.advancesindifferenceequations.com/content/2014/1/316
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a nice symmetric formula that appeared in [] in a probabilistic context. Its probabilistic
interpretation was exploited further in [].
Third in our sequence of families of polynomials that constitute AW scheme is the so-

called continuous dual Hahn (CH) polynomials. Again their relationship to other sets of
polynomials is not important. From [, Eq. (..)] it follows that the density of measure
that makes them orthogonal is given by the following formula:

fCH (x|a,b, c,q) = (ab,ac,bc)∞fh(x|q)ϕh(x|a,q)ϕh(x|b,q)ϕh(x|c,q).

We have the following lemma.

Lemma 

fCH (x|a,b, c,q) = fh(x|q)
∑
n≥

σ
()
n (a,b, c|q)

(q)n
hn(x|q),

where

σ ()
n (a,b, c|q) =

n∑
j=

[
n
j

]
q

q(
j
)(–abc)jS()n–j(a,b, c|q). (.)

Proof Proof is shifted to Section . �

Remark  Notice that for |t| < ,

∑
n≥

tn

(q)n
σ ()
n (a, c,b|q) = (abct)∞

(at,bt, ct)∞
.

Proof Using (.) we have

∑
n≥

tn

(q)n
σ ()
n (a, c,b|q) =

∑
n≥

tn

(q)n

n∑
j=

[
n
j

]
q

q(
j
)(–abc)jS()n–j(a,b, c|q)

=
∞∑
j=

(–abct)j

(q)j
q(

j
)

∑
n≥j

tn–j

(q)n–j
S()n–j(a,b, c|q).

Now it remains to change the index of summation in the second sum, use (.) and use
the fact that

∑∞
j=

(–abct)j
(q)j

q(
j
) = (abct)∞. �

Corollary  For |a|, |b|, |c| < ,

∫ 

–
hn(x|q)fCH (x|a,b, c,q)dx = σ ()

n (a,b, c|q).

Proof Elementary. �

The fourth family of polynomials that constitute AW scheme are the celebrated Askey-
Wilson polynomials. Again their form and relationship to other families of polynomials

http://www.advancesindifferenceequations.com/content/2014/1/316
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of AW scheme are not important for our considerations. Recently a relatively rich study
of these relationships was done in [], hence it may serve as the reference. We need only
the form of AW density. It is given, e.g., in [, Eq. (..)] and, after necessary adaptation
to our notation, is presented below,

fAW (x|a,b, c,d,q) = (ab,ac,ad,bc,bd, cd)∞
(abcd)∞

× fh(x|a)ϕh(x|a,q)ϕh(x|b,q)ϕh(x|c,q)ϕh(x|d,q)

for |x| ≤ , |a|, |b|, |c|, |d| < . Our main result concerns this density and is the following.

Theorem  For |x| ≤ , |a|, |b|, |c|, |d| < ,

fAW (x|a,b, c,d,q) = fh(x|q)
∑
n≥

σ
()
n (a,b, c,d|q)

(q)n
hn(x|q), (.)

where

σ ()
n (a,b, c,d|q) =

n∑
j=

[
n
j

]
q

(bd)j
(abcd)j

S()n–j(b,d|q)

×
j∑

k=

[
j
k

]
q

(cb)kak(ad)j–kcj–k , (.)

are symmetric functions of a, b, c, d.

Proof Proof is shifted to Section . �

As immediate corollaries we have the following fact.

Corollary  For max(|a|, |b|, |c|, |d|) < ,

∫ 

–
hn(x)fAW (x|a,b, c,d,q)dx = σ ()

n (a,b, c,d|q). (.)

Proof Follows directly from (.). �

Remark  Notice that from (.) in fact the value of AW integral follows since we see
that

∫ 
– fAW (x|a,b, c,d|q)dx = , which means that the integral


π

∫ 

–

√
 – x

∏
n≥

l(x|qn)
v(x|aqn)v(x|bqn)v(x|cqn)v(x|dqn) dx

=
(abcd)∞

(q,ab,ac,ad,bc,bd, cd)∞
. (.)

Equation (.) is nothing else but the celebrated AW integral. Notice also that recently
there appeared at least two papers [, ] where (.) was derived from much more
advanced theorems.

http://www.advancesindifferenceequations.com/content/2014/1/316
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Remark  Notice also that (.) allows calculation of all moments of AW density. This
is so since one knows the form of polynomials hn. Moments of AW density were calcu-
lated by Corteel and Williams in  in [] using combinatorial means. For complex
a, b, c, d but forming conjugate pairs, this formula was also obtained independently
about the same time. Namely it was done in [] where also an elegant expansion of
σ
()
n (ρeiη,ρe–iη,ρeiθ ,ρe–iθ |q) in terms of hn(y|q) and hn(z|q), where cosη = y and cos θ =

z, was presented.

3 Generalization and open questions
3.1 Generalization
The results presented above allow the following generalization. The cases |q| <  and q = 
will be treated separately. First let us consider |q| < .
Let us denote a(k) = (a, . . . ,ak), k = , , . . . . We will assume that |x| ≤  and that all pa-

rameters ai have absolute values less than . Let us denote

gn
(
x|a(n),q) = fh(x|q)

n∏
j=

ϕh(x|ai,q),

where functions fh and ϕh were defined by (.) and (.) respectively.
We remark following (.) and (.) that

gn
(
x|a(n),q) ≤ (q)∞(–q)∞

π

n∏
j=


(|aj|)∞

(.)

for |x| ≤ , and |ai| <  for j = , . . . ,n.
We have the following general result.

Lemma For every n ≥ , there exist An(a(n),q) a symmetric function of a(n) anda sequence
of symmetric in a(n) functions {T (n)

j (a(n),q)}j≥ such that for |ak| < , k = , . . . ,n,

gn
(
x|a(n),q) = An

(
a(n),q

)
fh(x|q)

∑
j≥

T (n)
j (a(n),q)
(q)j

hj(x|q). (.)

Moreover,

∑
j≥

(
T (n)
j

(
a(n),q

)) < ∞. (.)

Proof Let G = L(〈–, 〉,F , fh) be the space of functions h : 〈–, 〉 �→ R such that∫ 
– h

(x)fh(x|q)dx. Notice that this space is spanned by the polynomials {hj(x|q)}j≥.
Visibly, under our assumptions and by (.),

∏n
j= ϕh(x|ai,q) ∈ G . Now notice that

{T (n)
j (a(n),q)}j≥ are coefficients of the Fourier expansion of the function

∏n
j= ϕh(x|ai,q)

in G with respect to {hj(x|q)}j≥. Since

∫ 

–
fh(x|q)

∑
j≥

T (n)
j (a(n),q)
(q)j

hj(x|q)dx = ,

http://www.advancesindifferenceequations.com/content/2014/1/316
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An(a(n),q) is the value of
∫ 
– gn(x|a(n),q)dx. Inequality (.) follow properties of the Fourier

expansion, more precisely Perseval’s identity. The fact that An and {T (n)
j }j≥ are symmetric

follows the observations that
∏n

j= ϕh(x|ai,q) is symmetric. �

Using formula (.) we can write gn in the following way where hj are q-Hermite poly-
nomials defined by (.). Functions An(a(n),q) and {T (n)

j (a(n),q)}j≥ have the following in-
terpretation:

∫
[–,]

hj(x|q)gn
(
x|a(n),q)dx = An

(
a(n),q

)
T (n)
j

(
a(n),q

)

for n, j ≥ .
We have the following easy proposition giving recursions that are satisfied by functions

An and T (n)
j .

Proposition  Let us define a new sequence of functions {Hs(a(n),q)}n,s≥ of n variables as
follows:

∑
m≥

amn
(q)m

T (n–)
s+m

(
a(n–),q

)
=H (n)

s
(
a(n),q

) ∑
m≥

amn
(q)m

T (n–)
m

(
a(n–),q

)
.

Then
(i)

An
(
a(n),q

)
= An–

(
a(n–),q

) ∑
m≥

amn
(q)m

T (n–)
m

(
a(n–),q

)
,

(ii)

T (n)
j

(
a(n),q

)
=

j∑
s=

[
j
s

]
q

H (n–)
s

(
a(n–),q

)
(an)j–s.

Proof Proof is shifted to Section . �

Remark  The integral
∫ 
– gn(x|a(n),q)dxwas calculated in [] (see also Theorem ..

in []) by combinatorialmethods. The obtained formula is, however, very complicated. Be-
sides, the above mentioned Theorem .. of [] does not provide expansion (.) which
is automatically obtained in our approach.

Remark  Notice also that following Proposition (i) we get for |aj| < , j = , . . . , ,

∫ 

–
g

(
x|a(),q)dx = (

∏
j aj)∞

(q)∞
∏

≤k<m≤(akam)∞

∑
j≥

aj
(q)j

σ
()
j (a,a,a,a|q). (.)

For q =  the calculations presented in (.) can be carried out completely and the con-
cise form can be obtained. This is possible due to the following simplified form of (.).

Theorem  Under |aj| < , j = , . . . , , we have

http://www.advancesindifferenceequations.com/content/2014/1/316
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(i)

σ ()
n (a,a,a,a|)

= S()n (a,a|) + ( – ad)( – aa)
( – aaaa)

aS()n–(a,a,a|)

+
( – aa)( – aa)

( – aaaa)
aS()n–(a,a,a|)

+
( – aa)( – aa)( – aa)aa

( – aaaa)
S()n–(a,a,a,a|),

(ii)

∫ 

–
g

(
x|a(), )

dx =
 – χ(a()) + χ(a())χ(a()) – χ

 (a())∏
≤j<k≤( – ajak)

,

where χ, . . . ,χ denote respectively first five elementary symmetric functions of the
vector a(). That is, χj(a(k)) =

∑
≤n<n···<nj≤k

∏j
m= anm .

Proof Proof is shifted to Section . �

For q = , the problem of finding sequences An(a(n)|) and {T (n)
j (a(n), )}j≥ can be solved

completely and trivially. Namely we have the following.

Proposition 

An
(
a(n)|) = exp

( ∑
≤j<k≤n

ajak
)
,

T (n)
j

(
a(n), 

)
=

( n∑
k=

ak

)j

.

Proof Using Remark  we get

gn
(
x|a(n), ) = exp

(
–x/ + x

n∑
j=

aj –



n∑
j=

aj

)/√
π

=
√
π

exp

(



(( n∑
j=

aj

)

–
n∑
j=

aj

))

× exp

(
–x/ + x

n∑
j=

aj –



( n∑
j=

aj

))

= exp

( ∑
≤j<k≤n

ajak
)
exp(–x/)√

π

∑
j≥

(
∑n

k= ak)j

j!
Hj(x). �

3.2 Unsolved problems and open questions
.. Questions
• What are the compact forms of functions {T (n)

j (a(n),q)}j≥,n≥ and {An(a(n),q)}n≥?
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• What are the compact forms of these functions for q =  (free probability case)?
• Following formula for

∫ 
– g(x|a(), )dx given in assertion (ii) of Theorem  is it true

that

∫ 

–
g

(
x|a(),q)dx = (χ(a()) – χ(a())χ(a()) + χ

 (a()))∞∏
≤j<k≤(ajak)∞

?

Notice that for a =  it would reduce to AW integral.
• It would be valuable to get values {An(a(n),q)} for n = ,  and so on for complex
values of parameters a(n) but forming conjugate pairs. It would be also fascinating to
find polynomials that would be orthogonalized by densities obtained in this way.
This problem follows the probabilistic interpretation of Askey-Wilson density

rescaled with complex parameters. Such an interpretation of finite Markov chains of
length at least  was presented in [, ]. Let {X,X,X} denote this finite Markov
chain. Recall that then AW density can be interpreted as the conditional density of
X|X, X.
It would be exciting to find out if, for say n = , a similar probabilistic interpretation

could be established. That is, if we could define five-dimensional random vector
(X, . . . ,X) with normalized function g(x|a(),q) as the conditional density X|X, X,
X, X. Note that then the chain (X, . . . ,X) could not be Markov.
Similar questions apply to the case n = , , . . . .

.. Unsolved related problems and direction of further research
. In [] we find Theorem .. which is due to Gasper and Rahman () and which

can be stated in our notation. For max≤j≤ |aj| < , |q| < , we have

∫ 

–

g(x|a(),q)
ϕh(x|∏

j= aj,q)
dx =

∏
j=(

∏
k=,k �=j ak)∞∏

≤j<k≤(ajak)∞
.

This result suggests considering the following functions:

Gn,m
(
x|a(n),b(m),q

)
= fh(x|q)

∏n
j= ϕh(x|ai,q)∏m
k= ϕh(x|bk ,q) ,

where a(n) and b(m) are certain vectors of dimensions respectively n and m, find its
integrals over [–, ] and expansions similar to (.).

. Recently a paper [] on q-Laplace transform, where many analogies to ordinary case
were indicated, has appeared. What would a q-Laplace transform of the distributions
that were considered above be?

4 Proofs
Proof of Lemma  We have

∑
k,n,m≥

an

(q)n
bm

(q)m
ck

(q)k
hn(x|q)hm(x|q)hk(x|q)

=


(ab)∞

∑
j≥

hj(x|q)
(q)j

∞∑
m=

cm

(q)m

j∑
k=

[
j
k

]
q

ckS()m+j–k(a,b|q).
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Since obviously S()n (a,b|q) = anwn(b/a|q), we get

∑
k,n,m≥

an

(q)n
bm

(q)m
ck

(q)k
hn(x|q)hm(x|q)hk(x|q)

=


(ab)∞

∑
j≥

hj(x|q)
(q)j

∞∑
m=

cm

(q)m

j∑
k=

[
j
k

]
q

ckam+j–kwm+j–k(b/a|q)

=


(ab)∞

∑
j≥

hj(x|q)
(q)j

j∑
k=

[
j
k

]
q

ckaj–k
∞∑
m=

(ac)m

(q)m
wm+j–k(b/a|q).

Now we apply formula (.) and get

∑
k,n,m≥

an

(q)n
bm

(q)m
ck

(q)k
hn(x|q)hm(x|q)hk(x|q)

=


(ab,bc,ac)∞

∑
j≥

hj(x|q)
(q)j

j∑
k=

[
j
k

]
q

ckaj–kμj–k(b/a|ac,q) 
(bc)∞(bc)∞

=


(ab,bc,ac)∞

∑
j≥

hj(x|q)
(q)j

j∑
l=

[
n
l

]
q

cn–lal
(
b
a

)j(a
b

)j

μj

((
a
b

)–

|ac,q
)
.

Now we use (.) and Proposition (ii) and get

∑
k,n,m≥

an

(q)n
bm

(q)m
ck

(q)k
hn(x|q)hm(x|q)hk(x|q)

=


(ab,bc,ac)∞

∑
j≥

hj(x|q)
(q)j

j∑
l=

[
j
l

]
q

cj–lbl
l∑

k=

[
l
k

]
q

(–ac)kq(
k
)wl–k

(
a
b
|q

)

=


(ab,bc,ac)∞

∑
j≥

hj(x|q)
(q)j

j∑
k=

[
j
k

]
q

(–ac)kq(
k
)

j∑
l=k

[
j – k
l – k

]
q

cj–lblwl–k

(
a
b
|q

)

=


(ab,bc,ac)∞

∑
j≥

hj(x|q)
(q)j

j∑
k=

[
j
k

]
q

(–ac)kq(
k
)

j–k∑
m=

[
j – k
m

]
q

cj–k–mbk+mwm(a/b|q)

=


(ab,bc,ac)∞

∑
j≥

hj(x|q)
(q)j

j∑
k=

[
j
k

]
q

(–abc)kq(
k
)

j–k∑
m=

[
j – k
m

]
q

cj–k–mS()m (a,b|q).
�

Proof of Theorem  Applying (.) we get

∑
k,n,m,j≥

an

(q)n
bm

(q)m
ck

(q)k
dj

(q)j
hn(x|q)hm(x|q)hk(x|q)hj(x|q)

=


(ab, cd)∞

∑
m,k≥

S()m (a,b)S()k (c,d)
(q)m(q)k

hm(x|q)hk(x|q)

=


(ab, cd)∞

∑
m,k≥

S()m (a,b)S()k (c,d)
(q)m(q)k
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×
min(m,k)∑

j=

[
m
j

]
q

[
k
j

]
q

(q)jhm+k–j(x|q)

=


(ab, cd)∞

∑
j≥

(ac)j

(q)j

∑
m,k≥j

am–jck–jwm(b/a|q)wk(d/c|q)
(q)m–j(q)k–j

hm–j+k–j(x|q),

and further

∑
k,n,m,j≥

an

(q)n
bm

(q)m
ck

(q)k
dj

(q)j
hn(x|q)hm(x|q)hk(x|q)hj(x|q)

=


(ab, cd)∞

∑
j≥

(ac)j

(q)j

∑
s,t≥

asctws+j(b/a|q)wt+j(d/c|q)
(q)s(q)t

hs+t(x|q)

=


(ab, cd)∞

∑
j≥

(ac)j

(q)j

∑
n≥

hn(x|q)
(q)n

×
n∑

k=

[
n
k

]
q

akcn–kwk+j(b/a|q)wj+n–k(d/c|q)

=


(ab, cd)∞

∑
n≥

hn(x|q)
(q)n

n∑
k=

[
n
k

]
q

akcn–k

×
∑
j≥

(ac)j

(q)j
wk+j(b/a|q)wj+n–k(d/c|q).

Now we apply Carlitz formulae (.) and (.) to get

∑
k,n,m,j≥

an

(q)n
bm

(q)m
ck

(q)k
dj

(q)j
hn(x|q)hm(x|q)hk(x|q)hj(x|q)

=
(abcd)∞

(ab, cd,ac,bc,ad,bd)∞

∑
n≥

hn(x|q)
(q)n

n∑
k=

[
n
k

]
q

akcn–k

×
k∑
s=

n–k∑
t=

[
k
s

]
q

[
n – k
t

]
q

(cb)s(ad)t(bd)s+t
(abcd)s+t

(
b
a

)k–s(d
c

)n–k–t

=
(abcd)∞

(ab, cd,ac,bc,ad,bd)∞

∑
n≥

hn(x|q)
(q)n

n∑
k=

[
n
k

]
q

×
k∑
s=

n–k∑
t=

[
k
s

]
q

[
n – k
t

]
q

(cb)s(ad)t(bd)s+t
(abcd)s+t

asbk–sctdn–k–t .

Thus it remains to show that for every n≥ ,

n∑
k=

[
n
k

]
q

k∑
s=

n–k∑
t=

[
k
s

]
q

[
n – k
t

]
q

(cb)s(ad)t(bd)s+t
(abcd)s+t

asbk–sctdn–k–t

=
n∑
j=

[
n
j

]
q

(bd)j
(abcd)j

S()n–j(b,d|q)
j∑

k=

[
j
k

]
q

(cb)kak(ad)j–kcj–k .
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This fact is a result of the following calculations:

n∑
k=

[
n
k

]
q

k∑
s=

n–k∑
t=

[
k
s

]
q

[
n – k
t

]
q

(cb)s(ad)t(bd)s+t
(abcd)s+t

asbk–sctdn–k–t

=
∑

s,t≥,s+t≤n

(q)n
(q)s(q)t(q)n–s–t

(cb)s(ad)t(bd)s+t
(abcd)s+t

asct
n∑

k=s∨n–t

[
n – t – s
k – s

]
q

bk–sdn–k–t

=
∑

s,t≥,s+t≤n

(q)n
(q)s(q)t(q)n–s–t

(cb)s(ad)t(bd)s+t
(abcd)s+t

asct

×
n–s∑

m=∨n–t–s

[
n – t – s

m

]
q

bmdn–s–m–t

=
∑

s,t≥,s+t≤n

(q)n
(q)s(q)t(q)n–s–t

(cb)s(ad)t(bd)s+t
(abcd)s+t

asctS()n–t–s(b,d|q).

Now we introduce new indices of summation j = t + s, k = s. We have then

∑
s,t≥,s+t≤n

(q)n
(q)s(q)t(q)n–s–t

(cb)s(ad)t(bd)s+t
(abcd)s+t

asctS()n–t–s(b,d|q)

=
n∑
j=

[
n
j

]
q

(bd)j
(abcd)j

S()n–j(b,d|q)
j∑

k=

[
j
k

]
q

(cb)kak(ad)j–kcj–k . �

Proof of Proposition  Notice that for n =  our formulae are true sincewehave g(x|a,q) =
fh(x|q)ϕh(x|a,q) = fh(x|q)∑m≥

am
(q)m hm(x|q). So T ()

m (a,q) = am and A(a,q) = . Next no-
tice that

gn+
(
x|a(n+),q) = gn

(
x|a(n),q)ϕh(x|an+,q),

where we understand a(n+) = (a, . . . ,an,an+). So by induction assumption the left-hand
side of (.) is equal to

An+
(
a(n+),q

)
fh(x|q)

∑
j≥

T (n+)
j (a(n+),q)

(q)j
hj(x|q),

while the right-hand side to

An
(
a(n),q

)
fh(x|q)

∑
j,k≥

T (n)
j (a(n),q)akn+
(q)j(q)k

hj(x|q)hk(x|q).

We apply again (.) to get

∑
j,k≥

T (n)
j (a(n),q)akn+
(q)j(q)k

hj(x|q)hk(x|q)

=
∑
j,k≥

T (n)
j (a(n),q)akn+
(q)j(q)k

j∧k∑
m=

[
k
m

]
q

[
j
m

]
q

(q)mhj+k–m(x|q)
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=
∑
m≥

amn+
(q)m

∑
k,j≥m

ak–mn+ T
(n)
j (a(n),q)

(q)k–m(q)j–m
hj+k–m(x|q)

=
∑
m≥

amn+
(q)m

∑
s,t≥

asn+T
(n)
t+m(a(n),q)

(q)s(q)t
hs+t(x|q).

Next we introduce new indices of summation r = s + t and j = s and get

∑
j,k≥

T (n)
j (a(n),q)akn+
(q)j(q)k

hj(x|q)hk(x|q)

=
∑
m≥

amn+
(q)m

∞∑
r=

hr(x|q)
(q)r

r∑
j=

[
r
j

]
q

ajn+T
(n)
m+r–j

(
a(n),q

)

=
∞∑
r=

hr(x|q)
(q)r

r∑
j=

[
r
j

]
q

ajn+
∑
m≥

amn+
(q)m

T (n)
m+r–j

(
a(n),q

)

=
∑
m≥

amn+
(q)m

T (n)
m

(
a(n),q

) ∞∑
r=

hr(x|q)
(q)r

r∑
j=

[
r
j

]
q

ajn+H
(n)
r–j

(
a(n),q

)

=
An+(a(n+),q)
An(a(n),q)

∞∑
r=

hr(x|q)
(q)r

r∑
j=

[
r
j

]
q

ajn+H
(n)
r–j

(
a(n),q

)
.

�

Proof of Theorem  We use (.) and utilizing Remark  we get

σ ()
n (a,b, c,d|) = S()n (b,d|) + ( – bd)

( – abcd)

n∑
j=

S()n–j(b,d|q)

×
(
( – ad)cj + ( – cb)aj + ( – cb)( – ad)ac

j–∑
k=

ak–cj––k
)
.

And further

σ ()
n (a,b, c,d|) = S()n (b,d|) + ( – bd)

( – abcd)

n∑
j=

S()n–j(b,d|q)(( – ad)cj + ( – cb)aj

+ ( – cb)( – ad)acS()j–(a, c|)
)

= S()n (b,d|) + ( – bd)
( – abcd)

n∑
j=

S()n–j(b,d|q)(( – ad)cj + ( – cb)aj
)

+
( – bd)( – cb)( – ad)ac

( – abcd)

n∑
j=

S()n–j(b,d|q)S()j–(a, c|).

Now we use formula (.). Then we replace a by a, b by a and so on. Finally we use
formulae (.) and (.) remembering that ()n =  leads to our integral formula. �
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