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Abstract

Background: Relative validity (RV), a ratio of ANOVA F-statistics, is often used to compare the validity of patient-reported
outcome (PRO) measures. We used the bootstrap to establish the statistical significance of the RV and to identify key
factors affecting its significance.

Methods: Based on responses from 453 chronic kidney disease (CKD) patients to 16 CKD-specific and generic PRO
measures, RVs were computed to determine how well each measure discriminated across clinically-defined groups of
patients compared to the most discriminating (reference) measure. Statistical significance of RV was quantified by the
95% bootstrap confidence interval. Simulations examined the effects of sample size, denominator F-statistic, correlation
between comparator and reference measures, and number of bootstrap replicates.

Results: The statistical significance of the RV increased as the magnitude of denominator F-statistic increased or as the
correlation between comparator and reference measures increased. A denominator F-statistic of 57 conveyed sufficient
power (80%) to detect an RV of 0.6 for two measures correlated at r = 0.7. Larger denominator F-statistics or higher
correlations provided greater power. Larger sample size with a fixed denominator F-statistic or more bootstrap
replicates (beyond 500) had minimal impact.

Conclusions: The bootstrap is valuable for establishing the statistical significance of RV estimates. A reasonably large
denominator F-statistic (F > 57) is required for adequate power when using the RV to compare the validity of measures
with small or moderate correlations (r < 0.7). Substantially greater power can be achieved when comparing measures
of a very high correlation (r > 0.9).

Keywords: Bootstrap, Relative validity, Analysis of variance (ANOVA), Confidence interval, Patient-reported outcome
(PRO) measure, Chronic kidney disease (CKD)
Introduction
There has been an increasingly widespread application of
patient-reported outcome (PRO) measures in assessing
the outcomes of health-related quality of life. Along with
the noteworthy improvements in measurement theory,
advances in data capture and processing technologies, and
various approaches to generic and disease-specific
measures, there are more available choices among
PRO measurement tools than ever before. Relative Validity
(RV), also referred to as relative precision or relative
efficiency [1–3], provides an appropriate quantitative
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index to compare the validity of PRO measures under
the conditions in which such measures are typically
used. As such, the RV compares two PRO measures
on their ability to discriminate patients across disease
severity levels and on their ability to detect longitudinal
change [4–6]. Complementary to other psychometric
properties such as reliability and respondent burden, the
RV is used frequently in literature providing important
validity information of PRO measures.
A noteworthy limitation of the RV, which we address

in this study, is the absence of a basis for establishing its
statistical significance and an understanding of the factors
affecting that significance. The common practice is to
compute the RV and simply conclude that the comparator
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measure has more (or less) discriminating power or
responsiveness than the reference measure if the RV is
greater (or less) than 1. However, an RV may differ from
the null value of 1 because of the random error in the
absence of “true” differences among the measures being
compared. Therefore, establishing the statistical significance
of the RV is necessary for identifying “true” differences in
validity between PRO measures.
In spite of this need, the statistical significance of the

RV is typically not discussed, likely because its underlying
probability distribution is not easily derived analytically.
The bootstrap, a well-known statistical technique for
estimating the confidence interval based on an empirical
distribution without assuming a probability distribution,
offers a promising solution [7–10]. This technique, how-
ever, has not yet been widely applied to the RV. Therefore,
we evaluated the bootstrap as a technique for statistically
testing the RV and, furthermore, used simulations to
investigate factors that may affect the bootstrap confidence
intervals of the RV under different conditions.

Methods
Description of the data
Secondary data analyses were conducted using the
responses of 453 chronic kidney disease (CKD) patients
to sixteen CKD-specific and generic PRO measures. The
16 measures included (a) three widely-used CKD-specific
legacy scales: the Kidney Disease Quality of Life (KDQOL)
Burden, Symptoms, and Effects scales [11]; (b) eight
generic profile scales that are widely used in CKD: the
Medical Outcomes Study Short-Form 12 (SF-12) with
Physical Functioning (PF), Role Physical (RP), Bodily Pain
(BP), General Health (GH), Vitality (VT), Social Functioning
(SF), Role Emotional (RE), and Mental Health (MH); (c)
two generic summary scales included in the SF-12: Physical
Component Summary (PCS) and Mental Component
Summary (MCS) [12]; and (d) three varying-in-length
forms of the newly developed Quality-of-life Disease
Impact Scale for CKD (QDIS-CKD) [13,14]: the original
34-item form – Static-34, a shorter 6-item form – Static-6,
and a computer adaptive testing (CAT) form with five dy-
namic items – CAT-5. The 16 measures were chosen to
allow comparison of widely-used generic and CKD-specific
measures and to compare new measures with the legacy
measures. External clinically-defined disease states were
used to classify the patients into three ANOVA groups: dia-
lysis (n = 206), pre-dialysis stage 3-5 (n = 113), and trans-
plant (n = 134) [15–17]. The study was approved by the
New England Institutional Review Board (NEIRB 06-058).
Patients were fully informed and consent was obtained.

Relative validity
The relative validity (RV) is defined as a ratio of ANOVA
F-statistics, with the F-statistic of the comparator measure
taken as the numerator and the F-statistic of the reference
measure taken as the denominator. An RV greater than 1
indicates that the comparator measure has greater
discriminating power or responsiveness than the reference
measure, and vice versa. This approach for validating PRO
measures is also called the “known-groups method” [18]
because the F-statistic is obtained by comparing groups
known to differ based on external criteria, e.g., clinically-
defined diagnosis or severity. We prefer the term relative
validity because separation between known groups as
measured by the F-statistic is the essence of validity. In
addition to comparing different PRO measures, the RV is
also widely used for comparing different scoring methods
for the same PRO measure, e.g., the classical summed
score versus the score based on modern psychometric
models such as the item response theory (IRT) models
[19–23].
The RVs were computed for the 16 CKD-specific

and generic PRO measures. Given that there is no
gold-standard measure available, the QDIS-CKD CAT-5,
the measure with the largest F-statistic, was chosen as the
reference measure. The RVs were computed to independ-
ently evaluate each measure’s relative validity in discrimin-
ating among patients across the three clinical groups
compared to the reference measure. Summary statistics
for the data, including the group sample sizes, means,
standard deviations, F-statistics, and RVs, are displayed in
Table 1. It is of note that two PRO measures (SF-12 MCS
and MH) had small and non-significant F-statistics and
could not effectively discriminate across the clinical
groups. Therefore, we did not calculate their RVs nor
analyze them further.

Bootstrap technique
We used bootstrap technique to estimate the standard
error (SE) and 95% confidence interval (CI) for the RVs
[20–26]. The bootstrap is a statistical technique for
estimating the accuracy of an estimator and is available in
many commonly used statistical software packages.
Under the assumption that the empirical distribution of
the observed data well represents the true population
distribution, the bootstrap technique randomly re-samples
with replacement the empirical distribution with the
sample size equal to the empirical sample size. This
technique thus creates multiple “bootstrap replicate”
samples, and then computes the RV for each replicate to
approximate the sampling distribution of the RV. The
standard deviation of RVs from the bootstrap replicates
becomes the standard error of the RV estimate, indicating
the size of uncertainty (error) in the point estimate of
the RV. The 2.5th and 97.5th percentiles of the bootstrap
distribution of the RV provide the basis for the 95%
confidence interval (CI), which is a range designed to
capture with 95% probability the “true” value of RV.



Table 1 ANOVA-based F-statistic and relative validity for CKD-specific and generic PRO measures across clinically-defined
groups (N = 453)

PRO measure Dialysis Pre-dialysis stage 3-5 Transplant rb (total) F-statistic RV 95% CIc

(n = 206) (n = 113) (n = 134)

Mean (SD) ra Mean (SD) ra Mean (SD) ra

CKD-specific

QDIS-CKD

CAT-5 39.83 (22.17) 1 16.19 (21.51) 1 19.25 (21.63) 1 1 57.43** 1 -

Static-6 39.18 (22.86) 0.91 16.86 (21.84) 0.96 19.60 (21.29) 0.93 0.94 50.15** 0.87 (0.72-1.03)

Static-34 35.93 (21.23) 0.93 14.90 (20.05) 0.96 18.71 (20.52) 0.95 0.95 48.01** 0.84 (0.71-0.97)

KDQOL

Burden 48.83 (26.81) -0.60 76.62 (24.76) -0.73 68.21 (28.90) -0.77 -0.74 44.46** 0.77 (0.53-1.09)

Symptoms 71.95 (16.23) -0.57 80.58 (15.80) -0.65 80.03 (15.96) -0.66 -0.65 15.11** 0.26 (0.13-0.44)

Effects 63.41 (21.92) -0.54 84.38 (17.59) -0.79 77.86 (20.18) -0.73 -0.71 43.95** 0.77 (0.52-1.10)

Generic

SF-12

PF 37.06 (10.75) -0.52 45.38 (11.12) -0.57 44.88 (10.69) -0.65 -0.63 31.12** 0.54 (0.32-0.85)

RP 38.00 (9.41) -0.65 45.12 (9.78) -0.61 45.83 (9.91) -0.63 -0.69 34.12** 0.59 (0.38-0.89)

BP 43.19 (11.67) -0.47 46.71 (11.27) -0.53 47.10 (11.66) -0.49 -0.50 5.84** 0.10 (0.02-0.22)

GH 39.08 (11.19) -0.47 41.99 (10.11) -0.51 43.71 (10.93) -0.56 -0.52 7.79** 0.14 (0.04-0.28)

VT 45.72 (9.25) -0.44 46.40 (10.15) -0.46 48.35 (9.93) -0.48 -0.44 3.04* 0.05 (0.00-0.15)

SF 42.75 (11.79) -0.65 47.81 (11.25) -0.61 47.83 (10.78) -0.60 -0.64 11.02** 0.19 (0.07-0.34)

RE 44.59 (11.64) -0.52 48.39 (10.05) -0.49 48.39 (9.76) -0.42 -0.51 7.01** 0.12 (0.03-0.25)

PCS 36.60 (10.29) -0.54 43.49 (10.37) -0.56 44.08 (10.72) -0.66 -0.64 26.61** 0.46 (0.27-0.74)

MCSd 49.74 (10.38) -0.49 50.42 (9.57) -0.45 50.55 (9.94) -0.32 -0.40 0.32 - -

MHd 49.85 (10.39) -0.43 50.71 (10.25) -0.49 50.31 (9.95) -0.33 -0.38 0.26 - -
*Significant at the 0.05 level ** Significant at the 0.01 level.
Abbreviations: ANOVA analysis of variance, RV relative validity, CKD chronic kidney disease, PRO patient-reported outcome, QDIS-CKD quality-of-life disease impact
scale for chronic kidney disease, KDQOL kidney disease quality-of-life, SF-12 Short Form 12, PF physical functioning, RP role physical, BP bodily pain, GH general
health, VT vitality, SF social functioning, RE role emotional, PCS physical component summary, MCS mental component summary, MH mental health.
a r refers to the correlation of scores between each comparison measure and the reference measure (QDIS-CKD CAT-5) within each clinical group.
b r(total) refers to the correlation of scores between each comparison measure and the reference measure (QDIS-CKD CAT-5) for the total group (N = 453).
c The 95% confidence interval of the RV was derived from the original data using the bootstrap BCa interval.
d The F-statistics for SF-12 MCS and MH are small and non-significant ( p-values of 0.73 and 0.77 separately), therefore their RVs were not computed and excluded
from significance test.
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Statistical significance of the RV is implied by 95%
confidence intervals that exclude the null value of 1.
There are several types of bootstrap confidence intervals

available, e.g., the normal, percentile, and bias-corrected
intervals, etc. The bias-corrected and accelerated (BCa)
interval is generally considered superior to other methods
and therefore was chosen for this study [27]. The BCa
interval computes an adjusted percentile confidence interval
that accounts for the possible bias of the bootstrap distri-
bution introduced by the re-sampling process and the
variable variance of the bootstrap replicates [28]. In
addition, under the circumstances that the bootstrap
distributions are potentially biased and skewed, the rela-
tionship between the bootstrap standard error and the
BCa interval is not quite straightforward; therefore, we
reported both the bootstrap standard error and the BCa
interval as the complementary information to evaluate the
accuracy of RV estimates.

Simulation studies
It is rather intuitive that an RV of 0.3 would more likely
be detected as significantly different from the null value of
1 than an RV of 0.6. However, we lack an understanding
of the conditions which might cause a given RV to be
statistically significant in one study but not in another.
Therefore, simulations were conducted to evaluate the
potential effects of various factors on the bootstrap results
of the RV. Four important factors were manipulated and
investigated : (1) sample size (N = 100, 200, 300, 453, 600,
1000, and 2000), (2) magnitude of the F-statistic for the
reference measure (F = 12.6, 25.4, 38.0, 57.4, 76.1, 126.8,
and 253.6), (3) magnitude of correlation between the
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comparator and the reference measure ( r = 0, 0.3, 0.5, 0.7,
0.9, and 0.95), and (4) number of bootstrap replicates
(B = 500, 1000, and 2000). Factors not varied were
retained as found in the original sample. Each study is
described in more detail below.

Sample size
We initially suspected that the sample size would play a
prominent role in determining the bootstrap confidence
interval of the RV. Seven sample sizes were examined:
N = 100, 200, 300, 453, 600, 1000 and 2000, where 453
was the original data sample size. Group means, standard
deviations, and correlations between the comparator and
reference measure were retained as in the original dataset,
as well as the proportion of patients in the three clinical
groups (45%, 25% and 30% respectively). It is worthy of
note that for a given data set, by definition, the F-statistic
increases as the sample size increases with constant group
means and standard deviations. For example, the F-statistics
of the reference measure (QDIS-CKD CAT-5) were
12.6, 25.4, 38.0, 57.4, 76.1, 126.8, and 253.6 for the seven
proposed sample sizes, respectively.
The situation does arise in which we want to assess

the effects of sample size independent of the F-statistic.
For example, when we evaluate the RVs computed in
two data sets, a larger sample size does not necessarily
translate into a larger F-statistic because of differences
in group means and standard deviations. Yet, we would
still be interested in knowing whether the larger sample
size produces a more precise RV estimate. For this reason,
we used a second design to assess the effects of sample
size while holding the F-statistic constant. To implement
this approach, we let N* denote the desired sample size in
the simulated data, N denote the original sample size, and
T = N / N*. By multiplying the group standard deviation
by 1/√T and keeping the group mean constant, the
F-statistic remained fixed at the values observed in
the original data (see Table 1) across the different sample
sizes. In particular, the F-statistic of reference measure
(QDIS-CKD CAT-5) was fixed at 57.4, as found in the
original data. Because the F-statistic remained fixed for all
PRO measures, the RVs were held constant across the
simulated sample size conditions.

F-statistic of reference measure (denominator F-statistic)
Beyond the sample size, we suspected that the magnitude
of the denominator F-statistic of the RV would play an
important role in determining the statistical significance.
Consider four PRO measures A, B, C and D with F-statistics
of 60, 100, 6, and 10, respectively. We suspected that the
difference between measures A and B would be more
significant than the difference between measures C and D,
although both comparisons yield RV = 0.6. The hypothesis
was that, given equal RVs, a greater F-statistic for the
reference measure would be associated with a smaller
standard error and a greater power.
To test this hypothesis, we simulated data with different

F-statistics but a fixed sample size, so that the effect of the
magnitude of F-statistic could be examined separately.
Similar to the design described above, we let F* denote the
desired F-statistic in the simulated data, F denote the
F-statistic observed in the original data, and T* = F* / F.
By multiplying the group standard deviation by 1/√T*

and keeping the sample size and group mean constant,
the F-statistics changed by a factor of T*. To promote
convenient comparisons, data were generated with F-
statistics corresponding to those obtained in the first
design of the sample size condition (e.g., the F-statistics of
reference measure were simulated at 12.6, 25.4, 38.0, 57.4,
76.1, 126.8, and 253.6, respectively). In agreement with the
original data, the total sample size was fixed at 453. Note
that because the F-statistic changed by the same factor of
T* for all PRO measures, the RVs were again held constant
across the simulated conditions of F-statistics.

Correlation between comparator and reference measures
We noted moderate to high correlations among the
PRO measures in the study. Furthermore, it seemed
appropriate to assume moderate correlations between
measures developed for very similar concepts, and even
higher correlations between measures sharing common
questions (e.g., short and long forms). Specifically, the
alternative forms of QDIS-CKD (Static-6 and Static-34)
were more highly correlated with the reference measure
of QDIS-CKD CAT-5 than the scales of KDQOL or SF-12
(Table 1). Additionally, we observed that the RV for
QDIS-CKD Static-34 (RV = 0.84) was statistically signifi-
cant while the RVs for KDQOL Burden and for KDQOL
Effects (both equal to 0.77) were not, despite the latter
being further from the null value of 1. This suggested that
a greater correlation between the comparator and the
reference measure may lead to greater precision in the RV
estimate.
To test this hypothesized effect of correlation, data were

generated with a wide range of correlations between the
comparator and the reference measures: r = 0, 0.3, 0.5, 0.7,
0.9 and 0.95. The within-group correlations were assumed
equal across the three severity groups. Group means,
standard deviations, and sample sizes were maintained
constant as in the original data. Again, the RVs for all
PRO measures were held constant across the different
conditions of correlations.

Number of bootstrap replicates
How many bootstrap replicates are needed in practice
to compute stable 95% confidence intervals for the RV
statistic? Efron and Tibshirani [27] suggested 200 for
calculating the bootstrap standard error but 1000 or
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more for computing the bootstrap confidence interval.
Some researchers have suggested even larger numbers
[9]. Because the BCa interval is computationally intensive,
minimizing the number of bootstrap replicates might
convey practical benefits. Three batches of bootstrap
replicates (B = 500, 1000, 2000) were tested. Group sample
sizes, means, standard deviations and correlations were all
kept constant as in the original data.

Simulation steps
The simulation was programmed in the language R. The
package “boot” was used for bootstrapping, including
computing bootstrap standard errors and BCa confidence
intervals [29–31]. Separate simulations were conducted for
a. Bootstrap Standard Error for the Relative Vali
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F-statistic of Re

c. Bootstrap Standard Error for the Relativ

Correlation with R

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

100 200 300

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

13 25 38

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

5.03.00

B
oo

ts
tra

p 
S

ta
nd

ar
d 

E
rr

or

QDIS6(.87) QDIS34(.84) Burden(.77)

SF12_PCS(.46) Symptoms(.26) SF12_SF(.19) SF1

Figure 1 Bootstrap standard error of the RV by sample size, denomin
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the legend. Abbreviations: RV, relative validity; QDIS, quality-of-life disease im
PF, physical functioning; RP, role physical; BP, bodily pain; GH, general healt
component summary.
each condition of sample sizes, denominator F-statistics,
and correlations between the comparator and reference
measures. In each simulation, factors not varied were
fixed at the observed data as shown in Table 1. For each
simulation, the steps below were followed.

1. Generate response data from a bivariate normal
distribution for each ANOVA group and for each
pair of comparator and reference measures. Using
the underlying assumption for ANOVA and F-
statistic, we thus simulated the data from the
normal distribution.

2. Repeat Step 1 for 100 times to establish 100
simulation datasets for each study condition.
dity by Sample Size (Fixed F-statistic and Correlation)

le Size

e Validity by F-statistic (Fixed N and Correlation)

ference Measure
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eference Measure
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ator F-statistic, and correlation between measures. Factors not
onstant in simulations and are parenthesized next to the measures in
pact scale; KDQOL, kidney disease quality-of-life; SF-12, Short Form 12;
h; VT, vitality; SF, social functioning; RE, role emotional; PCS, physical
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3. For each simulation dataset, calculate the bootstrap
standard error and the 95% bootstrap confidence
interval for the RVs.

4. Calculate the average bootstrap standard error, the
average 95% bootstrap confidence interval, and the
proportion of significant RVs (the “power”) across
the 100 simulation datasets.

Results
Bootstrap standard error
Figure 1 displays how the bootstrap standard error of
RVs varied independently by sample size, denominator
F-statistic, and correlation between the comparator and
reference measures. The bootstrap standard error changed
a. 95% Bootstrap Confidence Interval for SF-12
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Figure 2 Bootstrap confidence interval for the RV of SF-12 RP by sam
present the confidence intervals with upper and lower bounds. The dots o
RV, relative validity; SF-12, Short Form 12; RP, role physical.
little when the sample size increased with a fixed
F-statistic (Figure 1a). By contrast, the standard error
decreased substantially when the F-statistic increased with
a fixed sample size (Figure 1b). This decrease was most
substantial when the F-statistic of the reference measure
was between 13 and 25. Finally, the bootstrap standard
error decreased steadily as the correlation between the
comparator and the reference measures increased
(Figure 1c). The decrease was the most substantial at
the correlation of 0.9 or above. It is noteworthy that when
both the F-statistic and the sample size increased (the first
design in the sample size conditions), the standard error
of the RV decreased in a highly similar pattern as
presented in Figure 1b. In short, the plots suggest that
 RP by Sample Size (Fixed F-statistic and Correlation)

ple Size

 SF-12 RP by F-statistic (Fixed N and Correlation)

eference Measure
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both the magnitude of the denominator F-statistic and the
correlation between the comparator and reference
measures have a substantial effect on the precision of
the RV estimate, while the sample size effect was almost
entirely conveyed through its influence on the magnitude
of the denominator F-statistic.

Bootstrap confidence interval and power
Consistent with results of the bootstrap standard error,
we found little change in the bootstrap confidence interval
when the sample size changed independently of the
F-statistics, although there was a noticeable change the
other way around. Using the PRO measure of SF-12 RP
(RV = 0.59) as a specific example, Figure 2 displays the
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average 95% bootstrap confidence intervals (represented
by the vertical bars) under various simulation conditions.
In general, the confidence interval was relatively insensitive
to varied sample size with a fixed F-statistic (Figure 2a),
but became increasingly narrower as either the denomin-
ator F-statistic or the correlation between the comparator
and reference measures increased (Figures 2b and 2c).
More specifically, the confidence interval became signifi-
cant – by excluding 1 – when either the denominator
F-statistic or the correlation became greater.
Power was calculated as the proportion of significant

RVs across the simulation replications. Likewise, the
power increased as the denominator F-statistic or the
correlation between the comparator and reference measure
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increased (Figures 3). Specifically, the power for detecting
low RVs (RVs = 0.05 - 0.26) remained consistently
high across varied conditions. Power for moderate
RVs (RVs = 0.46, 0.54, and 0.59) increased steadily as
either the denominator F-statistic or the correlation
increased. For example, the power for RV = 0.59 (SF-12 RP)
reached 80% when the denominator F-statistic was 57
with a correlation of 0.7. Power for detecting moderately
high RVs (RVs = 0.77, 0.84, and 0.87) increased fairly
slowly as the denominator F-statistic increased, but much
more quickly when the correlation reached 0.9 or above.

Simulated distribution of RV estimates
Because the bootstrap is used to approximate the “true”
RV sampling distribution, we expected the RV sampling
a. Distribution of Simulated Relative Validity Estimat

b. Distribution of Simulated Relative Validity Estimat

c. Distribution of Simulated Relative Validity Estimates
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Figure 4 Histogram of simulated RV estimates for SF-12 RP by denom
correlation with the reference measure were fixed at the values observed i
12; RP, role physical.
distribution obtained by simulation to be consistent
with the bootstrap distribution. Therefore, the sampling
distributions of the RV from simulation were plotted as a
validity check of the bootstrap results. Again, the SF-12
RP was illustrated as an example. The histograms of RV
estimates for SF-12 RP (RV = 0.59) were plotted with the
fitted normal curves when the denominator F-statistics
were at 13, 57, and 254, respectively (Figure 4). In short,
we found that as the denominator F-statistic increased: (1)
the standard deviation of the sampling distributions
decreased, consistent with changes in the bootstrap
standard error, and (2) the mean of sampling distributions
was closer to the “true” RV of 0.59, suggesting smaller
bias and skew, again showing consistency with the
bootstrap results.
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a. 95% Bootstrap Confidence Intervals for RelativeValidity: SF-12 RP ( RV = 0.59 ) 

b. 95% Bootstrap Confidence Intervals for RelativeValidity: KDQOL Burden ( RV = 0.77 ) 

c. 95% Bootstrap Confidence Intervals for RelativeValidity: QDIS-CKD Static-34 ( RV = 0.84 ) 
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Figure 5 Bootstrap confidence intervals for RVs of SF-12 RP, KDQOL Burden, and QDIS-CKD Static-34 by number of bootstrap replicates.
The sample size, denominator F-statistic, and correlation with reference measure were fixed as in Table 1. The vertical bars present the confidence
intervals with upper and lower bounds. The dots on the vertical bars represent the point estimates of RVs. Abbreviations: RV, relative validity; SF-12,
Short Form 12; RP, role physical; KDQOL, kidney disease quality-of-life; QDIS, quality-of-life disease impact scale; CKD, chronic kidney disease.
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Number of bootstrap replicates
Finally, the bootstrap standard error and 95% CI were
compared for different numbers of bootstrap replicates. In
general, the number of bootstrap replicates, ranging from
500 to 2000, had little effect on either bootstrap standard
error or confidence interval. As an example, the bootstrap
95% CIs of three selected PRO measures (RVs = 0.59, 0.77
and 0.84, respectively) are presented as a function of the
number of bootstrap replicates (Figure 5). It appears that
for this data set, 500 bootstrap replicates are adequate to
compute stable bootstrap confidence intervals for the RV.

Conclusions
This study demonstrated that the RV, which is often used
to compare the validity of alternative PRO measures,
may be statistically tested via the bootstrap confidence
interval. Simulations identified two key factors affecting
whether a given RV represents a statistically significant
finding: the magnitude of the denominator F-statistic
(the F-statistic for the reference measure), and the cor-
relation between the comparator and the reference
measure. Although, we found that a lager sample size
with a fixed denominator F-statistic had limited impact
on the precision of the RV estimate, it is noteworthy
that for a given data set (assuming constant group
means and standard deviations), increasing the sample
size would produce greater power by naturally increasing
the denominator F-statistic. However, we need to be
careful when evaluating RVs calculated in different
datasets, where a larger data set may not necessarily
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have a larger denominator F-statistic, and thus may not
provide greater power.
More specifically, our study suggested that a denominator

F-statistic as low as 13 had very limited power to
detect meaningful differences in the RVs. A denominator
F-statistic as large as 57 conveyed sufficient power (80%)
to detect a moderate RV of 0.6, given that the measures
were correlated at r = 0.7. Furthermore, we found that a
greater correlation between the comparator and reference
measures with the same denominator F-statistic provided
greater power to detect the differences in the RVs. Based
on the reduction in the bootstrap standard error (Figure 1.c)
and the increase in power (Figure 3.c), we classified the
correlation as small (r ≤ 0.5), moderate (0.5 < r ≤ 0.7), high
(0.7 < r ≤ 0.9), or very high (r > 0.9). We also note that a
very high correlation is associated with substantial gain in
precision and power of the RV estimate.

Discussion
This study has important implications for studies using
the RV to compare the validity of PRO measures. First,
this work demonstrates the importance of calculating the
confidence interval and determining statistical significance
of the RV when comparing the validity of PRO measures.
Second, our findings suggest that RVs of equal size but
calculated under different comparison conditions have
distinct statistical implications and should be interpreted
differently. A review of about 40 articles published in three
relevant journals (Journal of Clinical Epidemiology,
Medical Care, and Quality of Life Research) between
1990 and 2012 revealed that the circumstances under
which the RV was computed varied widely. The sample
size per ANOVA group ranged broadly from 42 to near
4000 [32,33], the F-statistic of reference measure ranged
widely from less than 4 to over 400 [12,24], and the correl-
ation between the comparator and reference measures
was rarely reported. We suspect that most studies, without
constructing a confidence interval for the RV estimate,
over-interpreted the observed differences in the RVs with
small denominator F-statistics, ignoring the possibility of
falsely rejecting the null hypothesis of no difference when
only chance was in operation. On the other hand, “small”
but possibly meaningful and statistically significant
differences may have been overlooked.
This work also has important implication for designing

future studies using the RV. In planning for power calcula-
tions in such studies, we suggest that researchers begin
with reasonable estimates of the correlation between the
comparator and reference measures along with the
ANOVA group means and standard deviations. Armed
with these estimates, the investigators will better understand
how to control the sample size to achieve a desired
magnitude of denominator F-statistic for sufficient
power. The effect of correlation between measures on
the RV is important given that there is an increasing
interest in developing more “efficient” forms from the
same item bank [34]. Thus, it becomes very realistic to
assume that the PRO measures with the same questions
but varying in length are very highly correlated (r > 0.9)
for the same group of respondents, as the alternative
forms of QDIS-CKD (CAT-5, Static-6, and Static-34)
presented in our current study. Furthermore, it seems rea-
sonable to assume at least moderate correlations (r > 0.5)
for measures assessing similar concepts but having
different questions, such as the different CKD-specific
measures, or the CKD-specific and generic measures
with common domains. Our findings also suggest lower
correlations (r < 0.5) for measures of distinct domains,
such as the physical and mental health.
All confidence intervals in this study were based on the

bias-corrected and accelerated (BCa) bootstrap method.
Generally, there is wide consensus that this method is
preferred over other methods [27]. However, there are a
few caveats. First, if the acceleration parameter is small
(< 0.025), then some simulations suggest that coverage
of the BCa interval may be erratic. Second, if there is no
bias, meaning that the bootstrap distribution is not
skewed and the center of the bootstrap distribution is very
close to the center of the observed distribution, bias
correction may decrease the precision and unnecessarily
increase the width of the BCa interval [35]. Therefore,
under the circumstances of no bias and minimal acceler-
ation, the percentile-based confidence interval may offer
some advantage. However, we would urge caution because
these "ideal" circumstances are not likely to be found in real
studies. In fact, we found important bias and substantial
acceleration factors in our bootstrap simulations.
This study has specific limitations worth consideration.

First, the simulations were based on one data set of PRO
measures administered to CKD patients. Nevertheless, it
is expected that the findings could be generalizable to
PRO measures in other conditions. That said, validations
using different samples and conditions are desired. In
addition, we limited the number of simulation replications
to 100 for most simulation conditions. Selected comparisons
were made with a much larger number of simulation
replications, and similar results were found. Finally, we
selected the reference measure which had the largest F-
statistics and thus limited the values of RVs below the null
value of 1. Nevertheless, the statistical significance of the
RV should not be affected by the choice of the reference
measure, and we would like to further investigate this in
the future. Out next and follow-up plan is to have a more
comprehensive study with additional conditions and data
sets. It is hoped that such a comprehensive simulation
study will provide some practical guidance with a look-up
table suggesting minimum denominator F-statistics
required for sufficient power to detect a range of RVs
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(both below and above 1) under varying circumstances
(e.g., measures with different degrees of correlations).
It is noteworthy that the methodology of the RV proposed

in the study is appropriate only when the assumptions
of ANOVA are met. These assumptions include inde-
pendent observations, normally distributed dependent
variable within groups, and homogeneity of variances
across groups. That stated, it is also well recognized that
ANOVA is quite robust to deviations from normality
and violations of homogeneous variance [36,37]. To im-
plement this methodology, it would be ideal to have all
respondents complete all measures being compared, as in
our current study. However, in longer surveys this
could greatly increase respondent burden. Therefore,
one potential approach would be to randomize respondents
to complete only selected measures. However, to achieve
the randomization, the sample sizes of ANOVA groups
should be approximately equal (if equal sample sizes for
the measures) or proportionally the same (if unequal
sample sizes for the measures) for the measures, so that
their F-statistics are comparable.
Finally, when evaluating the statistical significance of

the RV, it is important to recognize that a low power
increases the risk of failing to detect clinically important
differences, and that a very large power could convey
statistical significance upon clinically trivial differences.
Therefore, differences in measures should always be
considered clinically, for example, by accounting for the
proportions of patients misclassified using the different
PRO measures.
Consent
Written informed consent was obtained from the patient
for publication of this report.

Abbreviations
RV: Relative validity; PRO: Patient-reported outcome; CI: Confidence interval;
SE: Standard error; ANOVA: Analysis of variance; CKD: Chronic kidney disease;
QDIS-CKD: Quality-of-life disease impact scale for chronic kidney disease;
KDQOL: Kidney disease quality-of-life; SF-12: Short Form 12; PF: Physical
functioning; RP: Role physical; BP: Bodily pain; GH: General health; VT: Vitality;
SF: Social functioning; RE: Role emotional; PCS: Physical component
summary; MCS: Mental component summary; MH: Mental health; IRT: Item
response theory.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
ND carried out the whole study and drafted the manuscript. JJA made
contributions to the research design, conceptualization, and applications of
the bootstrap and simulation techniques, and provided mentoring on
writing. HJF provided technical consultation on the simulation. ASA provided
consultation on general statistical concepts and analyses. JEW is the principal
investigator of the study from which the data was collected. JEW provided
the initial study idea, participated in the research design and provided inputs
and guidance throughout the study. All authors were heavily involved in
drafting and editing the manuscript, and approved the final manuscript.
Acknowledgement
The SBIR grant “Functional Health Computer Adaptive Test (CAT) in Chronic
Kidney Disease” (5R44DK62555-3) was funded by the National Institute of
Diabetes and Digestive and Kidney Diseases (NIDDK) (Co-Investigators: JE
Ware and K Meyer). The National Kidney Foundation encouraged participants
in its Kidney Early Evaluation Program (KEEP) to complete online
questionnaires used to develop the new QDIS-CKD and patients of Dialysis
Clinic, Inc. participated in focus groups and provided data for the clinical
validation study. The John Ware Research Group (JWRG) Incorporated and
Tufts Medical Center supported the clinical validation study out of their own
research funds.
We are greatly indebted to the two anonymous reviewers for their valuable
comments and constructive suggestions, which has strengthened our study
considerately. We thank Magdalena Harrington and Mikel Strom for their
assistance with the dataset. The opinions are those of authors and do not
necessarily reflect the views of supporting organizations.

Author details
1Department of Quantitative Health Sciences, University of Massachusetts
Medical School, Worcester, MA 01655, USA. 2John Ware Research Group,
Incorporated, One Innovation Drive, Suite 400, Worcester, MA 01605, USA.

Received: 21 February 2013 Accepted: 27 May 2013
Published: 31 May 2013

References
1. McHorney CA, Ware JE Jr, Rogers W, Raczek AE, Lu JFR: The validity and

relative precision of MOS short- and long- form Health Status Scales and
Dartmouth COOP Charts: Results from the Medical Outcomes Study.
Medical Care 1992, 30(Suppl 5):MS253–MS265.

2. Fayers MP, Machin D: Quality of life: The assessment, analysis and
interpretation of patient-reported outcomes. Chichester, England: Wiley; 2007.

3. Luo N, Johnson JA, Shaw JW, Coons SJ: Relative efficiency of the EQ-5D,
HUI2, and HUI3 index scores in measuring health burden of chronic
medical conditions in a population health survey in the United States.
Medical Care 2009, 47:53–60.

4. Liang MH, Fossel AH, Larson MC: Comparisons of five health status
instruments for orthopedic evaluation. Med Care 1990, 7:632–642.

5. Kosinski M, Keller SD, Ware JE Jr, Hatoum HT, Kong SX: The SF-36 Health
Survey as a generic outcome measure in clinical trials of patients with
osteoarthritis and rheumatoid arthritis: Relative validity of scales in
relation to clinical measures of arthritis severity. Medical Care 1999,
37(Suppl 5):MS23–MS39.

6. Werneke M, Hart DL: Discriminant validity and relative precision for
classifying patients with nonspecific neck and back pain by anatomic
pain patterns. Spine 2003, 28:161–166.

7. Efron B, Tibshirani R: Bootstrap methods for standard errors, confidence
intervals, and other measures of statistical accuracy. Statistical Science
1986, 1:54–75.

8. Efron B, Tibshirani R: Statistical data analysis in the computer age. Science
1991, 253:390–395.

9. Efron B, Tibshirani R: An introduction to the bootstrap. New York: Chapman &
Hall; 1993:1–436.

10. Henderson AR: The bootstrap: A technique for data-driven statistics.
Using computer-intensive analyses to explore experimental data.
Clin Chim Acta 2005, 359:1–26.

11. Hays RD, Kallich JD, Mapes DL, Coons SJ, Carter WB: Development of the kidney
disease quality of life (KDQOL) instrument. Qual Life Res 1994, 3(5):329–338.

12. Ware JE Jr, Kosinski M, Keller SD: A 12-item short-form health survey:
Construction of scales and preliminary tests of reliability and validity.
Medical Care 1996, 34:220–233.

13. Lin P, Ware JE Jr, Meyer K, Richardson M, Bjorner JB: Methods for
psychometric and clinical evaluations of CAT-based measures of disease
impact in chronic kidney disease (CKD). Value Health 2010, 13(7):A244.

14. Ware JE Jr, Guyer R, Harrington M, Boulanger R: Evaluation of a more
comprehensive survey item bank for standardizing disease-specific impact
comparisons across chronic conditions. Budapest, Hungary: Invited presentation at
International Society for Quality of Life Research (ISOQOL) conference; 2012.

15. Evans RW, Manninen DL, Garrison LP Jr, Hart LG, Blagg CR, Gutman RA, Hull
AR, Lowrie EG: The quality of life of patients with end-stage renal
disease. N Eng J Med 1985, 312(9):553–559.



Deng et al. Health and Quality of Life Outcomes 2013, 11:89 Page 12 of 12
http://www.hqlo.com/content/11/1/89
16. Evans RW, Rader B, Manninen DL: The quality of life of hemodialysis
recipients treated with recombinant human erythropoietin, Cooperative
Multicenter EPO Clinical Trial Group. J Am Med Assoc 1990, 263:825–830.

17. Hansen RA, Chin H, Blalock S, Joy MS: Predialysis chronic kidney disease:
evaluation of quality of life in clinic patients receiving comprehensive
anemia care. Res Social Adm Pharm 2009, 5(2):143–153.

18. Kerlinger FN: Foundations of behavioral research. New York: Holt, Rinehart,
& Winston; 1973.

19. Raczek AE, Ware JE Jr, Bjorner JB, Gandek B, Haley SM, Aaronson NK,
Apolone G, Bech P, Brazier JE, Bullinger M, Sullivan M: Comparison of Rasch
and summated rating scales constructed from SF-36 physical
functioning items in seven countries: Results from the IQOLA project.
J Clin Epidemiol 1998, 51:1203–1214.

20. McHorney CA, Haley SM, Ware JE Jr: Evaluation of the MOS SF-36 physical
functioning scale (PF-40): II, Comparison of relative precision using Likert
and Rasch scoring methods. J Clin Epidemiol 1997, 50:451–461.

21. Fitzpatrick R, Norquist JM, Dawson J, Jenkinson C: Rasch scoring of
outcomes of total hip replacement. J Clin Epidemiol 2003, 56(1):68–74.

22. Norquist JM, Fitzpatrick R, Dawson J, Jenkinson C: Comparing alternative
Rasch-based methods vs raw scores in measuring change in health.
Medical Care 2004, 42(1 Suppl):I25–I36.

23. Fitzpatrick R, Norquist JM, Jenkinson C, Reeves BC, Morris RW, Murray DW,
Gregg PJ: A comparison of Rasch with Likert scoring to discriminate
between patients' evaluations of total hip replacement surgery. Qual Life
Res 2004, 13(2):331–338.

24. Hart DL, Mioduski JE, Stratford PW: Simulated computerized adaptive tests
for measuring functional status were efficient with good discriminant
validity in patients with hip, knee, or foot/ankle impairments.
J Clin Epidemiol 2005, 58:629–638.

25. Hart DL, Cook KF, Mioduski JE, Teal CR, Crane PK: Simulated computerized
adaptive test for patients with shoulder impairments was efficient and
produced valid measures of function. J Clin Epidemiol 2006, 59:290–298.

26. Deng N, Ware JE Jr: Using bootstrap confidence interval to compare
relative validity coefficient: an example with PRO measures of chronic
kidney disease impact. Value in Heal 2012, 15(4):A159.

27. Efron B: Better bootstrap confidence intervals. J Am Stat Assoc 1987, 82:171–200.
28. DiCiccio TJ, Efron B: Bootstrap confidence intervals. Statistical Science 1996,

11:189–228.
29. R Development Core Team. R: A language and environment for statistical

computing. Vienna, Austria: R Foundation for Statistical Computing; 2011.
URL http://www.R-project.org/.

30. Canty A, Ripley B: boot: Bootstrap R (S-Plus) functions. R package version 1.3-4; 2012.
31. Davison AC, Hinkley DV: Bootstrap methods and their applications.

Cambridge: Cambridge University Press; 1997.
32. McHorney CA, Ware JE Jr, Raczek AE: The MOS 36-item Short-Form health

survey (SF-36): II. psychometric and clinical tests of validity in measuring
physical and mental health constructs. Medical Care 1993, 31(3):247–263.

33. Vickrey BG, Hays RD, Genovese BJ, Myers LW, Ellison GW: Comparison of a
generic to disease-targeted health-related quality-of-life measures for
multiple sclerosis. J Clin Epidemiol 1997, 50:557–569.

34. Ware JE Jr, Kosinski M, Bjorner JB, Bayliss MS, Batenhorst A, Dahlöf CG,
Tepper S, Dowson A: Applications of computerized adaptive testing (CAT)
to the assessment of headache impact. Qual Life Res 2003, 12(8):935–952.

35. Carpenter J, Bithell J: Bootstrap confidence intervals: when, which, what? A
practical guide for medical statisticians. Statistics In Medicine 2000, 19:1141–1164.

36. Lindman HR: Analysis of variance in complex experimental designs. New York,
NY: W. H. Freeman; 1974.

37. Box GEP: Some theorems on quadratic forms applied in the study of
analysis of variance problems: II Effect on inequality of variance and
correlation of errors in the two-way classification. Annals of Mathematical
Statistics 1954, 25:484–498.

doi:10.1186/1477-7525-11-89
Cite this article as: Deng et al.: Using the bootstrap to establish
statistical significance for relative validity comparisons among patient-
reported outcome measures. Health and Quality of Life Outcomes 2013
11:89.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://www.r-project.org/

	Abstract
	Background
	Methods
	Results
	Conclusions

	Introduction
	Methods
	Description of the data
	Relative validity
	Bootstrap technique
	Simulation studies
	Sample size
	F-statistic of reference measure (denominator F-statistic)
	Correlation between comparator and reference measures
	Number of bootstrap replicates

	Simulation steps

	Results
	Bootstrap standard error
	Bootstrap confidence interval and power
	Simulated distribution of RV estimates
	Number of bootstrap replicates

	Conclusions
	Discussion
	Consent
	Abbreviations

	Competing interests
	Authors' contributions
	References
	Acknowledgement
	Author details

