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Abstract
In this paper, we consider the Barnes-type Peters polynomials. We present several
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connection between our polynomials and several known families of polynomials.
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1 Introduction
The aimof this paper is to use umbral calculus to obtain several new and interesting identi-
ties of Barnes-type Peters polynomials. Umbral calculus has been used in numerous prob-
lems of mathematics (for example, see [–]). Umbral techniques have been used in dif-
ferent areas of physics; for example, it was used in group theory and quantum mechanics
by Biedenharn et al. [, ] (for other examples, see [, , –]).
Let r ∈ Z>. Here we will consider the polynomials Sn(x) = Sn(x|λ, . . . ,λr ;μ, . . . ,μr) and

Ŝn(x) = Ŝn(x|λ, . . . ,λr ;μ, . . . ,μr), which are called Barnes-type Peters polynomials of the
first kind and of the second kind, respectively, and are given by

r∏
j=

(
 + ( + t)λj

)–μj ( + t)x =
∑
n≥

Sn(x)
tn

n!
, (.)

r∏
j=

(
( + t)λj

 + ( + t)λj

)μj

( + t)x =
∑
n≥

Ŝn(x)
tn

n!
, (.)

where λ, . . . ,λr ,μ, . . . ,μr ∈ C with λ, . . . ,λr �= . If r = , then these polynomials are
generalizations of Boole polynomials, see []. If μ = · · · = μr = , then Sn(x|λ) =
Sn(x|λ, . . . ,λr) = Sn(x|λ, . . . ,λr ; , . . . , ) and Ŝn(x|λ) = Ŝn(x|λ, . . . ,λr) = Ŝn(x|λ, . . . ,λr ;
, . . . , ) are called Barnes-type Boole polynomials of the first kind and of the second kind.
So,

r∏
j=

(
 + ( + t)λj

)–( + t)x =
∑
n≥

Sn(x|λ) t
n

n!
,

r∏
j=

(
( + t)λj

 + ( + t)λj

)
( + t)x =

∑
n≥

Ŝn(x|λ) t
n

n!
.
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We introduce the polynomials En(x|λ;μ) = En(x|λ, . . . ,λr ;μ, . . . ,μr) with the generating
function

r∏
j=

(


 + eλjt

)μj

ext =
∑
n≥

En(x|λ;μ) t
n

n!
.

These polynomials may be called generalized Barnes-type Euler polynomials. When μ =
· · · = μr = , En(x|λ) = En(x|λ, . . . ,λr) = En(x|λ, . . . ,λr ; , . . . , ) are called the Barnes-type
Euler polynomials. If further λ = · · · = λr = , E(r)

n (x) = En(x|, . . . , ; , . . . , ) are called the
Euler polynomials of order r. When x = , Sn = Sn(λ;μ) = Sn(|λ;μ) and Ŝn = Ŝn(λ;μ) =
Ŝn(|λ;μ) are called Barnes-type Peters numbers of the first kind and of the second kind,
respectively.
Let � be the algebra of polynomials in a single variable x over C, and let �∗ be the

vector space of all linear functionals on �. We denote the action of a linear functional L
on a polynomial p(x) by 〈L|p(x)〉, and we define the vector space structure on �∗ by

〈
cL + c′L′|p(x)〉 = c

〈
L|p(x)〉 + c′

〈
L′|p(x)〉,

where c, c′ ∈ C (see [–]). We define the algebra of formal power series in a single vari-
able t to be

H =
{
f (t) =

∑
k≥

ak
tk

k!

∣∣∣ak ∈C

}
. (.)

The formal power series in the variable t defines a linear functional on � by setting

〈
f (t)|xn〉 = an for all n≥  (see [–]). (.)

By (.) and (.), we have

〈
tk|xn〉 = n!δn,k for all n,k ≥  (see [–]), (.)

where δn,k is the Kronecker symbol.
Let fL(t) =

∑
n≥〈L|xn〉 tnn! . From (.), we have 〈fL(t)|xn〉 = 〈L|xn〉. Thus, themap L 	→ fL(t)

is a vector space isomorphism from�∗ ontoH. Therefore,H is thought of as a set of both
formal power series and linear functionals. We callH umbral algebra.Umbral calculus is
the study of umbral algebra.
The order O(f (t)) of the non-zero power series f (t) is the smallest integer k for which

the coefficient of tk does not vanish (see [–]). If O(f (t)) =  (respectively, O(f (t)) = ),
then f (t) is called a delta (respectively, an invertible) series. Suppose that O(f (t)) = 
and O(g(t)) = , then there exists a unique sequence sn(x) of polynomials such that
〈g(t)(f (t))k|sn(x)〉 = n!δn,k , where n,k ≥  [, Theorem ..]. The sequence sn(x) is called
the Sheffer sequence for (g(t), f (t)) which is denoted by sn(x) ∼ (g(t), f (t)) (see [–]).
For f (t) ∈ H and p(x) ∈ �, we have 〈eyt|p(x)〉 = p(y), 〈f (t)g(t)|p(x)〉 = 〈g(t)|f (t)p(x)〉 and

f (t) =
∑
n≥

〈
f (t)|xn〉 tn

n!
, p(x) =

∑
n≥

〈
tn|p(x)〉xn

n!
(.)
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(see [–]). From (.), we obtain

〈
tk|p(x)〉 = p(k)(),

〈
|p(k)(x)〉 = p(k)(), (.)

where p(k)() denotes the kth derivative of p(x) with respect to x at x = . So, by (.), we
get that tkp(x) = p(k)(x) = dk

dxk p(x) for all k ≥  (see [–]).
Let sn(x)∼ (g(t), f (t)). Then we have


g(f̄ (t))

eyf̄ (t) =
∑
n≥

sn(y)
tn

n!
, (.)

for all y ∈ C, where f̄ (t) is the compositional inverse of f (t) (see [–]). For sn(x) ∼
(g(t), f (t)) and rn(x) ∼ (h(t),�(t)), let

sn(x) =
n∑

k=

cn,krk(x), (.)

then we have

cn,k =

k!

〈
h(f̄ (t))
g(f̄ (t))

(
�
(
f̄ (t)

))k∣∣∣xn〉 (.)

(see [–]).
It is immediate from (.)-(.), we see that Sn(x) and Ŝn(x) are the Sheffer sequences for

the pairs

Sn(x)∼
( r∏

j=

(
 + eλjt

)μj , et – 

)
, (.)

Ŝn(x)∼
( r∏

j=

(
 + eλjt

eλjt

)μj

, et – 

)
. (.)

The aim of the present paper is to present several new identities for the Peters polynomials
by the use of umbral calculus.

2 Explicit expressions
It is well known that

(x)n =
n∑

m=

S(n,m)xm ∼ (
, et – 

)
, (.)

where S(n,m) is the Stirling number of the first kind. By (.) and (.) we have

r∏
j=

(
 + eλjt

)μj Sn(x) ∼
(
, et – 

)
and

r∏
j=

(
 + eλjt

eλjt

)μj

Ŝn(x)∼
(
, et – 

)
. (.)
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So

Sn(x) =
r∏
j=

(
 + eλjt

)–μj (x)n =
n∑

m=

S(n,m)
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j=

(
 + eλjt

)–μj xm
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 + eλjt

)μj

xm

= –
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Ŝn(x) =
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j=

(
eλjt

 + eλjt

)μj

(x)n = e
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j= λjμjt
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j=

(
 + eλjt

)–μj (x)n

= –
∑r

j= μj
n∑
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j= λjμjt
r∏
j=

(


 + eλjt

)μj

xm

= –
∑r

j= μj
n∑

m=

S(n,m)e
∑r

j= λjμjtEm(x|λ;μ)

= –
∑r

j= μj
n∑

m=

S(n,m)Em

(
x +

r∑
j=

λjμj

∣∣∣∣λ;μ
)
. (.)

Thus, we have the following result.

Theorem  For all n ≥ ,

Sn(x) = –
∑r

j= μj
n∑

m=

S(n,m)Em(x|λ;μ),

Ŝn(x) = –
∑r

j= μj
n∑

m=

S(n,m)Em

(
x +

r∑
j=

λjμj

∣∣∣∣λ;μ
)
.

By (.), (.), (.) and (.), we have

Sn(x) =
n∑
j=


j!

〈 r∏
j=

(
 + ( + t)λj

)–μj(log( + t)
)j∣∣∣xn

〉
xj,

Ŝn(x) =
n∑
j=


j!

〈 r∏
j=

(
( + t)λj

 + ( + t)λj

)μj(
log( + t)

)j∣∣∣xn
〉
xj,

where
〈 r∏

j=

(
 + ( + t)λj

)–μj(log( + t)
)j∣∣∣∣xn

〉

=

〈 r∏
j=

(
 + ( + t)λj

)–μj

∣∣∣∣(log( + t)
)jxn

〉
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= j!
n∑

�=j

(
n
�

)
S(�, j)

〈 r∏
j=

(
 + ( + t)λj

)–μj

∣∣∣∣xn–�

〉

= j!
n∑

�=j

(
n
�

)
S(�, j)Sn–�

and

〈 r∏
j=

(
( + t)λj

 + ( + t)λj

)μj(
log( + t)

)j∣∣∣∣xn
〉

=

〈 r∏
j=

(
( + t)λj

 + ( + t)λj

)μj
∣∣∣∣(log( + t)

)jxn
〉

= j!
n∑

�=j

(
n
�

)
S(�, j)

〈 r∏
j=

(
( + t)λj

 + ( + t)λj

)μj
∣∣∣∣xn–�

〉

= j!
n∑

�=j

(
n
�

)
S(�, j)Ŝn–�.

Hence, we can state the following formulas.

Theorem  For all n ≥ ,

Sn(x) =
n∑
j=

( n∑
�=j

(
n
�

)
S(�, j)Sn–�

)
xj and Ŝn(x) =

n∑
j=

( n∑
�=j

(
n
�

)
S(�, j)Ŝn–�

)
xj.

Also, by the definitions, (.), (.) and (.), we have

Sn(y) =
〈∑
i≥

Si(y)
ti

i!

∣∣∣xn〉 =
〈 r∏

j=

(
 + ( + t)λj

)–μj ( + t)y
∣∣∣∣xn

〉

=

〈 r∏
j=

(
 + ( + t)λj

)–μj

∣∣∣∣( + t)yxn
〉

=
n∑

m=

(y)m
(
n
m

)〈 r∏
j=

(
 + ( + t)λj

)–μj

∣∣∣∣xn–m
〉

=
n∑

m=

(y)m
(
n
m

)
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and

Ŝn(y) =
〈∑
i≥

Ŝi(y)
ti

i!

∣∣∣xn〉 =
〈 r∏
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(
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 + ( + t)λj

)μj

( + t)y
∣∣∣∣xn

〉

=
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(
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 + ( + t)λj

)μj
∣∣∣∣( + t)yxn

〉
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=
n∑

m=

(y)m
(
n
m

)〈 r∏
j=

(
( + t)λj

 + ( + t)λj

)μj
∣∣∣∣xn–m

〉

=
n∑

m=

(y)m
(
n
m

)
Ŝn–m,

which implies the following formulas.

Theorem  For all n ≥ ,

Sn(x) =
n∑
j=

Sn–j
(
n
j

)
(x)j and Ŝn(x) =

n∑
j=

Ŝn–j
(
n
j

)
(x)j.

More generally, by (.) and (.) with pn(x) =
∏r

j=( + eλjt)μj Sn(x) = (x)n ∼ (, et – ),

we obtain that Sn(x + y) =
∑b

j= Sj(x)(y)n–j
(n
j
)
, and with pn(x) =

∏r
j=(

+eλj t

eλj t
)μj Ŝn(x) = (x)n ∼

(, et –), we obtain that Ŝn(x+ y) =
∑b

j= Ŝj(x)(y)n–j
(n
j
)
, which gives the following corollary.

Corollary  For all n ≥ ,

Sn(x + y) =
b∑
j=

Sj(x)(y)n–j
(
n
j

)
and Ŝn(x + y) =

b∑
j=

Ŝj(x)(y)n–j
(
n
j

)
.

3 Recurrence relations
Note that if an(x) ∼ (g(t), f (t)), then f (t)an(x) = nan–(x), Thus, by (.) and (.), we have
that Sn(x+)–Sn(x) = (et –)Sn(x) = nSn–(x) and Ŝn(x+)– Ŝn(x) = (et –)Ŝn(x) = nŜn–(x),
which give the following recurrences.

Proposition  For all n ≥ ,

Sn(x + ) – Sn(x) = nSn–(x) and Ŝn(x + ) – Ŝn(x) = nŜn–(x).

Note that for an(x) ∼ (g(t), f (t)), we have that an+(x) = (x – g ′(t)/g(t)) 
f ′(t)an(x). In the

case (.), we obtain Sn+(x) = xSn(x – ) – e–t g
′(t)
g(t) Sn(x) with g(t) =

∏r
i=( + eλjt)μj . Since

g′(t)
g(t) =

∑r
i=

λiμieλit

+eλit
and by (.), we get

g ′(t)
g(t)

Sn(x) =
r∑
i=

λiμieλit

 + eλit
Sn(x) =

r∑
i=

λiμieλit




 + eλit
Sn(x)

=
r∑
i=

(
λiμieλit




 + eλit
–

∑r
j= μj

n∑
m=

S(n,m)
r∏
j=

(


 + eλjt

)μj

xm
)

= –
∑r

j= μj
n∑

m=

S(n,m)
r∑
i=

(
λiμieλit




 + eλit

r∏
j=

(


 + eλjt

)μj

xm
)

= –
∑r

j= μj
n∑

m=

S(n,m)
r∑
i=

λiμi


Em(x + λi|λ;μ + ei),
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where ei = (, . . . , , , , . . . , ) is a vector with  in the ith coordinate. Thus,

Sn+(x) = xSn–(x) – ––
∑r

i= μj
n∑

m=

r∑
i=

S(n,m)λiμiEm(x + λi – |λ;μ + ei). (.)

On the other hand, by Theorem , we have

g ′(t)
g(t)

Sn(x) =
r∑
i=

λiμieλit

 + eλit
Sn(x) =

r∑
i=

λiμieλit




 + eλit
Sn(x)

=
r∑
i=

λiμieλit




 + eλit

n∑
j=

( n∑
�=j

(
n
�

)
S(�, j)Sn–�

)
xj

=
n∑
j=

( n∑
�=j

(
n
�

)
S(�, j)Sn–�

r∑
i=

λiμieλit




 + eλit
xj

)

=
n∑
j=

( n∑
�=j

(
n
�

)
S(�, j)Sn–�

r∑
i=

λiμieλit


λ
j
iEj(x/λi)

)

=
n∑
j=

( n∑
�=j

(
n
�

)
S(�, j)Sn–�

r∑
i=

λ
j+
i μi


Ej( + x/λi)

)

(note that En(x) = 
+et x

n = (E+ x)n =
∑n

j=
(n
j
)
Ejxn–j and 

+eλj t
xj = λ

j
iEi(x/λi)), which implies

Sn+(x) = xSn(x – ) –
n∑
j=

n∑
�=j

r∑
i=

λ
j+
i μi



(
n
�

)
S(�, j)Sn–�Ej

(
 + (x – )/λi

)
.

Thus, by (.), we can state the following result.

Theorem  For all n ≥ ,

Sn+(x) = xSn(x – ) – ––
∑r

i= μj
n∑

m=

r∑
i=

S(n,m)λiμiEm(x + λi – |λ;μ + ei),

Sn+(x) = xSn(x – ) –
n∑
j=

n∑
�=j

r∑
i=

λ
j+
i μi



(
n
�

)
S(�, j)Sn–�Ej

(
 + (x – )/λi

)
.

As a corollary, we get the following identity.

Corollary  For all n ≥ ,

––
∑r

i= μj
n∑

m=

r∑
i=

S(n,m)λiμiEm(x + λi – |λ;μ + ei),

=
n∑
j=

n∑
�=j

r∑
i=

λ
j+
i μi



(
n
�

)
S(�, j)Sn–�Ej

(
 + (x – )/λi

)
.
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In the case (.), we obtain Ŝn+(x) = xŜn(x – ) – e–t g
′(t)
g(t) Ŝn(x) with g(t) =

∏r
i=(

+eλj t

eλit
)μj .

Since g′(t)
g(t) =

∑r
i=

λiμieλit

+eλit
–

∑r
i= λiμi and by (.), we get

g ′(t)
g(t)

Sn(x) =
r∑
i=

λiμieλit

 + eλit
Ŝn(x) – λμŜn(x),

where λμ =
∑r

j= λjμj and

r∑
i=

λiμieλit

 + eλit
Ŝn(x)

=
r∑
i=

λiμieλit




 + eλit
Ŝn(x)

=
r∑
i=

(
λiμieλit




 + eλit
–

∑r
j= μj

n∑
m=

S(n,m)e
∑r

j= λjμjt
r∏
j=

(


 + eλjt

)μj

xm
)

= –
∑r

j= μj
n∑

m=

S(n,m)
r∑
i=

(
λiμi


eλit+

∑r
j= λjμjt 

 + eλit

r∏
j=

(


 + eλjt

)μj

xm
)

= ––
∑r

j= μj
n∑

m=

S(n,m)
r∑
i=

λiμiEn
(
x + λ(μ + ei)|λ;μ + ei

)
.

So

Ŝn+(x) = (x + λμ)Ŝn(x – )

– ––
∑r

j= μj
n∑

m=

S(n,m)
r∑
i=

λiμiEn
(
x + λ(μ + ei) – |λ;μ + ei

)
. (.)

On the other hand, by Theorem , we have

g ′(t)
g(t)

Ŝn(x) =
r∑
i=

λiμieλit

 + eλit
Ŝn(x) – λμŜn(x) =

r∑
i=

λiμieλit




 + eλit
Ŝn(x) – λμŜn(x)

=
r∑
i=

λiμieλit




 + eλit

n∑
j=

( n∑
�=j

(
n
�

)
S(�, j)Ŝn–�

)
xj – λμŜn(x)

=
n∑
j=

( n∑
�=j

(
n
�

)
S(�, j)Ŝn–�

r∑
i=

λ
j+
i μi


Ej( + x/λi)

)
– λμŜn(x).

Therefore, by (.), we have the following result.

Theorem  For all n ≥ ,

Ŝn+(x) = (x + λμ)Ŝn(x – )

– ––
∑r

j= μj
n∑

m=

S(n,m)
r∑
i=

λiμiEn
(
x + λ(μ + ei) – |λ;μ + ei

)
,
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Ŝn+(x) = (x + λμ)Ŝn(x – ) –
n∑
j=

n∑
�=j

r∑
i=

λ
j+
i μi



(
n
�

)
S(�, j)Ŝn–�Ej

(
 + (x – )/λi

)
.

As a corollary, we get the following identity.

Corollary  For all n ≥ ,

––
∑r

j= μj
n∑

m=

S(n,m)
r∑
i=

λiμiEn
(
x + λ(μ + ei) – |λ;μ + ei

)
,

=
n∑
j=

n∑
�=j

r∑
i=

λ
j+
i μi



(
n
�

)
S(�, j)Ŝn–�Ej

(
 + (x – )/λi

)
.

Recall that for an(x) ∼ (g(t), f (t)), we have d
dxan(x) =

∑n–
�=

(n
�

)〈f̄ (t)|xn–�〉a�(x). Hence, in
the case (.), namely an(x) = Sn(x), we have

〈
f̄ (t)|xn–�

〉
=

〈
log( + t)|xn–�

〉
=

〈∑
m≥

(–)m–xm

m

∣∣∣xn–�

〉
= (–)n–�–(n – � – )!,

which implies d/dxSn(x) = n!
∑n–

�=
(–)n–�–

�!(n–�) S�(x). In the same way, we obtain the case Ŝn(x),
which leads to the following result.

Theorem  For all n ≥ ,

d
dx

Sn(x) = n!
n–∑
�=

(–)n–�–

�!(n – �)
S�(x) and

d
dx

Ŝn(x) = n!
n–∑
�=

(–)n–�–

�!(n – �)
Ŝ�(x).

Now we find another recurrence relation by using the derivative operator. For n≥ , by
(.) we have

Sn(y) =
〈∑
i≥

Si(y)
ti

i!

∣∣∣xn〉 =
〈 r∏

j=

(
 + ( + t)λj

)–μj ( + t)y
∣∣∣∣xn

〉

=

〈
d
dt

( r∏
j=

(
 + ( + t)λj

)–μj ( + t)y
)∣∣∣∣xn–

〉

=

〈
d
dt

r∏
j=

(
 + ( + t)λj

)–μj ( + t)y
∣∣∣∣xn–

〉

+

〈 r∏
j=

(
 + ( + t)λj

)–μj d
dt

( + t)y
∣∣∣∣xn–

〉

=

〈
d
dt

r∏
j=

(
 + ( + t)λj

)–μj ( + t)y
∣∣∣∣xn–

〉
+ ySn–(y – ).
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Observe that d
dt

∏r
j=( + ( + t)λj )–μj = –

∏r
j=( + ( + t)λj )μj

∑r
i= λiμi

(+t)λi–

+(+t)λi
. Thus,

〈
d
dt

r∏
j=

(
 + ( + t)λj

)μj ( + t)y
∣∣∣∣xn–

〉

= –
r∑
i=

λiμi

〈(
 + ( + t)λi

)– r∏
j=

(
 + ( + t)λj

)–μj ( + t)y+λi–
∣∣∣∣xn–

〉

= –
r∑
i=

λiμiSn–(y + λi – |λ;μ + ei).

Hence,

Sn(x) = xSn–(x – ) –
r∑
i=

λiμiSn–(x + λi – |λ;μ + ei). (.)

Also, for n≥ , by (.) we have

Ŝn(y) =
〈∑
i≥

Ŝi(y)
ti

i!

∣∣∣xn〉

=

〈 r∏
j=

(
( + t)λj

 + ( + t)λj

)μj

( + t)y
∣∣∣∣xn

〉

=

〈
d
dt

[ r∏
j=

(
( + t)λj

 + ( + t)λj

)μj

( + t)y
]∣∣∣∣xn–

〉

=

〈
d
dt

r∏
j=

(
( + t)λj

 + ( + t)λj

)μj

( + t)y
∣∣∣∣xn–

〉

+

〈 r∏
j=

(
( + t)λj

 + ( + t)λj

)μj d
dt

( + t)y
∣∣∣∣xn–

〉

=

〈
d
dt

r∏
j=

(
( + t)λj

 + ( + t)λj

)μj

( + t)y
∣∣∣∣xn–

〉
+ yŜn–(y – ).

Observe that d
dt

∏r
j=(

(+t)λj

+(+t)λj
)μj =

∏r
j=(

(+t)λj

+(+t)λj
)μj

∑r
i= λiμi( + t)–λi– (+t)λi

+(+t)λi
. So

〈
d
dt

r∏
j=

(
( + t)λj

 + ( + t)λj

)μj

( + t)y
∣∣∣∣xn–

〉

=
r∑
i=

λiμi

〈
( + t)λi

 + ( + t)λi

r∏
j=

(
( + t)λj

 + ( + t)λj

)μj

( + t)y–λi–
∣∣∣∣xn–

〉

=
r∑
i=

λiμiŜn–(y – λi – |λ;μ + ei).
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Thus,

Ŝn(x) = xŜn–(x – ) +
r∑
i=

λiμiŜn–(x – λi – |λ;μ + ei). (.)

Hence, by (.) and (.), we obtain the following result.

Theorem  For n ≥ ,

Sn(x) = xSn–(x – ) –
r∑
i=

λiμiSn–(x + λi – |λ;μ + ei),

Ŝn(x) = xŜn–(x – ) +
r∑
i=

λiμiŜn–(x – λi – |λ;μ + ei).

Another result that can be obtained is the following.

Theorem  For n –  ≥m ≥ ,

n–m∑
�=

(
n
�

)
S(n – �,m)S� =

n–m∑
�=

(
n – 

�

)
S(n –  – �,m – )S�(–)

–
n––m∑

�=

(
n – 

�

)
S(n –  – �,m)

r∑
i=

λiμiS�(λi – |λ;μ + ei),

n–m∑
�=

(
n
�

)
S(n – �,m)Ŝ� =

n–m∑
�=

(
n – 

�

)
S(n –  – �,m – )Ŝ�(–)

+
n––m∑

�=

(
n – 

�

)
S(n –  – �,m)

r∑
i=

λiμiŜ�(–λi – |λ;μ + ei).

Proof Because of the similarity in the two cases Sn(x) and Ŝn(x), we only give the proof
of the first identity. In order to prove the first identity, we compute the following in two
different ways:

A =

〈 r∏
j=

(
 + ( + t)λj

)–μj(log( + t)
)m∣∣∣∣xn

〉
.

On the one hand, it is equal to

A =

〈 r∏
j=

(
 + ( + t)λj

)–μj

∣∣∣∣(log( + t)
)mxn

〉

=

〈 r∏
j=

(
 + ( + t)λj

)–μj

∣∣∣∣m!
∑
�≥m

S(�,m)
t�

�!
xn

〉

=m!
n∑

�=m

S(�,m)
(
n
�

)〈 r∏
j=

(
 + ( + t)λj

)–μj

∣∣∣∣xn–�

〉
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=m!
n∑

�=m

S(�,m)
(
n
�

)
Sn–�

=m!
n–m∑
�=

S(n – �,m)
(
n
�

)
S�. (.)

On the other hand,

A =

〈
d
dt

[ r∏
j=

(
 + ( + t)λj

)–μj(log( + t)
)m]∣∣∣∣xn–

〉

=

〈
d
dt

r∏
j=

(
 + ( + t)λj

)–μj(log( + t)
)m∣∣∣∣xn–

〉

+

〈 r∏
j=

(
 + ( + t)λj

)–μj d
dt

(
log( + t)

)m∣∣∣∣xn–
〉
.

Here,

〈 r∏
j=

(
 + ( + t)λj

)–μj d
dt

(
log( + t)

)m∣∣∣∣xn–
〉

=m

〈 r∏
j=

(
 + ( + t)λj

)–μj ( + t)–
∣∣∣∣(log( + t)

)m–xn–
〉

=m!
n–∑

�=m–

S(�,m – )

〈 r∏
j=

(
 + ( + t)λj

)–μj ( + t)–
∣∣∣∣ t��!xn–

〉

=m!
n–m∑
�=

(
n – 

�

)
S(n –  – �,m – )

〈 r∏
j=

(
 + ( + t)λj

)–μj ( + t)–
∣∣∣∣x�

〉

=m!
n–m∑
�=

(
n – 

�

)
S(n –  – �,m – )S�(–)

and
〈
d
dt

r∏
j=

(
 + ( + t)λj

)–μj(log( + t)
)m∣∣∣∣xn–

〉

= –
r∑
i=

λiμi

〈(
 + ( + t)λi

)– r∏
j=

(
 + ( + t)λj

)–μj ( + t)λi–
∣∣∣∣(log( + t)

)mxn–
〉

= –
r∑
i=

λiμi

〈(
 + ( + t)λi

)– r∏
j=

(
 + ( + t)λj

)–μj ( + t)λi–
∣∣∣∣m!

∑
�≥m

S(�,m)
t�

�!
xn–

〉

= –m!
r∑
i=

n–∑
�=m

λiμi

(
n – 

�

)
S(�,m)

×
〈(
 + ( + t)λi

)– r∏
j=

(
 + ( + t)λj

)–μj ( + t)λi–
∣∣∣∣xn––�

〉
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= –m!
r∑
i=

n––m∑
�=

λiμi

(
n – 

�

)
S(n –  – �,m)

×
〈(
 + ( + t)λi

)– r∏
j=

(
 + ( + t)λj

)–μj ( + t)λi–
∣∣∣∣x�

〉

= –m!
r∑
i=

n––m∑
�=

λiμi

(
n – 

�

)
S(n –  – �,m)S�(λi – |λ;μ + ei).

Altogether, we have, for n –  ≥m ≥ ,

m!
n–m∑
�=

(
n
�

)
S(n – �,m)S�

=m!
n–m∑
�=

(
n – 

�

)
S(n –  – �,m – )S�(–)

–m!
r∑
i=

n––m∑
�=

λiμi

(
n – 

�

)
S(n –  – �,m)S�(λi – |λ;μ + ei).

By dividing bym!, we complete the proof. �

4 Identities
Let Sn(x) =

∑n
m= cn,m(x)m and Ŝn(x) =

∑n
m= ĉn,m(x)m. By (.), (.) and (.), we obtain

cn,m =

m!

〈 r∏
j=

(
 + ( + t)λj

)–μj

∣∣∣∣tmxn
〉

=
(
n
m

)〈 r∏
j=

(
 + ( + t)λj

)–μj

∣∣∣∣xn–m
〉

=
(
n
m

)
Sn–m,

and by (.), (.) and (.), we obtain

ĉn,m =

m!

〈 r∏
j=

(
( + t)λj

 + ( + t)λj

)μj
∣∣∣∣tmxn

〉

=
(
n
m

)〈 r∏
j=

(
( + t)λj

 + ( + t)λj

)μj
∣∣∣∣xn–m

〉

=
(
n
m

)
Ŝn–m.

Hence, we have the following identities.

Theorem  For all n ≥ ,

Sn(x) =
n∑

m=

Sn–m
(
n
m

)
(x)m and Ŝn(x) =

n∑
m=

Ŝn–m
(
n
m

)
(x)m.
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Now, let Sn(x) =
∑n

m= cn,mH
(s)
m (x|α) and Ŝn(x) =

∑n
m= ĉn,mH

(s)
m (x|α), where H (s)

n (x|α) ∼
(( et–α

–α
)s, t), with α �= . Then, by (.), (.) and (.), we obtain

cn,m =

m!

〈(
elog(+t) – α

 – α

)s r∏
j=

(
 + ( + t)λj

)–μj(log( + t)
)m∣∣∣∣xn

〉

=


m!( – α)s

〈 r∏
j=

(
 + ( + t)λj

)–μj(log( + t)
)m( – α + t)s

∣∣∣∣xn
〉

=


m!( – α)s

〈 r∏
j=

(
 + ( + t)λj

)–μj(log( + t)
)m∣∣∣∣

min{s,n}∑
j=

(
s
j

)
( – α)tjxn

〉

=


m!( – α)s

n–m∑
j=

(
s
j

)
( – α)s–j(n)j

〈 r∏
j=

(
 + ( + t)λj

)–μj(log( + t)
)m∣∣∣∣xn–j

〉
,

and by Theorem , we have

cn,m =


m!( – α)s

n–m∑
j=

(
s
j

)
( – α)s–j(n)j

(
m!

n–j–m∑
�=

(
n – j

�

)
S(n – j – �,m)S�

)

=
n–m∑
j=

n–m–j∑
�=

(
s
j

)(
n – j

�

)
( – α)–j(n)jS(n – j – �,m)S�.

By (.), (.) and (.), we obtain

ĉn,m =

m!

〈(
elog(+t) – α

 – α

)s r∏
j=

(
( + t)λj

 + ( + t)λj

)μj(
log( + t)

)m∣∣∣∣xn
〉

=


m!( – α)s

〈 r∏
j=

(
( + t)λj

 + ( + t)λj

)μj(
log( + t)

)m∣∣∣∣( – α + t)sxn
〉

=


m!( – α)s

n–m∑
j=

(
s
j

)
( – α)s–j(n)j

〈 r∏
j=

(
( + t)λj

 + ( + t)λj

)μj(
log( + t)

)m∣∣∣∣xn–j
〉
,

and by Theorem , we have

ĉn,m =


m!( – α)s

n–m∑
j=

(
s
j

)
( – α)s–j(n)j

(
m!

n–j–m∑
�=

(
n – j

�

)
S(n – j – �,m)Ŝ�

)

=
n–m∑
j=

n–m–j∑
�=

(
s
j

)(
n – j

�

)
( – α)–j(n)jS(n – j – �,m)Ŝ�.

Therefore, we can state the following result.

Theorem  For all n ≥ ,

Sn(x) =
n∑

m=

(n–m∑
j=

n–m–j∑
�=

(
s
j

)(
n – j

�

)
( – α)–j(n)jS(n – j – �,m)S�

)
H (s)

m (x|α),
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Ŝn(x) =
n∑

m=

(n–m∑
j=

n–m–j∑
�=

(
s
j

)(
n – j

�

)
( – α)–j(n)jS(n – j – �,m)Ŝ�

)
H (s)

m (x|α).

Finally, we express our polynomials Sn(x) and Ŝn(x) in terms of Bernoulli polynomi-
als of order s. Let Sn(x) =

∑n
m= cn,mB

(s)
m (x) and Ŝn(x) =

∑n
m= ĉn,mB

(s)
m (x), where B(s)

n (x) ∼
(( et–t )s, t). Then, by (.), (.) and (.), we obtain

cn,m =

m!

〈(
elog(+t) – 
log( + t)

)s r∏
j=

(
 + ( + t)λj

)–μj(log( + t)
)m∣∣∣∣xn

〉

=

m!

〈 r∏
j=

(
 + ( + t)λj

)–μj(log( + t)
)m∣∣∣∣

(
t

log( + t)

)s

xn
〉
,

and by the fact that ( t
log(+t) )

s =
∑

n≥C
(s)
n

tn
n! , where C

(s)
n is the Cauchy number of the first

kind of order s, we derive

cn,m =

m!

n–m∑
i=

(
n
i

)
C(s)
i

〈 r∏
j=

(
 + ( + t)λj

)–μj(log( + t)
)m∣∣∣∣xn–i

〉
,

and by Theorem , we obtain

cn,m =

m!

n–m∑
i=

(
n
i

)
C(s)
i

(
m!

n–i–m∑
�=

(
n – i

�

)
S(n – i – �,m)S�

)

=
n–m∑
i=

n–i–m∑
�=

(
n
i

)(
n – i

�

)
C(s)
i S(n – i – �,m)S�.

Also, by (.), (.) and (.), we obtain

ĉn,m =

m!

〈(
elog(+t) – 
log( + t)

)s r∏
j=

(
( + t)λj

 + ( + t)λj

)μj(
log( + t)

)m∣∣∣∣xn
〉

=

m!

〈 r∏
j=

(
( + t)λj

 + ( + t)λj

)μj(
log( + t)

)m∣∣∣∣
(

t
log( + t)

)s

xn
〉

=

m!

n–m∑
i=

(
n
i

)
C(s)
i

〈 r∏
j=

(
( + t)λj

 + ( + t)λj

)μj(
log( + t)

)m∣∣∣∣xn–i
〉
,

and by Theorem , we obtain

cn,m =

m!

n–m∑
i=

(
n
i

)
C(s)
i

(
m!

n–i–m∑
�=

(
n – i

�

)
S(n – i – �,m)Ŝ�

)

=
n–m∑
i=

n–i–m∑
�=

(
n
i

)(
n – i

�

)
C(s)
i S(n – i – �,m)Ŝ�.

Hence, we have the following identities.
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Theorem  For all n ≥ ,

Sn(x) =
n∑

m=

(n–m∑
j=

n–m–j∑
�=

(
n
j

)(
n – j

�

)
C(s)
j S(n – j – �,m)S�

)
B(s)
m (x),

Ŝn(x) =
n∑

m=

(n–m∑
j=

n–m–j∑
�=

(
n
j

)(
n – j

�

)
C(s)
j S(n – j – �,m)Ŝ�

)
B(s)
m (x).
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