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Abstract
Let R = (–∞,∞), and let Q ∈ C1(R) :R → R

+ := [0,∞) be an even function. We
consider the exponential-type weights w(x) = e–Q(x), x ∈R. In this paper, we obtain a
mean and uniform convergence theorem for the Lagrange interpolation polynomials
Ln(f ) in Lp, 1 < p ≤ ∞ with the weight w.
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1 Introduction and preliminaries
Let R = (–∞,∞), and let Q ∈ C(R) : R → R

+ := [,∞) be an even function, and w(x) =
exp(–Q(x)) be the weight such that

∫ ∞
 xnw(x)dx < ∞ for all n = , , , . . . . Then we can

construct the orthonormal polynomials pn(x) = pn(w;x) of degree nwith respect tow(x).
That is,

∫ ∞

–∞
pn(x)pm(x)w(x)dx = δmn (Kronecker’s delta)

and

pn(x) = γnxn + · · · , γn > .

We denote the zeros of pn(x) by

–∞ < xn,n < xn–,n < · · · < x,n < x,n <∞.

We denote the Lagrange interpolation polynomial Ln(f ;x) based at the zeros {xk,n}nk= as
follows:

Ln(f ;x) :=
n∑
k=

f (xk,n)lk,n(x), lk,n(x) :=
pn(x)

(x – xk,n)p′
n(xk,n)

.

A function f :R+ →R
+ is said to be quasi-increasing if there exists C >  such that f (x)≤

Cf (y) for  < x < y.
We are interested in the following subclass of weights from [].
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Definition . Let Q :R →R
+ be an even function satisfying the following properties:

(a) Q′(x) is continuous in R, with Q() = .
(b) Q′′(x) exists and is positive in R\{}.
(c) limx→∞ Q(x) = ∞.
(d) The function

T(x) :=
xQ′(x)
Q(x)

, x �= 

is quasi-increasing in (,∞) with

T(x)≥ � > , x ∈R
+\{}.

(e) There exists C >  such that

Q′′(x)
|Q′(x)| ≤ C

|Q′(x)|
Q(x)

, a.e. x ∈R\{}.

Then we write w(x) = exp(–Q(x)) ∈F (C). If there also exist a compact subinterval J (	 )
of R and C >  such that

Q′′(x)
|Q′(x)| ≥ C

|Q′(x)|
Q(x)

, a.e. x ∈R\J ,

then we write w(x) = exp(–Q(x)) ∈F (C+).

Example . () If T(x) is bounded, then the weight w = exp(–Q) is called the Freud-type
weight. The following example is the Freud-type weight:

Q(x) = |x|α , α > .

If T(x) is unbounded, then the weight w = exp(–Q) is called the Erdős-type weight. The
following examples give the Erdős-type weights w = exp(–Q).
() [, Theorem .] For α > , l = , , , . . .

Q(x) =Ql,α(x) = expl
(|x|α)

– expl(),

where

expl(x) = exp
(
exp(exp · · · expx) · · · ) (l-times).

More generally, we define for α + u > , α ≥ , u≥  and l ≥ ,

Ql,α,u(x) := |x|u(expl(|x|α)
– α* expl()

)
,

where α* =  if α = , otherwise α* = . (We note that Ql,,u(x) gives a Freud-type weight.)
() We define Qα(x) := ( + |x|)|x|α – , α > .

http://www.journalofinequalitiesandapplications.com/content/2012/1/237
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In this paper, we investigate the convergence of the Lagrange interpolation polynomials
with respect to the weight w ∈ F (C+). When we consider the Erdős-type weights, the
following definition follows from Damelin and Lubinsky [].

Definition . Let w(x) = exp(–Q(x)), whereQ :R→R is even and continuous.Q′′ exists
in (,∞), Q(j) ≥ , in (,∞), j = , , , and the function

T *(x) :=  +
xQ′′(x)
Q′(x)

is increasing in (,∞) with

lim
x→∞T *(x) = ∞; T *(+) := lim

x→+
T *(x) > . (.)

Moreover, we assume that for some constants C,C,C > ,

C ≤ T *(x)
/(

xQ′(x)
Q(x)

)
≤ C, x≥ C,

and for every ε > ,

T *(x) =O
(
Q(x)ε

)
, x→ ∞. (.)

Then we write w ∈ E .

Damelin and Lubinsky [] got the following results with the Erdős-type weights w =
exp(–Q) ∈ E .

Theorem A ([, Theorem .]) Let w = exp(–Q) ∈ E . Let Ln(f ,x) denote the Lagrange in-
terpolation polynomial to f at the zeros of pn(w,x). Let  < p < ∞, � ∈ R, κ > . Then
for

lim
n→∞

∥∥(
f – Ln(f )

)
w( +Q)–�

∥∥
Lp(R)

= 

to hold for every continuous function f :R →R satisfying

lim|x|→∞
∣∣f (x)w(x)(log |x|)+κ ∣∣ = ,

it is necessary and sufficient that

� >max

{
,




(


–

p

)}
.

Our main purpose in this paper is to give mean and uniform convergence theorems
with respect to {Ln(f )}, n = , , . . . , in Lp-norm,  < p ≤ ∞. The proof for  < p < ∞ will
be shown by use of the method of Damelin and Lubinsky. In Section , we write the main
theorems. In Section , we prepare some fundamental lemmas; and in Section , we will
prove the theorem for  < p < ∞. Finally, we will prove the theorem for the uniform con-
vergence in Section .

http://www.journalofinequalitiesandapplications.com/content/2012/1/237
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For any nonzero real-valued functions f (x) and g(x), we write f (x) ∼ g(x) if there exist
constants C,C >  independent of x such that Cg(x) ≤ f (x) ≤ Cg(x) for all x. Similarly,
for any two sequences of positive numbers {cn}∞n= and {dn}∞=, we define cn ∼ dn.We denote
the class of polynomials of degree at most n by Pn.
Throughout C,C,C, . . . denote positive constants independent of n, x, t, and polyno-

mials of degree atmost n. The same symbol does not necessarily denote the same constant
in different occurrences.

2 Theorems
In the following, we introduce useful notations. Mhaskar-Rakhmanov-Saff numbers
(MRS) ax are defined as the positive roots of the following equations:

x =

π

∫ 



axuQ′(axu)
( – u) 

du, x > .

The function ϕu(x) is defined as follows:

ϕu(x) =

⎧⎪⎨
⎪⎩

au
u

– |x|
au√

– |x|
au +δu

, |x| ≤ au,

ϕu(au), au < |x|,

where

δx =
(
xT(ax)

)– 
 , x > .

We define

�(x) :=


( +Q(x)) T(x)

and

�n(x) :=max

{
δn,  –

|x|
an

}
.

Here we note that for  < d ≤ |x|,

�(x)∼ Q(x) 
xQ′(x)

and we see

�(x)≤ C�n(x), n ≥ 

(see Lemma . below). Moreover, we define

�
(  –


p )

+
(x) :=

⎧⎨
⎩,  < p < ,

�

 –


p (x), ≤ p ≤ ∞.

http://www.journalofinequalitiesandapplications.com/content/2012/1/237
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Let  < p < ∞. We give a convergence theorem as an analogy of Theorem A for Ln(f ) in
Lp-norm. We need to prepare a lemma.

Lemma . ([, Theorem .]) Let w = exp(–Q) ∈F (C+).
(a) Let T(x) be unbounded. Then for any η > , there exists a constant C(η) >  such that

for t ≥ ,

at ≤ C(η)tη.

(b) Assume

Q′′(x)
Q′(x)

≤ λ(b)
Q′(x)
Q(x)

, |x| ≥ b > , (.)

where b >  is large enough. Suppose that there exist constants η >  and C >  such that
at ≤ Ctη . If λ := λ(b) > , then there exists a constant C(λ,η) such that for at ≥ ,

T(at) ≤ C(λ,η)t
(η+λ–)

λ+ . (.)

If  < λ ≤ , then for any μ > , there exists C(λ,μ) such that

T(at) ≤ C(λ,μ)tμ, t ≥ . (.)

For a fixed constant β > , we define

φ(x) :=
(
 + x

)–β/. (.)

Using this function, we have the following theorem. We suppose that the weight w is the
Erdős-type weight.
Our theorem is as follows. Let f ∈ C(R) mean that f ∈ C(R) and lim|x|→∞ f (x) = .

Theorem . Let w = exp(–Q) ∈ F (C+), and let T(x) be unbounded. Let  < p < ∞ and
β > , and let us define φ as (.), and λ = λ(b)≥  as (.).We suppose that for f ∈ C(R),

φ–(x)w(x)f (x) ∈ C(R),

and

� >



λ – 
λ – 

. (.)

Then we have

lim
n→∞

∥∥(
f – Ln(f )

)
w�

�+(  –

p )

+∥∥
Lp(R)

= .

We remark that if w ∈F (C+) is the Erdős-type weight, then we have λ = λ(b)≥  in (.).
In fact, if λ < , then by Lemma . below, we see that for x ≥ b > ,

T(x) =
xQ′(x)
Q(x)

≤ x
Q(x)

Q′(b)
(
Q(x)
Q(b)

)λ

=
Q′(b)
Q(b)λ

x
Q(x)–λ

→  as x → ∞.

http://www.journalofinequalitiesandapplications.com/content/2012/1/237
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This contradicts our assumption for T(x). In Example ., we consider the weight wl,α,m =
exp(–Ql,α,m). In (.), we setQ :=Ql,α,m and λ := λ(b). If wl,α,m is an Erdős-type weight, that
is, T(x) := Tl,α,m(x) is unbounded, then it is easy to show

lim
b→∞

λ(b) = .

Therefore, when we give any � > , there exists a constant b large enough such that

� >



λ(b) – 
λ(b) – 

.

Hence, we have the following corollary.

Corollary . Let  < p < ∞ and � > . Then for the weight wl,α,m = exp(–Ql,α,m) (α > ),
we have

lim
n→∞

∥∥(
f – Ln(f )

)
wl,α,m�

�+(  –

p )

+∥∥
Lp(R)

= .

We also consider the case of p = ∞.

Theorem . Let w = exp(–Q) ∈F (C+), and let T(x) be unbounded. For every f ∈ C(R)
and n≥ , we have

∥∥(
f – Ln(f )

)
w�/∥∥

L∞(R) ≤ CEn–(w; f ) logn,

where

Em(w; f ) = inf
Pm∈Pm

max
x∈R

∣∣(f (x) – Pm(x)
)
w(x)

∣∣, m = , , , . . . .

Moreover, if f (r), r ≥ , is an integer, then for n > r +  we have

∥∥(
f – Ln(f )

)
w�/∥∥

L∞(R) ≤ C
(
an
n

)r

En–r–
(
w; f (r)

)
logn.

3 Fundamental lemmas
To prove the theorems we need some lemmas.

Lemma . Let w = exp(–Q) ∈F (C+). Then we have the following.
(a) [, Lemma .(a), (b)] Given fixed  < α, α �= , we have uniformly for t > ,

∣∣∣∣ – aαt

at

∣∣∣∣ ∼ 
T(at)

,

and we have for t > ,
∣∣∣∣ – at

as

∣∣∣∣ ∼ 
T(at)

∣∣∣∣ – t
s

∣∣∣∣, 


≤ t
s

≤ .

(b) [, Lemma . (.)] For some  < ε ≤ , and for large enough t,

T(at) ≤ t–ε .

http://www.journalofinequalitiesandapplications.com/content/2012/1/237
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Lemma . Let w = exp(–Q) ∈F (C+). Then we have the following.
(a) [, Lemma .(a), (b)] Let L >  be a fixed constant. Uniformly for t > ,

Q(aLt) ∼Q(at) and Q′(aLt) ∼Q′(at).

Moreover,

aLt ∼ at and T(aLt) ∼ T(at).

(b) [, Lemma . (.), (.)] Uniformly for x >  with at := x, t > , we have

Q′(x)∼ t
√
T(x)
at

and Q(x)∼ t√
T(x)

.

(c) [, Lemma .(a)] For x ∈ [,at),

Q′(x)≤ C
t
at

√
 – x

at

.

Lemma . Let w = exp(–Q) ∈F (C+). For x ∈R, we have

�(x)≤ C�n(x), n ≥ .

Proof Let x = au, u≥ . By Lemma .(b), we have

u∼Q(au)
√
T(au).

So, we have

δ–u ∼Q

 (au)T(au) =

auQ′(au)
Q 

 (au)
=
xQ′(x)
Q 

 (x)
. (.)

Now, if u≤ n
 , then we have

 –
au
an

≥  –
an/
an

∼ 
T(an)

(
by Lemma .(a)

)

≥ 
(nT(an))



= δn

(
by Lemma .(b)

)
.

So, we have

�n(x) =  –
au
an

≥  –
au
au

∼ 
T(au)

(
by Lemma .(a)

)

≥ 
(uT(au))



= δu ∼ �(x)

(
by Lemma .(b) and (.)

)
.

Let n
 < u < n. Then we have

�n(x)≥ δn ∼ δu ∼ �(x)
(
by Lemma .(a), (b) and (.)

)
. �

http://www.journalofinequalitiesandapplications.com/content/2012/1/237
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Lemma . Let w ∈F (C+). Then we have the following.
(a) [, Theorem .(f )] For the minimum positive zero x[n/],n,

x[n/],n ∼ an
n
,

and for the maximum zero x,n,

 –
x,n
an

∼ δn.

(b) [, Theorem .(e)] For n≥  and  ≤ j ≤ n – ,

xj,n – xj+,n ∼ ϕn(xj,n).

(c) [, p., (.)] Uniformly for n≥ ,  ≤ k ≤ n – ,

ϕn(xk,n) ∼ ϕn(xk+,n).

(d) Let max{|xk,n|, |xk+,n|} ≤ aαn,  < α < . Then we have

w(xk,n)∼ w(xk+,n) ∼ w(x) (xk+,n ≤ x ≤ xk,n).

So, for given C >  and |x| ≤ aβn,  < β < α, if |x – xk,n| ≤ Cϕn(x), then we have

w(x)∼ w(xk,n).

Proof (d) Let max{|xk,n|, |xk+,n|} = |xk,n| (for the case of max{|xk,n|, |xk+,n|} = |xk+,n|, we
also have the result similarly). By (b) there exists a constant C >  such that

|xk,n – xk+,n| ≤ Cϕn(xk,n).

Then we see

ϕn(xk,n) ∼ an
n

 – |xk,n|
an√

 – |xk,n|
an

=
an
n
 – |xk,n|

an + |xk,n|{ 
an –


an

}√
 – |xk,n|

an

=
an
n

 – |xk,n|
an + |xk,n|

an ( – an
an

)√
 – |xk,n|

an

∼ an
n
 – |xk,n|

an +C |xk,n|
an


T(an)√

 – |xk,n|
an

∼ an
n

√
 –

|xk,n|
an

. (.)

Therefore, from (.) and Lemma .(c), we have

∣∣Q(xk,n) –Q(xk+,n)
∣∣ = ∣∣Q′(ξ )(xk,n – xk+,n)

∣∣ ≤ C
∣∣Q′(ξ )

∣∣ϕn(x) (xk+,n ≤ ξ ≤ xk,n)

≤ C
∣∣Q′(xk,n)

∣∣an
n

√
 –

|xk,n|
an

≤ C
n
an

√
 – |xk,n|

an

an
n

√
 –

|xk,n|
an

≤ C.

http://www.journalofinequalitiesandapplications.com/content/2012/1/237
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Consequently,

w(xk,n)∼ w(xk+,n) ∼ w(x) (xk+,n ≤ x ≤ xk,n).

Let |x– xk,n| ≤ Cϕn(x) and |x| ≤ aβn. Then we see that there exists n >  such that |xk,n| ≤
aαn, n≥ n. In fact, we can show it as follows. We use Lemma .(a) and (b). For |x| ≤ aβn,
we see

|xk,n| ≤ |x| +Cϕn(x)≤ |x| +C
an
n

√
 –

|x|
an

,

and if we take n large enough, then we have

d
dt

(
t +C

an
n

√
 –

t
an

)
=  –C


n




√
 – t

an

≥  –C

n




√
 – an/

an

≥  –C
√
T(an)
n

≥  –C


nε/ > ,

that is, g(t) = t +C an
n

√
 – t

an is increasing. So, we see

|xk,n| ≤ aβn +C
an
n

√
 –

aβn

an
≤ aβn +C

an
n

√
T(an)

.

Therefore, we have

aαn –
(
aβn +C

an
n

√
T(an)

)
∼ an

T(an)
–C

an
n

√
T(an)

=
an

T(an)

(
 –C

√
T(an)
n

)
≥ an

T(an)

(
 –C


nε/

)
> .

Now, we can show (d). Without loss of generality, we may assume x ∈ [xj+,n,xj,n] ⊂
{xk,n||x – xk,n| ≤ Cϕn(x)}. We define

xk,n :=min
{
xk,n||x – xk,n| ≤ Cϕn(x)

}
, xk,n :=max

{
xk,n||x – xk,n| ≤ Cϕn(x)

}
.

Here we note that k, k are decided depending only on the constant C. Then by former
result, we have

w(xk,n)∼ w(xk,n) ∼ w(x) (xk,n ≤ x≤ xk,n). �

Lemma . Let w = exp(–Q) ∈F (C+). Then we have the following.
(a) [, Theorem .] Uniformly for n≥ ,

sup
x∈R

∣∣pn(x)∣∣w(x)∣∣x – an
∣∣ 
 ∼ .

(b) [, Theorem .(a)] Uniformly for n≥  and  ≤ j ≤ n,

∣∣(p′
nw

)
(xj,n)

∣∣ ∼ ϕ–
n (xj,n)a

– 


n

(
 –

|xj,n|
an

)– 

.

http://www.journalofinequalitiesandapplications.com/content/2012/1/237
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(c) [, Theorem .(d)] For x ∈ [xk+,n,xk,n], if k ≤ n – ,

∣∣pn(x)w(x)∣∣ ∼min
{|x – xk,n|, |x – xk+,n|

}
a/n ϕn(x)–

(
 –

|xk,n|
an

)–/

.

Lemma . (cf. [, Theorem .]) Let w ∈F (C+) and  < p ≤ ∞. Then uniformly n≥ ,

∥∥�
(  –


p )

+
pnw

∥∥
Lp(R)

≤ Ca

p–




n

⎧⎨
⎩,  < p <  or p = ∞;

log( + n),  ≤ p,

where x+ =  if x≤ , x+ = x if x > .

Proof FromLemma.,we know�(x)≤ �n(x), then in [, Theorem.]we only exchange
�n with �. �

Let f ∈ Lp,w(R). The Fourier-type series of f is defined by

f̃ (x) :=
∞∑
k=

ak
(
w, f

)
pk

(
w,x

)
, ak

(
w, f

)
:=

∫ ∞

–∞
f (t)pk

(
w, t

)
w(t)dt.

We denote the partial sum of f̃ (x) by

sn(f ,x) := sn
(
w, f ,x

)
:=

n–∑
k=

ak
(
w, f

)
pk

(
w,x

)
.

The partial sum sn(f ) admits the representation

sn(f ,x) =
n–∑
j=

ajpj(x) =
∫ ∞

–∞
f (t)Kn(x, t)w(t)dt,

where

Kn(x, t) :=
n–∑
j=

pj(x)pj(t).

The Christoffel-Darboux formula

Kn(x, t) =
γn–

γn

pn(x)pn–(t) – pn–(x)pn(t)
x – t

(.)

is well known (see [, Theorem ..]).

Lemma . ([, Lemma ..]) Let  < p < ∞ and g ∈ Lp(R). Then for the Hilbert trans-
form

H(g,x) := lim
ε→+

∫
|x–t|≥ε

g(t)
x – t

dt, x ∈R, (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/237
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we have

∥∥H(g)
∥∥
Lp(R)

≤ C‖g‖Lp(R),

where C >  is a constant depending upon p only.

Lemma . (see [, Theorem ., Theorem .]) Let w = exp(–Q) ∈ F (C),  ≤ p ≤ ∞
and γ ≥ . Then for any ε > , there exists a polynomial P such that

∥∥(
f (x) – P(x)

)(
 + x

)γw(x)
∥∥
Lp(R)

< ε.

Lemma . Let w ∈F (C+) be an Erdős-type weight, that is, T(x) is unbounded. Then for
any M > , there exist xM >  and CM >  such that

Q(x)≥ CMxM, x≥ xM.

Proof For every M > , there exists xM >  such that T(x) ≥ M for x ≥ xM , so that
Q′(x)/Q(x) = T(x)/x≥ M/x for x≥ xM . Hence, we see

log
Q(x)
Q(xM)

≥ log

(
x
xM

)M

, x≥ xM,

that is,

Q(x)≥ Q(xM)
(xM)M

xM, x≥ xM.

Let us put CM :=Q(xM)/(xM)M . �

4 Proof of Theorem 2.2 by Damelin and Lubinskymethods
In this section, we assume w ∈F (C+). To prove the theorem we need some lemmas, and
we will use the Damelin and Lubinsky methods of [].

Lemma . (cf. [, Lemma .]) Let w ∈F (C+). Let  < α < 
 and

∑
n
(x) :=

∑
|xk,n|≥aαn

∣∣lk,n(x)∣∣w–(xk,n).

Then we have for |x| ≤ aαn/ and |x| ≥ an,

∑
n
(x)w(x)≤ C.

Moreover, for aαn/ ≤ |x| ≤ an,

∑
n
(x)w(x)≤ C

(
logn + a



n
∣∣pn(x)w(x)∣∣T– 

 (an)
)
.
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Proof The proof of [, Lemma .] holds without the condition (.) and the second condi-
tion in (.) and under the assumption of the quasi-increasingness of T(x). The conditions
in Definition . contain all the conditions in Definition . except for (.) and the second
condition in (.). We see that in [, Lemma .] we can replace T *(x) with T(x). �

Lemma . ([, Lemma .]) Let  < η < . Let ψ : R �→ (,∞) be a continuous function
with the following property: For n ≥ , there exist polynomials Rn of degree ≤ n such that

C ≤ ψ(t)
Rn(t)

≤ C, |t| ≤ an.

Then for n≥ n and P ∈Pn,

∑
|xk,n|≤aηn

λk,n
∣∣P(xk,n)∣∣w–(xk,n)ψ(xk,n) ≤ C

∫ an

–an

∣∣P(t)w(t)∣∣ψ(t)dt.

Remark . To prove Lemma . below, we apply this lemma with ψ(t) = φ(t) = ( +
t)–β/, β > . In fact, when φ*(x) = φ(t), t = anx, we can approximate φ* by polynomials
R*
n ∈Pn on [–, ], that is, for any ε >  there exists R*

n ∈Pn such that

∣∣φ*(x) – R*
n(x)

∣∣ < ε, x ∈ [–, ].

Therefore,

∣∣∣∣R*
n(x)

φ*(x)
– 

∣∣∣∣ < ε

φ*(x)
, x ∈ [–, ],

and so there exist C,C >  such that

C ≤  –
ε

φ*(x)
≤

∣∣∣∣R*
n(x)

φ*(x)

∣∣∣∣ <  +
ε

φ*(x)
≤ C, x ∈ [–, ].

Now, if we set Rn(t) = R*
n(x), then we have the result.

Lemma . (cf. [, Lemma .]) Let {fn}∞n= be a sequence of measurable functions from
R �→R such that for n≥ ,

fn(x) = , |x| < an

;

∣∣fn(x)∣∣w(x) ≤ φ(x), x ∈R.

Then for  ≤ p ≤ ∞ and � > , we have

lim
n→∞

∥∥Ln(fn)w�
�+(  –


p )

+∥∥
Lp(R)

= . (.)

Proof Let |x| ≤ a n

or |x| ≥ an. We use the first inequality of Lemma . with α = 

 , then
from the assumption with respect to fn, we see that

∣∣Ln(fn;x)w(x)∣∣ ≤ φ(an

)

∑
|xk,n|≥a n



∣∣lk,n(x)∣∣w–(xk,n)w(x) ≤ Cφ(an

).
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So,

∥∥Ln(fn)w�
�+(  –


p )

+∥∥
Lp(|x|≤a n


or |x|≥an)

≤ φ(an

)
∥∥�

�+(  –

p )

+∥∥
Lp(R)

≤ Cφ(an

) = o() (.)

by Lemma . (note the definition of �(x)) and the definition of φ in (.). Next, we let
a n


≤ |x| ≤ an. From the second inequality in Lemma ., we see that

∣∣Ln(fn;x)w(x)∣∣ ≤ φ(an

)
(
logn + a



n
∣∣pn(x)∣∣w(x)T– 

 (an)
)
.

Also, for this range of x, we see that

�(x) =


( +Q(x)) T(x)
∼ 

( +Q(an))

T(an)

∼ T 
 (an)

n 
T(an)

= δn

by Lemma .(b). So, for n large enough,

∥∥Ln(fn)w�
�+(  –


p )

+∥∥
Lp(a n


≤|x|≤an)

≤ φ(an

) logn

∥∥�
�+(  –


p )

+∥∥
Lp(a n


≤|x|≤an)

+ φ(an

)a



n T– 

 (an)
∥∥pn(x)w(x)��+(  –


p )

+∥∥
Lp(a n


≤|x|≤an)

.

Then since � > , using Lemma .(a), Lemma .(a), and Lemma ., we have

logn
∥∥�

�+(  –

p )

+∥∥
Lp(a n


≤|x|≤an)

≤ Cδ�
n (an – a n


)

p logn≤ C

and

a


n T– 

 (an)
∥∥pnw�

�+(  –

p )

+∥∥
Lp(a n


≤|x|≤an)

≤ T– 
 (an)δ�

n a

p
n

⎧⎨
⎩,  ≤ p <  or p = ∞;

log( + n), ≤ p,
≤ C.

Therefore, we have by (.)

∥∥Ln(fn)w�
�+(  –


p )

+∥∥
Lp(a n


≤|x|≤an)

≤ Cφ(an

) = o().

Consequently, with (.) we have (.). �

Lemma . (cf. [, Lemma .]) Let  ≤ p ≤ ∞. Let {gn}∞n= be a sequence of measurable
functions from R �→R such that for n≥ ,

gn(x) = , |x| ≥ an

;

∣∣gn(x)∣∣w(x)≤ φ(x), x ∈R. (.)
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Let us suppose

� >



λ – 
λ – 

, (.)

where λ ≥  is defined in Lemma .. Then for  ≤ p≤ ∞, we have

lim
n→∞

∥∥Ln(gn)w�
�+(  –


p )

+∥∥
Lp(|x|≥a n


) = . (.)

Proof Using Lemma .(b) and Lemma .(b), we have for x≥ an

,

∣∣Ln(gn;x)∣∣ ≤
∑

|xk,n|≤a n


∣∣lk,n(x)∣∣w–(xk,n)φ(xk,n)

≤ Ca


n
∣∣pn(x)∣∣ ∑

|xk,n|≤a n


(xk,n – xk+,n)
( – |xk,n|

an + δn)



|x – xk,n| φ(xk,n)

≤ Ca


n
∣∣pn(x)∣∣

∫ a n


–a n


( – |t|
an + δn)




|x – t| φ(t)dt. (.)

Equation (.) is shown as follows: First, we see

|x – t| ∼ |x – xk,n|, t ∈ [xk+,n,xk,n]. (.)

Let |x| ≥ an

and t ∈ [xk+,n,xk,n]. Then

∣∣∣∣ x – t
x – xk,n

– 
∣∣∣∣ =

∣∣∣∣ t – xk,n
x – xk,n

∣∣∣∣ ≤ xk,n – xk+,n
|xk±,n – xk,n| ≤ c < .

Now, we use the fact that x +Cϕ(x), x >  is increasing for  < x ≤ an/, and then

xk,n +Cϕn(xk,n) ≤ an

+Cϕn(an


) ≤ an


≤ x.

Here, the second inequality follows from the definition of ϕn(x) and Lemma .(a), (b).
Hence, we have (.). Now, we use the monotonicity of ( – |x|

an + δn)

 φ(x). From (.)

there exists C >  such that for t ∈ [xk+,n,xk,n],

(xk,n – xk+,n)
( – |xk,n|

an + δn)



|x – xk,n| φ(xk,n) ≤
∫ xk,n

xk+,n

( – |t|
an + δn)




|x – xk,n| φ(t)dt

≤ 
C

∫ xk,n

xk+,n

( – |t|
an + δn)




|x – t| φ(t)dt.

Hence, (.) holds. Next, for t ∈ [,an

] and x ≥ an


, we know by Lemma .(a),

 ≤ an – t
x – t

≤  +
an – an



an

– t

≤  +
an – an



an

– an



≤  +C
an



an


T(an

)

T(an

)
≤ C
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and

 –
|t|
an

≥ C


T(an)
≥ δn.

So, we have

∣∣Ln(gn;x)∣∣ ≤ Ca


n
∣∣pn(x)∣∣

∫ a n



(x – t)–


 φ(t)dt.

Let t = as, n
 ≥ s ≥ . Then, since we know for x ≥ an


,

x – t = x
(
 –

t
x

)
≥ an



(
 –

as
a 

 s

)
≥ C

an
T(as)

,

we obtain

∣∣Ln(gn;x)∣∣ ≤ Ca
– 


n
∣∣pn(x)∣∣

∫ a n



T


 (t)φ(t)dt ≤ Ca



n T


 (an)

∣∣pn(x)∣∣.
Hence, if  ≤ λ, then using Lemma ., (.) and (.), we have

∥∥Ln(gn)w�
�+(  –


p )

+∥∥
Lp(|x|≥a n


)

≤ Ca


n T


 (an)��(an


)
∥∥�

(  –

p )

+
wpn

∥∥
Lp(R)

≤ Ca

p
n T


 (an)

(


nT(an)

) 
�

⎧⎨
⎩,  < p <  or p = ∞;

log( + n), ≤ p

≤ CC(λ,η)a

p
n

(

n

) 

λ+η–

λ+ (�– 


λ+η–
λ+η– )

⎧⎨
⎩,  ≤ p <  or p = ∞;

log( + n),  ≤ p.

Here, wemay consider that above estimations hold under the condition (.), because that
η >  can be taken small enough. Then we have (.), that is, for � > 


λ–
λ– ,

lim
n→∞

∥∥Ln(gn)w�
�+(  –


p )

+∥∥
Lp(|x|≥a n


) = . �

Lemma . (cf. [, Lemma .]) Let  < p < ∞. Let σ : R �→ R be a bounded measurable
function. Let λ = λ(b)≥  be defined in Lemma ., and then we suppose

� >

⎧⎪⎪⎨
⎪⎪⎩
,  < p≤ ;


(λ–)
λ–

p–
p ,  < p≤ ;

max{ λ–
λ–

p–
p – 


λ+
λ–

p–
p , },  < p.

(.)

Then for  < p < ∞ and the partial sum sn of the Fourier series, we have

∥∥sn[σφw–]w�
�+(  –


p )

+∥∥
Lp(|x|≤a n


) ≤ C‖σ‖L∞(R) (.)

for n≥ . Here C is independent of σ and n.
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Proof We may suppose that ‖σ‖L∞(R) = . By (.), (.) and Lemma .(a),

∣∣sn[σφw–](x)∣∣w(x)≤ a


n

(
 –

|x|
an

)– 
 n∑
j=n–

∣∣H[σφpjw](x)
∣∣. (.)

Let us choose l := l(n) such that l ≤ n
 ≤ l+. Then we know

l+ ≤ n≤ l+. (.)

Define

Ik = [ak ,ak+ ],  ≤ k ≤ l + .

For j = n – ,n and x ∈ Ik , we split

H[σφpjw](x)w(x) =
(∫ 

–∞
+

∫ ak–


+ P.V .

∫ ak+

ak–
+

∫ ∞

ak+

)
(σφpjw)(t)

x – t
dt

:= I(x) + I(x) + I(x) + I(x). (.)

Here P.V . stands for the principal value. First, we give the estimations of I and I for
x ∈ Ik . Let x ∈ Ik . Then we have by Lemma .(a) and Lemma . with p = ,

∣∣I(x)∣∣ ≤
∫ ∞



|(pjwφ)(–t)|
t + x

≤ Ca
– 


n

∫ an




φ(t)
t + a

dt +Ca–n
∫ ∞

an


∣∣pj(t)∣∣w(t)dt
≤ C

(
a–




n + a–n a–



n
) ≤ Ca

– 


n . (.)

Here we have used∫ ∞



φ(t)
 + t

dt < ∞. (.)

By Lemma .(a), and noting  – x/an ≤  – t/an for x ∈ Ik ,

∣∣I(x)∣∣ ≤
∫ ak–



|(pjwφ)(t)|
x – t

dt ≤ Ca
– 


n

∫ ak–



( – t
an )

– 


x – t
dt

≤ Ca
– 


n

(
 –

x
an

)– 

∫ ak–



dt
x – t

= Ca
– 


n

(
 –

x
an

)– 

log

(
 –

ak–
x

)–

.

Using

 –
ak–
x

≥  –
ak–
ak

≥ C


T(ak )
≥ C


T(x)

,

we can see

∣∣I(x)∣∣ ≤ Ca
– 


n

(
 –

x
an

)– 

log

(
T(x)
C

)
. (.)
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Next, we give an estimation of I for x ∈ Ik . Let x ∈ Ik . From Lemma .(a) again,

∣∣I(x)∣∣ ≤
∫ ak+

ak+

|(pjwφ)(t)|
t – x

dt +C
∫ ∞

ak+

|(pjwφ)(t)|
t

dt
(
by t ≤ (t – x)

)

≤ C

(
a–




n

∫ ak+

ak+

∣∣∣∣ – t
an

∣∣∣∣
– 
 dt
t – x

+ a–



n

∫ max{ak+ ,  an}

ak+

φ(t)
t

dt +
∫ ∞


 an

|(pjw)(t)|
t

dt
)

≤ C

(
a–




n

∫ ak+

ak+

∣∣∣∣ – t
an

∣∣∣∣
– 
 dt
t – x

+Ca–



n + a–n a–



n

)
(
by (.) and Lemma . with p = 

)
≤ Ca

– 


n [J + ], (.)

where

J :=
∫ ak+

ak+

∣∣∣∣ – t
an

∣∣∣∣
– 
 dt
t – x

.

Since, if
∣∣∣∣ – t

an

∣∣∣∣ ≤ 


(
 –

x
an

)
,

then we see

|t – x| = an
∣∣∣∣
(
 –

x
an

)
–

(
 –

t
an

)∣∣∣∣ ≥ an


(
 –

x
an

)
.

Now, we have

J ≤ C

((
 –

x
an

)– 

∫

|– t
an |≥ 

 (–
x
an ),

t∈[ak+ ,ak+ ]


t – x

dt

+ a–n

(
 –

x
an

)– ∫
|– t

an |≤ 
 (–

x
an ),

t∈[ak+ ,ak+ ]

∣∣∣∣ – t
an

∣∣∣∣
– 

dt

)

≤ C

((
 –

x
an

)– 

log

(
 +

ak+
ak+ – ak+

)

+
(
 –

x
an

)– ∫
|–s|≤ 

 (–
x
an )

| – s|– 
 ds

)

≤ C

((
 –

x
an

)– 

log

(
 +CT(ak+ )

)
+



(



(
 –

x
an

)) 

(
 –

x
an

)–)

≤ C

(
 –

x
an

)– 

log

(
CT(x)

)
.
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So, from (.) we have

∣∣I(x)∣∣ ≤ Ca
– 


n

(
 –

x
an

)– 

log

(
CT(x)

)
. (.)

Therefore, from (.), (.) and (.), we have

|I + I + I| ≤ Ca
– 


n

(
 –

x
an

)– 

log

(
CT(x)

)
.

Hence, with (.), (.) we have

∥∥sn[σφw–]w�
�+(  –


p )

+∥∥
Lp(Ik )

≤ C�
�+(  –


p )

+
(ak )

((
 –

ak+
an

)– 

log

(
CT(ak+ )

)
(ak+ – ak )


p

+ a


n

(
 –

ak+
an

)– 
 n∑
j=n–

∥∥∥∥P.V .
∫ ak+

ak–

(σφpjw)(t)
x – t

dt
∥∥∥∥
Lp(Ik )

)
. (.)

We must estimate the Lp-norm with respect to I, that is, ‖P.V .
∫ ak+
ak–

(σφpjw)(t)
x–t dt‖Lp(Ik ).

We use M. Riesz’s theorem on the boundedness of the Hilbert transform from Lp(R) to
Lp(R) (Lemma .) to deduce that by Lemma .(a) and the boundedness of |σφ|,

∥∥∥∥P.V .
∫ ak+

ak–

(σφpjw)(t)
x – t

dt
∥∥∥∥
Lp(Ik )

≤ C

(∫ ak+

ak–

∣∣(σφpjw)(t)
∣∣p dt) 

p

≤ Ca
– 


n

(
 –

ak+
an

)– 

(ak+ – ak– )


p . (.)

So, by (.) and (.) we conclude

∥∥sn[σφw–]w�
�+(  –


p )

+∥∥
Lp(Ik )

≤ C�
�+(  –


p )

+
(ak )

(
 –

ak+
an

)– 

log

(
CT(ak+ )

)
(ak+ – ak )


p . (.)

Noting (.), we see n ≥ l+ for k ≤ l, so

 –
ak+
an

≥  –
ak+
ak+

≥ C


T(ak )
and ak+ – ak ≤ C

ak
T(ak )

.

On the other hand, using Lemma .(b), we see �(at)∼ δt . Hence, we have

�
�+(  –


p )

+
(ak ) ∼ δ

�+(  –

p )

+

k =
(


kT(ak )

) 
 (�+(  –


p )

+)

=

⎧⎨
⎩
( 
kT(ak )

) �,  < p≤ ;

( 
kT(ak )

)

 (�+(  –


p )),  < p.
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Hence, from (.) we have

∥∥sn[σφw–]w�
�+(  –


p )

+∥∥
Lp(Ik )

≤ C�
�+(  –


p )

+
(ak )T


 (ak ) log

(
CT(ak+ )

)( ak
T(ak )

) 
p

≤ C log
(
CT(ak+ )

)
a


p
k

⎧⎨
⎩( 

k )

�T– 

�+ 
 –


p (ak ),  < p≤ ;

( 
k )


 (�+(  –


p ))T– 

�+ 
 (–


p )(ak ),  < p.

From Lemma . (.), we know

T– 
�+ 

 –

p (ak ) ≤ CC(λ,η)

(
k

) (η+λ–)
λ+ max{– 

�+ 
 –


p ,},

and

T– 
�+ 

 (–

p )(ak ) ≤ CC(λ,η)

(
k

) (η+λ–)
λ+ max{– 

�+ 
 (–


p ),}.

Therefore, we continue with Lemma .(a) as

≤ CC(λ,η) log
(
CT(ak+ )

)

×
⎧⎨
⎩( 

k )

�– η

p –
(η+λ–)

λ+ max{– 
�+ 

 –

p ,},  < p≤ ;

( 
k )


 (�+(  –


p ))–

η
p–

(η+λ–)
λ+ max{– 

�+ 
 (–


p ),},  < p.

(.)

First, let  < p≤ . Then (.), that is,

� >

⎧⎨
⎩,  < p≤ ;




λ–
λ–

p–
p ,  < p≤ 

implies

� >



λ – 
λ – 

p – 
p

and � > 

iff



� –

(λ – )
λ + 

(
–


� +



–

p

)
>  and � > 

iff



� –

(λ – )
λ + 

max

{
–


� +



–

p
, 

}
> .

This means that there exists a positive constant η >  small enough such that

A(η) :=


� –

η

p
–
(η + λ – )

λ + 
max

{
–


� +



–

p
, 

}
> .

http://www.journalofinequalitiesandapplications.com/content/2012/1/237


Jung and Sakai Journal of Inequalities and Applications 2012, 2012:237 Page 20 of 26
http://www.journalofinequalitiesandapplications.com/content/2012/1/237

Now, let p > . Then (.), that is,

� >
λ – 
λ – 

p – 
p

–



λ + 
λ – 

p – 
p

implies

� >
λ – 
λ – 

(
 –


p

)
–

λ + 
λ – 

(


–

p

)
and � +



–

p
> 

iff




(
� +

(


–

p

))
–
(λ – )
λ + 

(
–


� +




(
 –


p

))
> 

and




(
� +

(


–

p

))
> 

iff




(
� +

(


–

p

))
–
(λ – )
λ + 

max

{
–


� +




(
 –


p

)
, 

}
> .

Similarly to the previous case, this means that there exists a positive constant η >  small
enough such that

B(η) :=



(
� +

(


–

p

))
–

η

p
–
(η + λ – )

λ + 
max

{
–


� +




(
 –


p

)
, 

}
> .

Now, we estimate Ip,k . From (.), we have

∥∥sn[σφw–]w�
�+(  –


p )

+∥∥
Lp(Ik )

≤ CC(λ,η) log
(
CT(ak+ )

)⎧⎨
⎩( 

k )
A(η),  < p≤ ;

( 
k )

B(η),  < p.

For η >  small enough, we can see A(η) > A(η) >  and B(η) > B(η) > . Let τ :=
min{A(η),B(η)}/. Then for small enough η > , we have

∥∥sn[σφw–]w�
�+(  –


p )

+∥∥
Lp(Ik )

≤ CC(λ,η) log
(
CT(ak+ )

)( 
k

)τ

≤ CC(λ,η)
(


k

)τ

,

because we see that for all k > ,

log
(
CT(ak+ )

)( 
k

)τ

< C.
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Therefore, under the conditions (.) we have

∥∥sn[σφw–]w�
�+(  –


p )

+∥∥p
Lp(a≤|x|≤a n


) ≤

l∑
k=

∥∥sn[σφw–]w�
�+(  –


p )

+∥∥p
Lp(Ik )

≤ CC(λ,η)
l∑

k=

(

k

)τ

≤ CC(λ,η). (.)

The estimation of

∥∥sn[σφw–]w�
�+(  –


p )

+∥∥p
Lp(|x|≤a)

is similar. In fact, for x ∈ [–a,a], we split

H[σφpjw](x) =
(∫ –a

–∞
+ P.V .

∫ a

–a
+

∫ ∞

a

)
(σφpjw)(t)

x – t
dt.

Here we see that

∣∣∣∣
∫ –a

–∞

(σφpjw)(t)
x – t

dt
∣∣∣∣ =

∣∣∣∣
∫ ∞

a

(σφpjw)(–t)
x + t

dt
∣∣∣∣ ≤

∣∣∣∣
∫ ∞

a

(σφpjw)(–t)
t – a

dt
∣∣∣∣

=
∣∣∣∣
∫ ∞



(σφpjw)(–s – a)
s + a

dt
∣∣∣∣

and

∣∣∣∣
∫ ∞

a

(σφpjw)(t)
x – t

dt
∣∣∣∣ =

∣∣∣∣
∫ ∞

a

(σφpjw)(t)
t – x

dt
∣∣∣∣ ≤

∣∣∣∣
∫ ∞

a

(σφpjw)(t)
t – a

dt
∣∣∣∣

=
∣∣∣∣
∫ ∞



(σφpjw)(s + a)
s + a

ds
∣∣∣∣.

So, we can estimate
∫ –a
–∞ and

∫ ∞
a

as we did I before (see (.)). We can estimate the
second integral as follows: By M. Riesz’s theorem,

∥∥∥∥P.V .
∫ a

–a

(σφpjw)(t)
x – t

dt
∥∥∥∥
p

Lp(|t|≤a)
≤ C

∫ a

–a

∣∣(σφpjw)(t)
∣∣p dt ≤ Ca–

p


n ≤ C.

Now, under the assumption (.), we can select η >  small enough such that

� >

⎧⎪⎪⎨
⎪⎪⎩
,  < p≤ ;



λ+η–
λ+η–

p–
p ,  < p ≤ ;

max{ λ+η–
λ+η–

p–
p – 


λ+

λ+η–
p–
p , },  < p.

Consequently, from (.) with η we have the result (.). �

Let  < α < , then for gn in Lemma . we estimate Ln(gn) over [–aαn,aαn].
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Lemma . (cf. [, Lemma .]) Let  < p < ∞ and  < ε < . Let {gn} be as in Lemma .,
but we exchange (.) with

∣∣gn(x)w(x)∣∣ ≤ εφ(x), x ∈R,n≥ .

Then for  < p < ∞,

lim sup
n→∞

∥∥Ln(gn)w�
�+(  –


p )

+∥∥
Lp(|x|≤a n


) ≤ Cε.

Proof Let

χn := χ[–a n

,a n


]; hn := sign

(
Ln(gn)

)∣∣Ln(gn)∣∣p–χnwp–�
(�+(  –


p )

+)p

and

σn := sign sn[hn].

We shall show that

∥∥Ln(gn)w�
�+(  –


p )

+∥∥
Lp(|x|≤a n


) ≤ ε

∥∥sn[σnφw–]w�
�+(  –


p )

+∥∥
Lp(|x|≤a n


). (.)

Then from Lemma . we will conclude (.). Using orthogonality of f – sn[f ] to Pn–,
and the Gauss quadrature formula, we see that

∥∥Ln(gn)w�
�+(  –


p )

+∥∥p
Lp(|x|≤a n


)

=
∫
R

Ln(gn)(x)hn(x)w(x)dx

=
∫
R

Ln(gn)(x)sn[hn](x)w(x)dx =
n∑
j=

λj,ngn(xj,n)sn[hn](xj,n)

=
∑

|xj,n|≤a n


λj,ngn(xj,n)sn[hn](xj,n)
(
see (.), that is, the definition of gn

)

≤ ε
∑

|xj,n|≤a n


λj,nw–(xj,n)φ(xj,n)
∣∣sn[hn](xj,n)∣∣.

Here, if we use Lemma . with ψ = φ, we continue as

≤ Cε

∫
R

∣∣sn[hn](x)∣∣φ(x)w(x)dx
= Cε

∫
R

sn[hn](x)σnφ(x)w–(x)w(x)dx = Cε

∫
R

hn(x)sn
[
σnφw–](x)w(x)dx

= Cε

∫ a n


–a n


hn(x)sn
[
σnφw–](x)w(x)dx.
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Using Hölder’s inequality with q = p/(p – ), we continue this as

≤ Cε

(∫ a n


–a n


∣∣hn(x)w(x)�–(�+(  –

p )

+)(x)
∣∣q dx)/q(∫ a n



–a n


∣∣sn[σnφw–]w�
�+(  –


p )

+ ∣∣p dx) 
p

= Cε
∥∥Ln(gn)w�

�+(  –

p )

+∥∥p–
Lp(|x|≤a n


)

∥∥sn[σnφw–w�
�+(  –


p )

+]∥∥
Lp(|x|≤a n


).

Cancellation of ‖Ln(gn)w�
�+(  –


p )

+‖p–Lp(|x|≤a n

) gives (.). �

Proof of Theorem . In proving the theorem,we split our functions into pieces that vanish
inside or outside [–an


,an


]. Throughout, we let χS denote the characteristic function of a

set S. Also, we set for some fixed β > ,

φ(x) =
(
 + x

)–β/,

and suppose (.). We note that (.) means (.). Let  < ε < . We can choose a polyno-
mial P such that

∥∥(f – P)wφ–∥∥
L∞(R) ≤ ε

(see Lemma .). Then we have

∥∥(
f – Ln(f )

)
w�

�+(  –

p )

+∥∥
Lp(R)

≤ ∥∥(f – P)w�
�+(  –


p )

+∥∥
Lp(R)

+
∥∥Ln(P – f )w�

�+(  –

p )

+∥∥
Lp(R)

≤ ε
∥∥φ�

�+(  –

p )

+∥∥
Lp(R)

+
∥∥Ln(P – f )w�

�+(  –

p )

+∥∥
Lp(R)

≤ Cε +
∥∥Ln(P – f )w�

�+(  –

p )

+∥∥
Lp(R)

. (.)

Here we used that

∥∥φ�
�+(  –


p )

+∥∥
Lp(R)

< ∞,

because � >  and �– grows faster than any power of x (see Lemma .). Next, let

χn := χ [–an

,an


],

and write

P – f = (P – f )χn + (P – f )( – χn) =: gn + fn.

By Lemma . we have

lim
n→∞

∥∥Ln(fn)w��+(  –

 )

+∥∥
Lp(R)

= .

By Lemma . we have

lim
n→∞

∥∥Ln(gn)w��+(  –

 )

+∥∥
Lp(|x|≥a n


) = ,
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and by Lemma .,

lim sup
n→∞

∥∥Ln(gn)w�
�+(  –


p )

+∥∥
Lp(|x|≤a n


) ≤ Cε.

Here we take ε >  as ε → , then with (.) we have the result. �

5 Proof of Theorem 2.4
Lemma . (cf. [, Lemma .]) Let w ∈F (C+). Let  < α < 

 and

∑
n
(x) :=

∑
|xk,n|≥aαn

∣∣lk,n(x)∣∣w–(xk,n).

Then we have for x ∈R,

∑
n
(x)w(x)�/(x)≤ C logn.

Proof From Lemma . and Lemma . with p = ∞, we have the result easily. �

Lemma . Let w ∈F (C+). Let  < α < 
 and

′∑
n
(x) :=

∑
|xk,n|≤aαn

∣∣lk,n(x)∣∣w–(xk,n).

Then we have

′∑
n
(x)w(x)�(x)/ ≤ C logn.

Proof By Lemma .(c), Lemma .(d) and Lemma .(b),

′∑
n
(x) =

∑
|xk,n|≤aαn

∣∣lk,n(x)∣∣w–(xk,n)

=
|pn(x)|

|x – xjx ,n||P′
n(xjx ,n)|w(xjx ,n)

+
∑

|xk,n|≤aαn ,
k �=jx

|pn(x)|
|x – xk,n||P′

n(xk,n)|w(xk,n)

≤ Cw(x)– + a/n
∣∣pn(x)∣∣ ∑

|xk,n|≤aαn ,
k �=jx

ϕn(xk,n)( –
|xk,n|
an )

|x – xk,n|

∼ Cw(x)– +
a/n
n

∣∣pn(x)∣∣ ∑
|xk,n|≤aαn ,

k �=jx

 – |xk,n|
an√

 – |xk,n|
an

(
 –

|xk,n|
an

)/ 
|x – xk,n|

∼ Cw(x)– +
a/n
n

∣∣pn(x)∣∣ ∑
|xk,n|≤aαn ,

k �=jx

(
 –

|xk,n|
an

)/ 
|x – xk,n| ,
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where we used the fact

 –
|xk,n|
an

∼  –
|xk,n|
an

, |xk,n| ≤ aαn.

So,

′∑
n
(x) ≤ Cw(x)– +

a/n
n

∣∣pn(x)∣∣ ∑
|xk,n|≤aαn ,

k �=jx

(
 –

|xk,n|
an

)/ 
|xjx ,n – xk,n|

≤ Cw(x)– +
a/n
n

∣∣pn(x)∣∣ ∑
|xk,n|≤aαn ,

k �=jx

(
 –

|xk,n|
an

)/ ∑
jx≶i≶k ϕn(xi,n)

≤ Cw(x)– + a/n
∣∣pn(x)∣∣ ∑

|xk,n|≤aαn ,
k �=jx

(
 –

|xk,n|
an

)/ ∑
jx≶i≶k

√
 – |xi,n|/an

.

Therefore we have by Lemma . with p = ∞,

′∑
n
(x)w(x)�(x)/ ≤ C +Ca/n

∣∣pn(x)∣∣w(x)�(x)/

×
∑

|xk,n|≤aαn ,
k �=jx

(
 –

|xk,n|
an

)/(
 –

|xjx ,n|
an

)/ ∑
jx≶i≶k

√
 – |xi,n|/an

≤ C
∑

|xk,n|≤aαn ,
k �=jx


|jx – k| ∼ logn.

�

Lemma. ([, Theorem ]) Let w ∈F (C+).Then there exists a constant C >  such that
for every absolutely continuous function f with wf ′ ∈ C(R) (this means w(x)f ′(x) →  as
|x| → ∞) and every n ∈ N, we have

En(w; f ) ≤ C
an
n
En–

(
w; f ′).

Proof of Theorem . There exists Pn– ∈Pn such that

∣∣(f (x) – Pn–(x)
)
w(x)

∣∣ ≤ En–(w; f ).

Therefore, by Lemma . and Lemma .,

∣∣(f (x) – Ln(f )(x)
)
w(x)�/(x)

∣∣
≤ ∣∣(f (x) – Pn–(x)

)
w(x)�/(x)

∣∣ + ∣∣Ln(f – Pn–)(x)w(x)�/(x)
∣∣

=
∣∣(f (x) – Pn–(x)

)
w(x)�/(x)

∣∣
+

∣∣∣∣∣w(x)�/(x)
n∑
k=

(
f (xk,n) – Pn–(xk,n)

)
w(xk,n)lk,n(x)w–(xk,n)

∣∣∣∣∣
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≤ En–(w; f )

{
 +w(x)�/(x)

∣∣∣∣∣
n∑
k=

lk,n(x)w–(xk,n)

∣∣∣∣∣
}

≤ CEn–(w; f ) logn.

Let wf (r) ∈ C(R). If we repeatedly use Lemma ., then we have

∣∣(f (x) – Ln(f )(x)
)
w(x)�/(x)

∣∣ ≤ Cr

(
an
n

)r

En–r–
(
w; f (r)

)
logn. �
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