provided by Crossref

Mean and uniform convergence of Lagrange interpolation with the Erdős-type weights

Hee Sun Jung ${ }^{1 *}$ and Ryozi Sakai ${ }^{2}$

Correspondence
hsun90@skku.edu
${ }^{1}$ Department of Mathematics
Education, Sungkyunkwan
University, Seoul, 110-745, Republic of Korea
Full list of author information is available at the end of the article

```
Abstract
Let }\mathbb{R}=(-\infty,\infty)\mathrm{ , and let }Q\in\mp@subsup{C}{}{1}(\mathbb{R}):\mathbb{R}->\mp@subsup{\mathbb{R}}{}{+}:=[0,\infty)\mathrm{ be an even function. We
consider the exponential-type weights w(x)=\mp@subsup{e}{}{-Q(x)},x\in\mathbb{R}\mathrm{ . In this paper, we obtain a}
mean and uniform convergence theorem for the Lagrange interpolation polynomials
L_}(f)\mathrm{ in }\mp@subsup{L}{p}{\prime},1<p\leq\infty with the weight w
MSC: 41A05
Keywords: exponential-type weight; Lagrange interpolation polynomial
```


1 Introduction and preliminaries

Let $\mathbb{R}=(-\infty, \infty)$, and let $Q \in C^{1}(\mathbb{R}): \mathbb{R} \rightarrow \mathbb{R}^{+}:=[0, \infty)$ be an even function, and $w(x)=$ $\exp (-Q(x))$ be the weight such that $\int_{0}^{\infty} x^{n} w^{2}(x) d x<\infty$ for all $n=0,1,2, \ldots$. Then we can construct the orthonormal polynomials $p_{n}(x)=p_{n}\left(w^{2} ; x\right)$ of degree n with respect to $w^{2}(x)$. That is,

$$
\int_{-\infty}^{\infty} p_{n}(x) p_{m}(x) w^{2}(x) d x=\delta_{m n} \quad \text { (Kronecker's delta) }
$$

and

$$
p_{n}(x)=\gamma_{n} x^{n}+\cdots, \quad \gamma_{n}>0 .
$$

We denote the zeros of $p_{n}(x)$ by

$$
-\infty<x_{n, n}<x_{n-1, n}<\cdots<x_{2, n}<x_{1, n}<\infty .
$$

We denote the Lagrange interpolation polynomial $L_{n}(f ; x)$ based at the zeros $\left\{x_{k, n}\right\}_{k=1}^{n}$ as follows:

$$
L_{n}(f ; x):=\sum_{k=1}^{n} f\left(x_{k, n}\right) l_{k, n}(x), \quad l_{k, n}(x):=\frac{p_{n}(x)}{\left(x-x_{k, n}\right) p_{n}^{\prime}\left(x_{k, n}\right)} .
$$

A function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is said to be quasi-increasing if there exists $C>0$ such that $f(x) \leq$ $C f(y)$ for $0<x<y$.
We are interested in the following subclass of weights from [1].

[^0]Definition 1.1 Let $Q: \mathbb{R} \rightarrow \mathbb{R}^{+}$be an even function satisfying the following properties:
(a) $Q^{\prime}(x)$ is continuous in \mathbb{R}, with $Q(0)=0$.
(b) $Q^{\prime \prime}(x)$ exists and is positive in $\mathbb{R} \backslash\{0\}$.
(c) $\lim _{x \rightarrow \infty} Q(x)=\infty$.
(d) The function

$$
T(x):=\frac{x Q^{\prime}(x)}{Q(x)}, \quad x \neq 0
$$

is quasi-increasing in $(0, \infty)$ with

$$
T(x) \geq \Lambda>1, \quad x \in \mathbb{R}^{+} \backslash\{0\} .
$$

(e) There exists $C_{1}>0$ such that

$$
\frac{Q^{\prime \prime}(x)}{\left|Q^{\prime}(x)\right|} \leq C_{1} \frac{\left|Q^{\prime}(x)\right|}{Q(x)}, \quad \text { a.e. } x \in \mathbb{R} \backslash\{0\} .
$$

Then we write $w(x)=\exp (-Q(x)) \in \mathcal{F}\left(C^{2}\right)$. If there also exist a compact subinterval $J(\ni 0)$ of \mathbb{R} and $C_{2}>0$ such that

$$
\frac{Q^{\prime \prime}(x)}{\left|Q^{\prime}(x)\right|} \geq C_{2} \frac{\left|Q^{\prime}(x)\right|}{Q(x)}, \quad \text { a.e. } x \in \mathbb{R} \backslash J
$$

then we write $w(x)=\exp (-Q(x)) \in \mathcal{F}\left(C^{2}+\right)$.

Example 1.2 (1) If $T(x)$ is bounded, then the weight $w=\exp (-Q)$ is called the Freud-type weight. The following example is the Freud-type weight:

$$
Q(x)=|x|^{\alpha}, \quad \alpha>1 .
$$

If $T(x)$ is unbounded, then the weight $w=\exp (-Q)$ is called the Erdős-type weight. The following examples give the Erdős-type weights $w=\exp (-Q)$.
(2) $[2$, Theorem 3.1] For $\alpha>1, l=1,2,3, \ldots$

$$
Q(x)=Q_{l, \alpha}(x)=\exp _{l}\left(|x|^{\alpha}\right)-\exp _{l}(0)
$$

where

$$
\exp _{l}(x)=\exp (\exp (\exp \cdots \exp x) \cdots) \quad(l \text {-times })
$$

More generally, we define for $\alpha+u>1, \alpha \geq 0, u \geq 0$ and $l \geq 1$,

$$
Q_{l, \alpha, u}(x):=|x|^{u}\left(\exp _{l}\left(|x|^{\alpha}\right)-\alpha^{*} \exp _{l}(0)\right)
$$

where $\alpha^{*}=0$ if $\alpha=0$, otherwise $\alpha^{*}=1$. (We note that $Q_{l, 0, u}(x)$ gives a Freud-type weight.)
(3) We define $Q_{\alpha}(x):=(1+|x|)^{|x|^{\alpha}}-1, \alpha>1$.

In this paper, we investigate the convergence of the Lagrange interpolation polynomials with respect to the weight $w \in \mathcal{F}\left(C^{2}+\right)$. When we consider the Erdős-type weights, the following definition follows from Damelin and Lubinsky [3].

Definition 1.3 Let $w(x)=\exp (-Q(x))$, where $Q: \mathbb{R} \rightarrow \mathbb{R}$ is even and continuous. $Q^{\prime \prime}$ exists in $(0, \infty), Q^{(j)} \geq 0$, in $(0, \infty), j=0,1,2$, and the function

$$
T^{*}(x):=1+\frac{x Q^{\prime \prime}(x)}{Q^{\prime}(x)}
$$

is increasing in $(0, \infty)$ with

$$
\begin{equation*}
\lim _{x \rightarrow \infty} T^{* *}(x)=\infty ; \quad T^{*}(0+):=\lim _{x \rightarrow 0+} T^{*}(x)>1 \tag{1.1}
\end{equation*}
$$

Moreover, we assume that for some constants $C_{1}, C_{2}, C_{3}>0$,

$$
C_{1} \leq T^{*}(x) /\left(\frac{x Q^{\prime}(x)}{Q(x)}\right) \leq C_{2}, \quad x \geq C_{3}
$$

and for every $\varepsilon>0$,

$$
\begin{equation*}
T^{*}(x)=O\left(Q(x)^{\varepsilon}\right), \quad x \rightarrow \infty \tag{1.2}
\end{equation*}
$$

Then we write $w \in \mathcal{E}$.

Damelin and Lubinsky [3] got the following results with the Erdős-type weights $w=$ $\exp (-Q) \in \mathcal{E}$.

Theorem A $\left(\left[3\right.\right.$, Theorem 1.3]) Let $w=\exp (-Q) \in \mathcal{E}$. Let $L_{n}(f, x)$ denote the Lagrange interpolation polynomial to f at the zeros of $p_{n}\left(w^{2}, x\right)$. Let $1<p<\infty, \Delta \in \mathbb{R}, \kappa>0$. Then for

$$
\lim _{n \rightarrow \infty}\left\|\left(f-L_{n}(f)\right) w(1+Q)^{-\Delta}\right\|_{L_{p}(\mathbb{R})}=0
$$

to hold for every continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
\lim _{|x| \rightarrow \infty}\left|f(x) w(x)(\log |x|)^{1+\kappa}\right|=0
$$

it is necessary and sufficient that

$$
\Delta>\max \left\{0, \frac{2}{3}\left(\frac{1}{4}-\frac{1}{p}\right)\right\} .
$$

Our main purpose in this paper is to give mean and uniform convergence theorems with respect to $\left\{L_{n}(f)\right\}, n=1,2, \ldots$, in L_{p}-norm, $1<p \leq \infty$. The proof for $1<p<\infty$ will be shown by use of the method of Damelin and Lubinsky. In Section 2, we write the main theorems. In Section 3, we prepare some fundamental lemmas; and in Section 4, we will prove the theorem for $1<p<\infty$. Finally, we will prove the theorem for the uniform convergence in Section 5.

For any nonzero real-valued functions $f(x)$ and $g(x)$, we write $f(x) \sim g(x)$ if there exist constants $C_{1}, C_{2}>0$ independent of x such that $C_{1} g(x) \leq f(x) \leq C_{2} g(x)$ for all x. Similarly, for any two sequences of positive numbers $\left\{c_{n}\right\}_{n=1}^{\infty}$ and $\left\{d_{n}\right\}_{=1}^{\infty}$, we define $c_{n} \sim d_{n}$. We denote the class of polynomials of degree at most n by \mathcal{P}_{n}.

Throughout C, C_{1}, C_{2}, \ldots denote positive constants independent of n, x, t, and polynomials of degree at most n. The same symbol does not necessarily denote the same constant in different occurrences.

2 Theorems

In the following, we introduce useful notations. Mhaskar-Rakhmanov-Saff numbers (MRS) a_{x} are defined as the positive roots of the following equations:

$$
x=\frac{2}{\pi} \int_{0}^{1} \frac{a_{x} u Q^{\prime}\left(a_{x} u\right)}{\left(1-u^{2}\right)^{\frac{1}{2}}} d u, \quad x>0 .
$$

The function $\varphi_{u}(x)$ is defined as follows:

$$
\varphi_{u}(x)= \begin{cases}\frac{a_{u}}{u} \frac{1-\frac{|x|}{a_{2 u}}}{\sqrt{1-\frac{|x|}{a_{u}}+\delta_{u}},} & |x| \leq a_{u}, \\ \varphi_{u}\left(a_{u}\right), & a_{u}<|x|,\end{cases}
$$

where

$$
\delta_{x}=\left(x T\left(a_{x}\right)\right)^{-\frac{2}{3}}, \quad x>0 .
$$

We define

$$
\Phi(x):=\frac{1}{(1+Q(x))^{\frac{2}{3}} T(x)}
$$

and

$$
\Phi_{n}(x):=\max \left\{\delta_{n}, 1-\frac{|x|}{a_{n}}\right\} .
$$

Here we note that for $0<d \leq|x|$,

$$
\Phi(x) \sim \frac{Q(x)^{\frac{1}{3}}}{x Q^{\prime}(x)}
$$

and we see

$$
\Phi(x) \leq C \Phi_{n}(x), \quad n \geq 1
$$

(see Lemma 3.3 below). Moreover, we define

$$
\Phi^{\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}(x):= \begin{cases}1, & 0<p<4 \\ \Phi^{\frac{1}{4}-\frac{1}{p}}(x), & 4 \leq p \leq \infty\end{cases}
$$

Let $1<p<\infty$. We give a convergence theorem as an analogy of Theorem A for $L_{n}(f)$ in L_{p}-norm. We need to prepare a lemma.

Lemma $2.1\left(\left[4\right.\right.$, Theorem 1.6]) Let $w=\exp (-Q) \in \mathcal{F}\left(C^{2}+\right)$.
(a) Let $T(x)$ be unbounded. Then for any $\eta>0$, there exists a constant $C(\eta)>0$ such that for $t \geq 1$,

$$
a_{t} \leq C(\eta) t^{\eta} .
$$

(b) Assume

$$
\begin{equation*}
\frac{Q^{\prime \prime}(x)}{Q^{\prime}(x)} \leq \lambda(b) \frac{Q^{\prime}(x)}{Q(x)}, \quad|x| \geq b>0 \tag{2.1}
\end{equation*}
$$

where $b>0$ is large enough. Suppose that there exist constants $\eta>0$ and $C_{1}>0$ such that $a_{t} \leq C_{1} t^{\eta}$. If $\lambda:=\lambda(b)>1$, then there exists a constant $C(\lambda, \eta)$ such that for $a_{t} \geq 1$,

$$
\begin{equation*}
T\left(a_{t}\right) \leq C(\lambda, \eta) t^{\frac{2(\eta+\lambda-1)}{\lambda+1}} . \tag{2.2}
\end{equation*}
$$

If $0<\lambda \leq 1$, then for any $\mu>0$, there exists $C(\lambda, \mu)$ such that

$$
\begin{equation*}
T\left(a_{t}\right) \leq C(\lambda, \mu) t^{\mu}, \quad t \geq 1 . \tag{2.3}
\end{equation*}
$$

For a fixed constant $\beta>0$, we define

$$
\begin{equation*}
\phi(x):=\left(1+x^{2}\right)^{-\beta / 2} \tag{2.4}
\end{equation*}
$$

Using this function, we have the following theorem. We suppose that the weight w is the Erdős-type weight.
Our theorem is as follows. Let $f \in C_{0}(\mathbb{R})$ mean that $f \in C(\mathbb{R})$ and $\lim _{|x| \rightarrow \infty} f(x)=0$.
Theorem 2.2 Let $w=\exp (-Q) \in \mathcal{F}\left(C^{2}+\right)$, and let $T(x)$ be unbounded. Let $1<p<\infty$ and $\beta>0$, and let us define ϕ as (2.4), and $\lambda=\lambda(b) \geq 1$ as (2.1). We suppose that for $f \in C(\mathbb{R})$,

$$
\phi^{-1}(x) w(x) f(x) \in C_{0}(\mathbb{R})
$$

and

$$
\begin{equation*}
\Delta>\frac{9}{4} \frac{\lambda-1}{3 \lambda-1} . \tag{2.5}
\end{equation*}
$$

Then we have

$$
\lim _{n \rightarrow \infty}\left\|\left(f-L_{n}(f)\right) w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}+\right)^{+}}\right\|_{L_{p}(\mathbb{R})}=0 .
$$

We remark that if $w \in \mathcal{F}\left(C^{2}+\right)$ is the Erdős-type weight, then we have $\lambda=\lambda(b) \geq 1$ in (2.1). In fact, if $\lambda<1$, then by Lemma 3.9 below, we see that for $x \geq b>0$,

$$
T(x)=\frac{x Q^{\prime}(x)}{Q(x)} \leq \frac{x}{Q(x)} Q^{\prime}(b)\left(\frac{Q(x)}{Q(b)}\right)^{\lambda}=\frac{Q^{\prime}(b)}{Q(b)^{\lambda}} \frac{x}{Q(x)^{1-\lambda}} \rightarrow 0 \quad \text { as } x \rightarrow \infty .
$$

This contradicts our assumption for $T(x)$. In Example 1.2, we consider the weight $w_{l, \alpha, m}=$ $\exp \left(-Q_{l, \alpha, m}\right)$. In (2.1), we set $Q:=Q_{l, \alpha, m}$ and $\lambda:=\lambda(b)$. If $w_{l, \alpha, m}$ is an Erdős-type weight, that is, $T(x):=T_{l, \alpha, m}(x)$ is unbounded, then it is easy to show

$$
\lim _{b \rightarrow \infty} \lambda(b)=1 .
$$

Therefore, when we give any $\Delta>0$, there exists a constant b large enough such that

$$
\Delta>\frac{9}{4} \frac{\lambda(b)-1}{3 \lambda(b)-1} .
$$

Hence, we have the following corollary.

Corollary 2.3 Let $1<p<\infty$ and $\Delta>0$. Then for the weight $w_{l, \alpha, m}=\exp \left(-Q_{l, \alpha, m}\right)(\alpha>0)$, we have

$$
\lim _{n \rightarrow \infty}\left\|\left(f-L_{n}(f)\right) w_{l, \alpha, m} \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}(\mathbb{R})}=0
$$

We also consider the case of $p=\infty$.
Theorem 2.4 Let $w=\exp (-Q) \in \mathcal{F}\left(C^{2}+\right)$, and let $T(x)$ be unbounded. For every $f \in C_{0}(\mathbb{R})$ and $n \geq 1$, we have

$$
\left\|\left(f-L_{n}(f)\right) w \Phi^{3 / 4}\right\|_{L_{\infty}(\mathbb{R})} \leq C E_{n-1}(w ; f) \log n
$$

where

$$
E_{m}(w ; f)=\inf _{P_{m} \in \mathcal{P}_{m}} \max _{x \in \mathbb{R}}\left|\left(f(x)-P_{m}(x)\right) w(x)\right|, \quad m=0,1,2, \ldots
$$

Moreover, iff ${ }^{(r)}, r \geq 1$, is an integer, then for $n>r+1$ we have

$$
\left\|\left(f-L_{n}(f)\right) w \Phi^{3 / 4}\right\|_{L_{\infty}(\mathbb{R})} \leq C\left(\frac{a_{n}}{n}\right)^{r} E_{n-r-1}\left(w ; f^{(r)}\right) \log n .
$$

3 Fundamental lemmas

To prove the theorems we need some lemmas.
Lemma 3.1 Let $w=\exp (-Q) \in \mathcal{F}\left(C^{2}+\right)$. Then we have the following.
(a) [1, Lemma 3.11(a), (b)] Given fixed $0<\alpha, \alpha \neq 1$, we have uniformly for $t>0$,

$$
\left|1-\frac{a_{\alpha t}}{a_{t}}\right| \sim \frac{1}{T\left(a_{t}\right)},
$$

and we have for $t>0$,

$$
\left|1-\frac{a_{t}}{a_{s}}\right| \sim \frac{1}{T\left(a_{t}\right)}\left|1-\frac{t}{s}\right|, \quad \frac{1}{2} \leq \frac{t}{s} \leq 2 .
$$

(b) [1, Lemma 3.7 (3.38)] For some $0<\varepsilon \leq 2$, and for large enough t,

$$
T\left(a_{t}\right) \leq t^{2-\varepsilon} .
$$

Lemma 3.2 Let $w=\exp (-Q) \in \mathcal{F}\left(C^{2}+\right)$. Then we have the following.
(a) [1, Lemma 3.5(a), (b)] Let $L>0$ be a fixed constant. Uniformly for $t>0$,

$$
Q\left(a_{L t}\right) \sim Q\left(a_{t}\right) \quad \text { and } \quad Q^{\prime}\left(a_{L t}\right) \sim Q^{\prime}\left(a_{t}\right) .
$$

Moreover,

$$
a_{L t} \sim a_{t} \quad \text { and } \quad T\left(a_{L t}\right) \sim T\left(a_{t}\right) .
$$

(b) [1, Lemma 3.4 (3.18), (3.17)] Uniformly for $x>0$ with $a_{t}:=x, t>0$, we have

$$
Q^{\prime}(x) \sim \frac{t \sqrt{T(x)}}{a_{t}} \quad \text { and } \quad Q(x) \sim \frac{t}{\sqrt{T(x)}} .
$$

(c) $\left[1\right.$, Lemma 3.8(a)] For $x \in\left[0, a_{t}\right)$,

$$
Q^{\prime}(x) \leq C \frac{t}{a_{t}} \frac{1}{\sqrt{1-\frac{x}{a_{t}}}}
$$

Lemma 3.3 Let $w=\exp (-Q) \in \mathcal{F}\left(C^{2}+\right)$. For $x \in \mathbb{R}$, we have

$$
\Phi(x) \leq C \Phi_{n}(x), \quad n \geq 1 .
$$

Proof Let $x=a_{u}, u \geq 1$. By Lemma 3.2(b), we have

$$
u \sim Q\left(a_{u}\right) \sqrt{T\left(a_{u}\right)} .
$$

So, we have

$$
\begin{equation*}
\delta_{u}^{-1} \sim Q^{\frac{2}{3}}\left(a_{u}\right) T\left(a_{u}\right)=\frac{a_{u} Q^{\prime}\left(a_{u}\right)}{Q^{\frac{1}{3}}\left(a_{u}\right)}=\frac{x Q^{\prime}(x)}{Q^{\frac{1}{3}}(x)} . \tag{3.1}
\end{equation*}
$$

Now, if $u \leq \frac{n}{2}$, then we have

$$
\begin{aligned}
1-\frac{a_{u}}{a_{n}} & \geq 1-\frac{a_{n / 2}}{a_{n}} \sim \frac{1}{T\left(a_{n}\right)} \quad(\text { by Lemma 3.1(a)) } \\
& \geq \frac{1}{\left(n T\left(a_{n}\right)\right)^{\frac{2}{3}}}=\delta_{n} \quad(\text { by Lemma 3.1(b) })
\end{aligned}
$$

So, we have

$$
\begin{aligned}
\Phi_{n}(x) & =1-\frac{a_{u}}{a_{n}} \geq 1-\frac{a_{u}}{a_{2 u}} \sim \frac{1}{T\left(a_{u}\right)} \quad(\text { by Lemma 3.1(a)) } \\
& \geq \frac{1}{\left(u T\left(a_{u}\right)\right)^{\frac{2}{3}}}=\delta_{u} \sim \Phi(x) \quad(\text { by Lemma 3.2(b) and (3.1)) }
\end{aligned}
$$

Let $\frac{n}{2}<u<n$. Then we have

$$
\Phi_{n}(x) \geq \delta_{n} \sim \delta_{u} \sim \Phi(x) \quad \text { (by Lemma 3.2(a), (b) and (3.1)). }
$$

Lemma 3.4 Let $w \in \mathcal{F}\left(C^{2}+\right)$. Then we have the following.
(a) $[1$, Theorem $1.19(\mathrm{f})]$ For the minimum positive zero $x_{[n / 2], n}$,

$$
x_{[n / 2], n} \sim \frac{a_{n}}{n},
$$

and for the maximum zero $x_{1, n}$,

$$
1-\frac{x_{1, n}}{a_{n}} \sim \delta_{n} .
$$

(b) [1, Theorem 1.19(e)] For $n \geq 1$ and $1 \leq j \leq n-1$,

$$
x_{j, n}-x_{j+1, n} \sim \varphi_{n}\left(x_{j, n}\right) .
$$

(c) $[1, \mathrm{p} .329,(12.20)]$ Uniformly for $n \geq 1,1 \leq k \leq n-1$,

$$
\varphi_{n}\left(x_{k, n}\right) \sim \varphi_{n}\left(x_{k+1, n}\right) .
$$

(d) Let $\max \left\{\left|x_{k, n}\right|,\left|x_{k+1, n}\right|\right\} \leq a_{\alpha n}, 0<\alpha<1$. Then we have

$$
w\left(x_{k, n}\right) \sim w\left(x_{k+1, n}\right) \sim w(x) \quad\left(x_{k+1, n} \leq x \leq x_{k, n}\right) .
$$

So, for given $C>0$ and $|x| \leq a_{\beta n}, 0<\beta<\alpha$, if $\left|x-x_{k, n}\right| \leq C \varphi_{n}(x)$, then we have

$$
w(x) \sim w\left(x_{k, n}\right) .
$$

Proof (d) Let $\max \left\{\left|x_{k, n}\right|,\left|x_{k+1, n}\right|\right\}=\left|x_{k, n}\right|$ (for the case of $\max \left\{\left|x_{k, n}\right|,\left|x_{k+1, n}\right|\right\}=\left|x_{k+1, n}\right|$, we also have the result similarly). By (b) there exists a constant $C>0$ such that

$$
\left|x_{k, n}-x_{k+1, n}\right| \leq C \varphi_{n}\left(x_{k, n}\right) .
$$

Then we see

$$
\begin{align*}
\varphi_{n}\left(x_{k, n}\right) & \sim \frac{a_{n}}{n} \frac{1-\frac{\left|x_{k, n}\right|}{a_{2 n}}}{\sqrt{1-\frac{\left|x_{k, n}\right|}{a_{n}}}}=\frac{a_{n}}{n} \frac{1-\frac{\left|x_{k, n}\right|}{a_{n}}+\left|x_{k, n}\right|\left\{\frac{1}{a_{n}}-\frac{1}{a_{2 n}}\right\}}{\sqrt{1-\frac{\left|x_{k, n}\right|}{a_{n}}}} \\
& =\frac{a_{n}}{n} \frac{1-\frac{\left|x_{k, n}\right|}{a_{n}}+\frac{\left|x_{k, n}\right|}{a_{n}}\left(1-\frac{a_{n}}{a_{2 n}}\right)}{\sqrt{1-\frac{a_{n}}{} \frac{1-\frac{\left|x_{k, n}\right|}{a_{n}}}{a_{n}}+C \frac{\left|x_{k, n}\right|}{a_{n}} \frac{1}{T\left(a_{n}\right)}} \sqrt{1-\frac{\left|x_{k, n}\right|}{a_{n}}}} \\
& \sim \frac{a_{n}}{n} \sqrt{1-\frac{\left|x_{k, n}\right|}{a_{n}}} . \tag{3.2}
\end{align*}
$$

Therefore, from (3.2) and Lemma 3.2(c), we have

$$
\begin{aligned}
\left|Q\left(x_{k, n}\right)-Q\left(x_{k+1, n}\right)\right| & =\left|Q^{\prime}(\xi)\left(x_{k, n}-x_{k+1, n}\right)\right| \leq C\left|Q^{\prime}(\xi)\right| \varphi_{n}(x) \quad\left(x_{k+1, n} \leq \xi \leq x_{k, n}\right) \\
& \leq C\left|Q^{\prime}\left(x_{k, n}\right)\right| \frac{a_{n}}{n} \sqrt{1-\frac{\left|x_{k, n}\right|}{a_{n}}} \leq C \frac{n}{a_{n}} \frac{1}{\sqrt{1-\frac{\left|x_{k, k}\right|}{a_{n}}}} \frac{a_{n}}{n} \sqrt{1-\frac{\left|x_{k, n}\right|}{a_{n}}} \leq C .
\end{aligned}
$$

Consequently,

$$
w\left(x_{k, n}\right) \sim w\left(x_{k+1, n}\right) \sim w(x) \quad\left(x_{k+1, n} \leq x \leq x_{k, n}\right) .
$$

Let $\left|x-x_{k, n}\right| \leq C \varphi_{n}(x)$ and $|x| \leq a_{\beta n}$. Then we see that there exists $n_{0}>0$ such that $\left|x_{k, n}\right| \leq$ $a_{\alpha n}, n \geq n_{0}$. In fact, we can show it as follows. We use Lemma 3.1(a) and (b). For $|x| \leq a_{\beta n}$, we see

$$
\left|x_{k, n}\right| \leq|x|+C \varphi_{n}(x) \leq|x|+C \frac{a_{n}}{n} \sqrt{1-\frac{|x|}{a_{n}}},
$$

and if we take n large enough, then we have

$$
\begin{aligned}
\frac{d}{d t}\left(t+C \frac{a_{n}}{n} \sqrt{1-\frac{t}{a_{n}}}\right) & =1-C \frac{1}{n} \frac{1}{2 \sqrt{1-\frac{t}{a_{n}}}} \geq 1-C \frac{1}{n} \frac{1}{2 \sqrt{1-\frac{a_{n} / 3}{a_{n}}}} \\
& \geq 1-C \frac{\sqrt{T\left(a_{n}\right)}}{2 n} \geq 1-C \frac{1}{2 n^{\varepsilon / 2}}>0,
\end{aligned}
$$

that is, $g(t)=t+C \frac{a_{n}}{n} \sqrt{1-\frac{t}{a_{n}}}$ is increasing. So, we see

$$
\left|x_{k, n}\right| \leq a_{\beta n}+C \frac{a_{n}}{n} \sqrt{1-\frac{a_{\beta n}}{a_{n}}} \leq a_{\beta n}+C \frac{a_{n}}{n} \frac{1}{\sqrt{T\left(a_{n}\right)}} .
$$

Therefore, we have

$$
\begin{aligned}
a_{\alpha n}-\left(a_{\beta n}+C \frac{a_{n}}{n} \frac{1}{\sqrt{T\left(a_{n}\right)}}\right) & \sim \frac{a_{n}}{T\left(a_{n}\right)}-C \frac{a_{n}}{n} \frac{1}{\sqrt{T\left(a_{n}\right)}} \\
& =\frac{a_{n}}{T\left(a_{n}\right)}\left(1-C \frac{\sqrt{T\left(a_{n}\right)}}{n}\right) \geq \frac{a_{n}}{T\left(a_{n}\right)}\left(1-C \frac{1}{n^{\varepsilon / 2}}\right)>0 .
\end{aligned}
$$

Now, we can show (d). Without loss of generality, we may assume $x \in\left[x_{j+1, n}, x_{j, n}\right] \subset$ $\left\{x_{k, n}| | x-x_{k, n} \mid \leq C \varphi_{n}(x)\right\}$. We define

$$
x_{k_{1}, n}:=\min \left\{x_{k, n} \| x-x_{k, n} \mid \leq C \varphi_{n}(x)\right\}, \quad x_{k_{2}, n}:=\max \left\{x_{k, n} \| x-x_{k, n} \mid \leq C \varphi_{n}(x)\right\} .
$$

Here we note that k_{1}, k_{2} are decided depending only on the constant C. Then by former result, we have

$$
w\left(x_{k_{1}, n}\right) \sim w\left(x_{k_{2}, n}\right) \sim w(x) \quad\left(x_{k_{1}, n} \leq x \leq x_{k_{2}, n}\right) .
$$

Lemma 3.5 Let $w=\exp (-Q) \in \mathcal{F}\left(C^{2}+\right)$. Then we have the following.
(a) [1, Theorem 1.17] Uniformly for $n \geq 1$,

$$
\sup _{x \in \mathbb{R}}\left|p_{n}(x)\right| w(x)\left|x^{2}-a_{n}^{2}\right|^{\frac{1}{4}} \sim 1 .
$$

(b) [1, Theorem 1.19(a)] Uniformly for $n \geq 1$ and $1 \leq j \leq n$,

$$
\left|\left(p_{n}^{\prime} w\right)\left(x_{j, n}\right)\right| \sim \varphi_{n}^{-1}\left(x_{j, n}\right) a_{n}^{-\frac{1}{2}}\left(1-\frac{\left|x_{j, n}\right|}{a_{n}}\right)^{-\frac{1}{4}} .
$$

(c) [1, Theorem 1.19(d)] For $x \in\left[x_{k+1, n}, x_{k, n}\right]$, if $k \leq n-1$,

$$
\left|p_{n}(x) w(x)\right| \sim \min \left\{\left|x-x_{k, n}\right|,\left|x-x_{k+1, n}\right|\right\} a_{n}^{1 / 2} \varphi_{n}(x)^{-1}\left(1-\frac{\left|x_{k, n}\right|}{a_{n}}\right)^{-1 / 4}
$$

Lemma 3.6 (cf. [5, Theorem 2.7]) Let $w \in \mathcal{F}\left(C^{2}+\right)$ and $0<p \leq \infty$. Then uniformly $n \geq 2$,

$$
\left\|\Phi^{\left(\frac{1}{4}-\frac{1}{p}\right)^{+}} p_{n} w\right\|_{L_{p}(\mathbb{R})} \leq C a_{n}^{\frac{1}{p}-\frac{1}{2}} \begin{cases}1, & 0<p<4 \text { or } p=\infty \\ \log (1+n), & 4 \leq p\end{cases}
$$

where $x^{+}=0$ if $x \leq 0, x^{+}=x$ if $x>0$.

Proof From Lemma 3.3, we know $\Phi(x) \leq \Phi_{n}(x)$, then in [5, Theorem 2.7] we only exchange Φ_{n} with Φ.

Let $f \in L_{p, w}(\mathbb{R})$. The Fourier-type series of f is defined by

$$
\tilde{f}(x):=\sum_{k=0}^{\infty} a_{k}\left(w^{2}, f\right) p_{k}\left(w^{2}, x\right), \quad a_{k}\left(w^{2}, f\right):=\int_{-\infty}^{\infty} f(t) p_{k}\left(w^{2}, t\right) w^{2}(t) d t
$$

We denote the partial sum of $\tilde{f}(x)$ by

$$
s_{n}(f, x):=s_{n}\left(w^{2}, f, x\right):=\sum_{k=0}^{n-1} a_{k}\left(w^{2}, f\right) p_{k}\left(w^{2}, x\right) .
$$

The partial sum $s_{n}(f)$ admits the representation

$$
s_{n}(f, x)=\sum_{j=0}^{n-1} a_{j} p_{j}(x)=\int_{-\infty}^{\infty} f(t) K_{n}(x, t) w^{2}(t) d t
$$

where

$$
K_{n}(x, t):=\sum_{j=0}^{n-1} p_{j}(x) p_{j}(t)
$$

The Christoffel-Darboux formula

$$
\begin{equation*}
K_{n}(x, t)=\frac{\gamma_{n-1}}{\gamma_{n}} \frac{p_{n}(x) p_{n-1}(t)-p_{n-1}(x) p_{n}(t)}{x-t} \tag{3.3}
\end{equation*}
$$

is well known (see [6, Theorem 1.1.4]).

Lemma 3.7 ([6, Lemma 9.2.6]) Let $1<p<\infty$ and $g \in L_{p}(\mathbb{R})$. Then for the Hilbert transform

$$
\begin{equation*}
H(g, x):=\lim _{\varepsilon \rightarrow 0+} \int_{|x-t| \geq \varepsilon} \frac{g(t)}{x-t} d t, \quad x \in \mathbb{R} \tag{3.4}
\end{equation*}
$$

we have

$$
\|H(g)\|_{L_{p}(\mathbb{R})} \leq C\|g\|_{L_{p}(\mathbb{R})}
$$

where $C>0$ is a constant depending upon p only.

Lemma 3.8 (see [7, Theorem 1.4, Theorem 1.6]) Let $w=\exp (-Q) \in \mathcal{F}\left(C^{2}\right), 1 \leq p \leq \infty$ and $\gamma \geq 0$. Then for any $\varepsilon>0$, there exists a polynomial P such that

$$
\left\|(f(x)-P(x))\left(1+x^{2}\right)^{\gamma} w(x)\right\|_{L_{p}(\mathbb{R})}<\varepsilon .
$$

Lemma 3.9 Let $w \in \mathcal{F}\left(C^{2}+\right)$ be an Erdös-type weight, that is, $T(x)$ is unbounded. Then for any $M>1$, there exist $x_{M}>0$ and $C_{M}>0$ such that

$$
Q(x) \geq C_{M} x^{M}, \quad x \geq x_{M} .
$$

Proof For every $M>1$, there exists $x_{M}>0$ such that $T(x) \geq M$ for $x \geq x_{M}$, so that $Q^{\prime}(x) / Q(x)=T(x) / x \geq M / x$ for $x \geq x_{M}$. Hence, we see

$$
\log \frac{Q(x)}{Q\left(x_{M}\right)} \geq \log \left(\frac{x}{x_{M}}\right)^{M}, \quad x \geq x_{M}
$$

that is,

$$
Q(x) \geq \frac{Q\left(x_{M}\right)}{\left(x_{M}\right)^{M}} x^{M}, \quad x \geq x_{M}
$$

Let us put $C_{M}:=Q\left(x_{M}\right) /\left(x_{M}\right)^{M}$.

4 Proof of Theorem 2.2 by Damelin and Lubinsky methods

In this section, we assume $w \in \mathcal{F}\left(C^{2}+\right)$. To prove the theorem we need some lemmas, and we will use the Damelin and Lubinsky methods of [3].

Lemma 4.1 (cf. [3, Lemma 3.1]) Let $w \in \mathcal{F}\left(C^{2}+\right)$. Let $0<\alpha<\frac{1}{4}$ and

$$
\sum_{n}(x):=\sum_{\left|x_{k, n}\right| \geq a_{\alpha n}}\left|l_{k, n}(x)\right| w^{-1}\left(x_{k, n}\right) .
$$

Then we have for $|x| \leq a_{\alpha n / 2}$ and $|x| \geq a_{2 n}$,

$$
\sum_{n}(x) w(x) \leq C .
$$

Moreover, for $a_{\alpha n / 2} \leq|x| \leq a_{2 n}$,

$$
\sum_{n}(x) w(x) \leq C\left(\log n+a_{n}^{\frac{1}{2}}\left|p_{n}(x) w(x)\right| T^{-\frac{1}{4}}\left(a_{n}\right)\right)
$$

Proof The proof of [3, Lemma 3.1] holds without the condition (1.2) and the second condition in (1.1) and under the assumption of the quasi-increasingness of $T(x)$. The conditions in Definition 1.1 contain all the conditions in Definition 1.3 except for (1.2) and the second condition in (1.1). We see that in [3, Lemma 3.1] we can replace $T^{\prime \prime}(x)$ with $T(x)$.

Lemma 4.2 ([3, Lemma 3.2]) Let $0<\eta<1$. Let $\psi: \mathbb{R} \mapsto(0, \infty)$ be a continuous function with the following property: For $n \geq 1$, there exist polynomials R_{n} of degree $\leq n$ such that

$$
C_{1} \leq \frac{\psi(t)}{R_{n}(t)} \leq C_{2}, \quad|t| \leq a_{4 n}
$$

Then for $n \geq n_{0}$ and $P \in \mathcal{P}_{n}$,

$$
\sum_{\left|x_{k, n}\right| \leq a_{\eta n}} \lambda_{k, n}\left|P\left(x_{k, n}\right)\right| w^{-1}\left(x_{k, n}\right) \psi\left(x_{k, n}\right) \leq C \int_{-a_{4 n}}^{a_{4 n}}|P(t) w(t)| \psi(t) d t
$$

Remark 4.3 To prove Lemma 4.7 below, we apply this lemma with $\psi(t)=\phi(t)=(1+$ $\left.t^{2}\right)^{-\beta / 2}, \beta>0$. In fact, when $\phi^{*}(x)=\phi(t), t=a_{4 n} x$, we can approximate ϕ^{*} by polynomials $R_{n}^{*} \in \mathcal{P}_{n}$ on $[-1,1]$, that is, for any $\varepsilon>0$ there exists $R_{n}^{*} \in \mathcal{P}_{n}$ such that

$$
\left|\phi^{\prime \prime}(x)-R_{n}^{*}(x)\right|<\varepsilon, \quad x \in[-1,1] .
$$

Therefore,

$$
\left|\frac{R_{n}^{*}(x)}{\phi^{*}(x)}-1\right|<\frac{\varepsilon}{\phi^{*}(x)}, \quad x \in[-1,1],
$$

and so there exist $C_{1}, C_{2}>0$ such that

$$
C_{1} \leq 1-\frac{\varepsilon}{\phi^{*}(x)} \leq\left|\frac{R_{n}^{*}(x)}{\phi^{*}(x)}\right|<1+\frac{\varepsilon}{\phi^{\prime \prime}(x)} \leq C_{2}, \quad x \in[-1,1] .
$$

Now, if we set $R_{n}(t)=R_{n}^{*}(x)$, then we have the result.

Lemma 4.4 (cf. [3, Lemma 4.1]) Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of measurable functions from $\mathbb{R} \mapsto \mathbb{R}$ such that for $n \geq 1$,

$$
f_{n}(x)=0, \quad|x|<a_{\frac{n}{9}} ; \quad\left|f_{n}(x)\right| w(x) \leq \phi(x), \quad x \in \mathbb{R} .
$$

Then for $1 \leq p \leq \infty$ and $\Delta>0$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|L_{n}\left(f_{n}\right) w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}(\mathbb{R})}=0 . \tag{4.1}
\end{equation*}
$$

Proof Let $|x| \leq a_{\frac{n}{18}}$ or $|x| \geq a_{2 n}$. We use the first inequality of Lemma 4.1 with $\alpha=\frac{1}{9}$, then from the assumption with respect to f_{n}, we see that

$$
\left|L_{n}\left(f_{n} ; x\right) w(x)\right| \leq \phi\left(a_{\frac{n}{9}}\right) \sum_{\left|x_{k, n}\right| \geq a_{\frac{n}{9}}}\left|l_{k, n}(x)\right| w^{-1}\left(x_{k, n}\right) w(x) \leq C_{1} \phi\left(a_{\frac{n}{9}}\right) .
$$

So,

$$
\begin{align*}
\left.\left\|L_{n}\left(f_{n}\right) w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}\left(|x| \leq \frac{n}{18}\right.} \text { or }|x| \geq a_{2 n}\right) & \leq \phi\left(a_{\left.\frac{n}{y}\right)}\left\|\Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}(\mathbb{R})}\right. \\
& \leq C_{2} \phi\left(a_{\frac{n}{9}}\right)=o(1) \tag{4.2}
\end{align*}
$$

by Lemma 3.9 (note the definition of $\Phi(x)$) and the definition of ϕ in (2.4). Next, we let $a_{\frac{n}{18}} \leq|x| \leq a_{2 n}$. From the second inequality in Lemma 4.1, we see that

$$
\left|L_{n}\left(f_{n} ; x\right) w(x)\right| \leq \phi\left(a_{\frac{n}{9}}\right)\left(\log n+a_{n}^{\frac{1}{2}}\left|p_{n}(x)\right| w(x) T^{-\frac{1}{4}}\left(a_{n}\right)\right) .
$$

Also, for this range of x, we see that

$$
\Phi(x)=\frac{1}{(1+Q(x))^{\frac{2}{3}} T(x)} \sim \frac{1}{\left(1+Q\left(a_{n}\right)\right)^{\frac{2}{3}} T\left(a_{n}\right)} \sim \frac{T^{\frac{1}{3}}\left(a_{n}\right)}{n^{\frac{2}{3}} T\left(a_{n}\right)}=\delta_{n}
$$

by Lemma 3.2(b). So, for n large enough,

$$
\begin{aligned}
& \left\|L_{n}\left(f_{n}\right) w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}\left(a_{1 n} \leq|x| \leq a_{2 n}\right)} \\
& \leq \phi\left(a_{\frac{n}{9}}\right) \log n\left\|\Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}\left(a \frac{n}{18} \leq|x| \leq a_{2 n}\right)} \\
& \quad+\phi\left(a_{\frac{n}{9}}\right) a_{n}^{\frac{1}{2}} T^{-\frac{1}{4}}\left(a_{n}\right)\left\|p_{n}(x) w(x) \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}\left(a_{n} \frac{n}{18} \leq|x| \leq a_{2 n}\right)} .
\end{aligned}
$$

Then since $\Delta>0$, using Lemma 3.1(a), Lemma 2.1(a), and Lemma 3.6, we have

$$
\log n\left\|\Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}\left(a_{1 n}^{18} \leq|x| \leq a_{2 n}\right)} \leq C \delta_{n}^{\Delta}\left(a_{2 n}-a_{\left.\frac{n}{18}\right)^{\frac{1}{p}}} \log n \leq C\right.
$$

and

$$
\begin{aligned}
& a_{n}^{\frac{1}{2}} T^{-\frac{1}{4}}\left(a_{n}\right)\left\|p_{n} w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}+\right)^{+}}\right\|_{L_{p}\left(a_{1 n} \leq|x| \leq a_{2 n}\right)} \\
& \quad \leq T^{-\frac{1}{4}}\left(a_{n}\right) \delta_{n}^{\Delta} a_{n}^{\frac{1}{p}} \begin{cases}1, & 1 \leq p<4 \text { or } p=\infty ; \\
\log (1+n), & 4 \leq p,\end{cases}
\end{aligned}
$$

Therefore, we have by (2.4)

$$
\left\|L_{n}\left(f_{n}\right) w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}\left(a_{n} \leq|x| \leq a_{2 n}\right)} \leq C_{4} \phi\left(a_{\frac{n}{9}}\right)=o(1) .
$$

Consequently, with (4.2) we have (4.1).
Lemma 4.5 (cf. [3, Lemma 4.2]) Let $1 \leq p \leq \infty$. Let $\left\{g_{n}\right\}_{n=1}^{\infty}$ be a sequence of measurable functions from $\mathbb{R} \mapsto \mathbb{R}$ such that for $n \geq 1$,

$$
\begin{equation*}
g_{n}(x)=0, \quad|x| \geq a_{n} ; \quad\left|g_{n}(x)\right| w(x) \leq \phi(x), \quad x \in \mathbb{R} . \tag{4.3}
\end{equation*}
$$

Let us suppose

$$
\begin{equation*}
\Delta>\frac{9}{4} \frac{\lambda-1}{3 \lambda-1}, \tag{4.4}
\end{equation*}
$$

where $\lambda \geq 1$ is defined in Lemma 2.1. Then for $1 \leq p \leq \infty$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|L_{n}\left(g_{n}\right) w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}\left(|x| \geq a_{\frac{n}{8}}\right)}=0 . \tag{4.5}
\end{equation*}
$$

Proof Using Lemma 3.5(b) and Lemma 3.4(b), we have for $x \geq a_{\frac{n}{8}}$,

$$
\begin{align*}
\left|L_{n}\left(g_{n} ; x\right)\right| & \leq \sum_{\left|x_{k, n}\right| \leq \frac{n}{9}}\left|l_{k, n}(x)\right| w^{-1}\left(x_{k, n}\right) \phi\left(x_{k, n}\right) \\
& \leq C_{1} a_{n}^{\frac{1}{2}}\left|p_{n}(x)\right| \sum_{\left|x_{k, n}\right| \leq \frac{a_{\frac{n}{9}}^{9}}{}}\left(x_{k, n}-x_{k+1, n}\right) \frac{\left(1-\frac{\left|x_{k, n}\right|}{a_{n}}+\delta_{n}\right)^{\frac{1}{4}}}{\left|x-x_{k, n}\right|} \phi\left(x_{k, n}\right) \\
& \leq C_{2} a_{n}^{\frac{1}{2}}\left|p_{n}(x)\right| \int_{-a_{\frac{n}{9}}}^{a_{\frac{n}{9}}} \frac{\left(1-\frac{|t|}{a_{n}}+\delta_{n}\right)^{\frac{1}{4}}}{|x-t|} \phi(t) d t . \tag{4.6}
\end{align*}
$$

Equation (4.6) is shown as follows: First, we see

$$
\begin{equation*}
|x-t| \sim\left|x-x_{k, n}\right|, \quad t \in\left[x_{k+1, n}, x_{k, n}\right] . \tag{4.7}
\end{equation*}
$$

Let $|x| \geq a_{\frac{n}{8}}$ and $t \in\left[x_{k+1, n}, x_{k, n}\right]$. Then

$$
\left|\frac{x-t}{x-x_{k, n}}-1\right|=\left|\frac{t-x_{k, n}}{x-x_{k, n}}\right| \leq \frac{x_{k, n}-x_{k+1, n}}{\left|x_{k \pm 2, n}-x_{k, n}\right|} \leq c<1 .
$$

Now, we use the fact that $x+C \varphi(x), x>0$ is increasing for $0<x \leq a_{n / 2}$, and then

$$
x_{k, n}+C \varphi_{n}\left(x_{k, n}\right) \leq a_{\frac{n}{9}}+C \varphi_{n}\left(a_{\frac{n}{9}}\right) \leq a_{\frac{n}{8}} \leq x .
$$

Here, the second inequality follows from the definition of $\varphi_{n}(x)$ and Lemma 3.1(a), (b). Hence, we have (4.7). Now, we use the monotonicity of $\left(1-\frac{|x|}{a_{n}}+\delta_{n}\right)^{\frac{1}{4}} \phi(x)$. From (4.7) there exists $C>0$ such that for $t \in\left[x_{k+1, n}, x_{k, n}\right]$,

$$
\begin{aligned}
\left(x_{k, n}-x_{k+1, n}\right) \frac{\left(1-\frac{\left|x_{k, n}\right|}{a_{n}}+\delta_{n}\right)^{\frac{1}{4}}}{\left|x-x_{k, n}\right|} \phi\left(x_{k, n}\right) & \leq \int_{x_{k+1, n}}^{x_{k, n}} \frac{\left(1-\frac{|t|}{a_{n}}+\delta_{n}\right)^{\frac{1}{4}}}{\left|x-x_{k, n}\right|} \phi(t) d t \\
& \leq \frac{1}{C} \int_{x_{k+1, n}}^{x_{k, n}} \frac{\left(1-\frac{|t|}{a_{n}}+\delta_{n}\right)^{\frac{1}{4}}}{|x-t|} \phi(t) d t .
\end{aligned}
$$

Hence, (4.6) holds. Next, for $t \in\left[0, a_{\frac{n}{9}}\right]$ and $x \geq a_{\frac{n}{8}}$, we know by Lemma 3.1(a),

$$
1 \leq \frac{a_{n}-t}{x-t} \leq 1+\frac{a_{n}-a_{\frac{n}{8}}}{a_{\frac{n}{8}}-t} \leq 1+\frac{a_{n}-a_{\frac{n}{8}}}{a_{\frac{n}{8}}-a_{\frac{n}{9}}} \leq 1+C \frac{a_{\frac{n}{8}}}{a_{\frac{n}{9}}} \frac{T\left(a_{\frac{n}{9}}\right)}{T\left(a_{\frac{n}{8}}\right)} \leq C_{3}
$$

and

$$
1-\frac{|t|}{a_{n}} \geq C_{4} \frac{1}{T\left(a_{n}\right)} \geq \delta_{n}
$$

So, we have

$$
\left|L_{n}\left(g_{n} ; x\right)\right| \leq C_{6} a_{n}^{\frac{1}{4}}\left|p_{n}(x)\right| \int_{0}^{a_{\frac{n}{9}}^{9}}(x-t)^{-\frac{3}{4}} \phi(t) d t .
$$

Let $t=a_{s}, \frac{n}{9} \geq s \geq 1$. Then, since we know for $x \geq a_{\frac{n}{8}}$,

$$
x-t=x\left(1-\frac{t}{x}\right) \geq a_{\frac{n}{8}}\left(1-\frac{a_{s}}{a_{\frac{9}{8} s}}\right) \geq C_{7} \frac{a_{n}}{T\left(a_{s}\right)}
$$

we obtain

$$
\left|L_{n}\left(g_{n} ; x\right)\right| \leq C_{8} a_{n}^{-\frac{1}{2}}\left|p_{n}(x)\right| \int_{0}^{a_{n}} T^{\frac{3}{4}}(t) \phi(t) d t \leq C_{8} a_{n}^{\frac{1}{2}} T^{\frac{3}{4}}\left(a_{n}\right)\left|p_{n}(x)\right| .
$$

Hence, if $1 \leq \lambda$, then using Lemma 3.6, (3.1) and (2.2), we have

$$
\begin{aligned}
& \left\|L_{n}\left(g_{n}\right) w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}\left(|x| \geq a_{\frac{n}{8}}\right)} \\
& \quad \leq C_{9} a_{n}^{\frac{1}{2}} T^{\frac{3}{4}}\left(a_{n}\right) \Phi^{\Delta}\left(a_{\frac{n}{8}}\right)\left\|\Phi^{\left(\frac{1}{4}-\frac{1}{p}\right)^{+}} w p_{n}\right\|_{L_{p}(\mathbb{R})} \\
& \quad \leq C_{10} a_{n}^{\frac{1}{p}} T^{\frac{3}{4}}\left(a_{n}\right)\left(\frac{1}{n T\left(a_{n}\right)}\right)^{\frac{2}{3} \Delta} \begin{cases}1, & 0<p<4 \text { or } p=\infty ; \\
\log (1+n), & 4 \leq p\end{cases} \\
& \quad \leq C_{11} C(\lambda, \eta) a_{n}^{\frac{1}{p}}\left(\frac{1}{n}\right)^{\frac{2}{3} \frac{3 \lambda+2 n-1}{\lambda+1}\left(\Delta-\frac{9}{4} \frac{\lambda+\eta-1}{3 \lambda+2 \eta-1}\right)} \begin{cases}1, & 1 \leq p<4 \text { or } p=\infty ; \\
\log (1+n), & 4 \leq p .\end{cases}
\end{aligned}
$$

Here, we may consider that above estimations hold under the condition (4.4), because that $\eta>0$ can be taken small enough. Then we have (4.5), that is, for $\Delta>\frac{9}{4} \frac{\lambda-1}{3 \lambda-1}$,

$$
\lim _{n \rightarrow \infty}\left\|L_{n}\left(g_{n}\right) w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}\left(|x| \geq a_{\frac{n}{8}}^{8}\right.}=0
$$

Lemma 4.6 (cf. [3, Lemma 4.3]) Let $1<p<\infty$. Let $\sigma: \mathbb{R} \mapsto \mathbb{R}$ be a bounded measurable function. Let $\lambda=\lambda(b) \geq 1$ be defined in Lemma 2.1, and then we suppose

$$
\Delta> \begin{cases}0, & 1<p \leq 2 ; \tag{4.8}\\ \frac{3}{2} \frac{(\lambda-1)}{3 \lambda-1} \frac{p-2}{p}, & 2<p \leq 4 ; \\ \max \left\{\frac{\lambda-1}{3 \lambda-1} \frac{p-1}{p}-\frac{1}{4} \frac{\lambda+1}{3 \lambda-1} \frac{p-4}{p}, 0\right\}, & 4<p .\end{cases}
$$

Then for $1<p<\infty$ and the partial sum s_{n} of the Fourier series, we have

$$
\begin{equation*}
\left\|s_{n}\left[\sigma \phi w^{-1}\right] w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}\left(|x| \leq a_{\frac{n}{8}}\right)} \leq C\|\sigma\|_{L_{\infty}(\mathbb{R})} \tag{4.9}
\end{equation*}
$$

for $n \geq 1$. Here C is independent of σ and n.

Proof We may suppose that $\|\sigma\|_{L_{\infty}(\mathbb{R})}=1$. By (3.3), (3.4) and Lemma 3.5(a),

$$
\begin{equation*}
\left|s_{n}\left[\sigma \phi w^{-1}\right](x)\right| w(x) \leq a_{n}^{\frac{1}{2}}\left(1-\frac{|x|}{a_{n}}\right)^{-\frac{1}{4}} \sum_{j=n-1}^{n}\left|H\left[\sigma \phi p_{j} w\right](x)\right| \tag{4.10}
\end{equation*}
$$

Let us choose $l:=l(n)$ such that $2^{l} \leq \frac{n}{8} \leq 2^{l+1}$. Then we know

$$
\begin{equation*}
2^{l+3} \leq n \leq 2^{l+4} . \tag{4.11}
\end{equation*}
$$

Define

$$
\mathcal{I}_{k}=\left[a_{2^{k}}, a_{2^{k+1}}\right], \quad 1 \leq k \leq l+2
$$

For $j=n-1, n$ and $x \in \mathcal{I}_{k}$, we split

$$
\begin{align*}
H\left[\sigma \phi p_{j} w\right](x) w(x) & =\left(\int_{-\infty}^{0}+\int_{0}^{a_{2} k-1}+P \cdot V \cdot \int_{a_{2^{k-1}}}^{a_{2} k+2}+\int_{a_{2^{k+2}}}^{\infty}\right) \frac{\left(\sigma \phi p_{j} w\right)(t)}{x-t} d t \\
& :=I_{1}(x)+I_{2}(x)+I_{3}(x)+I_{4}(x) . \tag{4.12}
\end{align*}
$$

Here P.V. stands for the principal value. First, we give the estimations of I_{1} and I_{2} for $x \in \mathcal{I}_{k}$. Let $x \in \mathcal{I}_{k}$. Then we have by Lemma 3.5(a) and Lemma 3.6 with $p=1$,

$$
\begin{align*}
\left|I_{1}(x)\right| & \leq \int_{0}^{\infty} \frac{\left|\left(p_{j} w \phi\right)(-t)\right|}{t+x} \leq C_{1} a_{n}^{-\frac{1}{2}} \int_{0}^{\frac{a_{n}}{2}} \frac{\phi(t)}{t+a_{2}} d t+C_{2} a_{n}^{-1} \int_{\frac{a_{n}}{2}}^{\infty}\left|p_{j}(t)\right| w(t) d t \\
& \leq C_{2}\left(a_{n}^{-\frac{1}{2}}+a_{n}^{-1} a_{n}^{1-\frac{1}{2}}\right) \leq C_{3} a_{n}^{-\frac{1}{2}} . \tag{4.13}
\end{align*}
$$

Here we have used

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\phi(t)}{1+t} d t<\infty \tag{4.14}
\end{equation*}
$$

By Lemma 3.5(a), and noting $1-x / a_{n} \leq 1-t / a_{n}$ for $x \in \mathcal{I}_{k}$,

$$
\begin{aligned}
\left|I_{2}(x)\right| & \leq \int_{0}^{a_{2} k-1} \frac{\left|\left(p_{j} w \phi\right)(t)\right|}{x-t} d t \leq C_{4} a_{n}^{-\frac{1}{2}} \int_{0}^{a_{2} k-1} \frac{\left(1-\frac{t}{a_{n}}\right)^{-\frac{1}{4}}}{x-t} d t \\
& \leq C_{4} a_{n}^{-\frac{1}{2}}\left(1-\frac{x}{a_{n}}\right)^{-\frac{1}{4}} \int_{0}^{a_{2^{k-1}}} \frac{d t}{x-t} \\
& =C_{4} a_{n}^{-\frac{1}{2}}\left(1-\frac{x}{a_{n}}\right)^{-\frac{1}{4}} \log \left(1-\frac{a_{2^{k-1}}}{x}\right)^{-1} .
\end{aligned}
$$

Using

$$
1-\frac{a_{2^{k-1}}}{x} \geq 1-\frac{a_{2^{k-1}}}{a_{2^{k}}} \geq C \frac{1}{T\left(a_{2^{k}}\right)} \geq C \frac{1}{T(x)}
$$

we can see

$$
\begin{equation*}
\left|I_{2}(x)\right| \leq C_{6} a_{n}^{-\frac{1}{2}}\left(1-\frac{x}{a_{n}}\right)^{-\frac{1}{4}} \log \left(\frac{T(x)}{C}\right) \tag{4.15}
\end{equation*}
$$

Next, we give an estimation of I_{4} for $x \in \mathcal{I}_{k}$. Let $x \in \mathcal{I}_{k}$. From Lemma 3.5(a) again,

$$
\begin{aligned}
\left|I_{4}(x)\right| \leq & \int_{a_{2^{k+2}}}^{2 a_{2^{k+2}}} \frac{\left|\left(p_{j} w \phi\right)(t)\right|}{t-x} d t+C \int_{2 a_{2^{k+2}}}^{\infty} \frac{\left|\left(p_{j} w \phi\right)(t)\right|}{t} d t \quad(\text { by } t \leq 2(t-x)) \\
\leq & C_{7}\left(a_{n}^{-\frac{1}{2}} \int_{a_{2^{k+2}}}^{2 a_{2^{k+2}}}\left|1-\frac{t}{a_{n}}\right|^{-\frac{1}{4}} \frac{d t}{t-x}\right. \\
& \left.+a_{n}^{-\frac{1}{2}} \int_{2 a_{2^{k+2}}^{\max \left\{2 a_{2^{k+2}}, \frac{1}{2} a_{n}\right\}}} \frac{\phi(t)}{t} d t+\int_{\frac{1}{2} a_{n}}^{\infty} \frac{\left|\left(p_{j} w\right)(t)\right|}{t} d t\right) \\
\leq & C_{7}\left(a_{n}^{-\frac{1}{2}} \int_{a_{2^{k+2}}}^{2 a_{2^{k+2}}}\left|1-\frac{t}{a_{n}}\right|^{-\frac{1}{4}} \frac{d t}{t-x}+C a_{n}^{-\frac{1}{2}}+a_{n}^{-1} a_{n}^{1-\frac{1}{2}}\right)
\end{aligned}
$$

(by (4.14) and Lemma 3.6 with $p=1$)

$$
\begin{equation*}
\leq C_{8} a_{n}^{-\frac{1}{2}}[J+1] \tag{4.16}
\end{equation*}
$$

where

$$
J:=\int_{a_{2^{k+2}}}^{2 a_{2^{k+2}}}\left|1-\frac{t}{a_{n}}\right|^{-\frac{1}{4}} \frac{d t}{t-x} .
$$

Since, if

$$
\left|1-\frac{t}{a_{n}}\right| \leq \frac{1}{2}\left(1-\frac{x}{a_{n}}\right),
$$

then we see

$$
|t-x|=a_{n}\left|\left(1-\frac{x}{a_{n}}\right)-\left(1-\frac{t}{a_{n}}\right)\right| \geq \frac{a_{n}}{2}\left(1-\frac{x}{a_{n}}\right) .
$$

Now, we have

$$
\begin{aligned}
& J \leq C_{9}\left(\left(1-\frac{x}{a_{n}}\right)^{-\frac{1}{4}} \int_{\substack{11-\frac{t}{a n} \left\lvert\, \geq \frac{1}{2}\left(1-\frac{x}{a_{n}}\right)\right., t \in\left[a_{2} k+2,2 a_{2} k+2\right.}} \frac{1}{t-x} d t\right. \\
& \left.+a_{n}^{-1}\left(1-\frac{x}{a_{n}}\right)^{-1} \int_{\substack{1-\frac{t}{a_{n}} 1 \leq \frac{1}{2}\left(1-\frac{x}{a_{n}}\right), t \in\left[a_{2} k+2,2 a_{2} k+2\right]}}\left|1-\frac{t}{a_{n}}\right|^{-\frac{1}{4}} d t\right) \\
& \leq C_{10}\left(\left(1-\frac{x}{a_{n}}\right)^{-\frac{1}{4}} \log \left(1+\frac{a_{2^{k+2}}}{a_{2^{k+2}}-a_{2^{k+1}}}\right)\right. \\
& \left.+\left(1-\frac{x}{a_{n}}\right)^{-1} \int_{|1-s| \leq \frac{1}{2}\left(1-\frac{x}{a_{n}}\right)}|1-s|^{-\frac{1}{4}} d s\right) \\
& \leq C_{10}\left(\left(1-\frac{x}{a_{n}}\right)^{-\frac{1}{4}} \log \left(1+C T\left(a_{2^{k+2}}\right)\right)+\frac{4}{3}\left(\frac{1}{2}\left(1-\frac{x}{a_{n}}\right)\right)^{\frac{3}{4}}\left(1-\frac{x}{a_{n}}\right)^{-1}\right) \\
& \leq C_{11}\left(1-\frac{x}{a_{n}}\right)^{-\frac{1}{4}} \log (C T(x)) \text {. }
\end{aligned}
$$

So, from (4.16) we have

$$
\begin{equation*}
\left|I_{4}(x)\right| \leq C_{12} a_{n}^{-\frac{1}{2}}\left(1-\frac{x}{a_{n}}\right)^{-\frac{1}{4}} \log (C T(x)) \tag{4.17}
\end{equation*}
$$

Therefore, from (4.13), (4.15) and (4.17), we have

$$
\left|I_{1}+I_{2}+I_{4}\right| \leq C_{13} a_{n}^{-\frac{1}{2}}\left(1-\frac{x}{a_{n}}\right)^{-\frac{1}{4}} \log (C T(x))
$$

Hence, with (4.10), (4.12) we have

$$
\begin{align*}
& \left\|s_{n}\left[\sigma \phi w^{-1}\right] w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}\left(\mathcal{I}_{k}\right)} \\
& \leq \\
& \quad C_{14} \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\left(a_{2^{k}}\right)\left(\left(1-\frac{a_{2^{k+1}}}{a_{n}}\right)^{-\frac{1}{2}} \log \left(C T\left(a_{2^{k+1}}\right)\right)\left(a_{2^{k+1}}-a_{2^{k}}\right)^{\frac{1}{p}}\right. \tag{4.18}\\
& \left.\quad+a_{n}^{\frac{1}{2}}\left(1-\frac{a_{2^{k+1}}}{a_{n}}\right)^{-\frac{1}{4}} \sum_{j=n-1}^{n}\left\|P . V \cdot \int_{a_{2^{k-1}}}^{a_{2^{k+2}}} \frac{\left(\sigma \phi p_{j} w\right)(t)}{x-t} d t\right\|_{L_{p}\left(\mathcal{I}_{k}\right)}\right)
\end{align*}
$$

We must estimate the L_{p}-norm with respect to I_{3}, that is, $\left\|P . V \cdot \int_{a_{2^{k-1}}}^{a_{2 k+2}} \frac{\left(\sigma \phi p_{p} w\right)(t)}{x-t} d t\right\|_{L_{p}\left(\mathcal{I}_{k}\right)}$. We use M. Riesz's theorem on the boundedness of the Hilbert transform from $L_{p}(\mathbb{R})$ to $L_{p}(\mathbb{R})$ (Lemma 3.7) to deduce that by Lemma 3.5(a) and the boundedness of $|\sigma \phi|$,

$$
\begin{align*}
\left\|P . V . \int_{a_{2^{k-1}}}^{a_{2^{k+2}}} \frac{\left(\sigma \phi p_{j} w\right)(t)}{x-t} d t\right\|_{L_{p}\left(\mathcal{I}_{k}\right)} & \leq C_{15}\left(\int_{a_{2^{k-1}}}^{a_{2^{k+2}}}\left|\left(\sigma \phi p_{j} w\right)(t)\right|^{p} d t\right)^{\frac{1}{p}} \\
& \leq C_{16} a_{n}^{-\frac{1}{2}}\left(1-\frac{a_{2^{k+2}}}{a_{n}}\right)^{-\frac{1}{4}}\left(a_{2^{k+2}}-a_{2^{k-1}}\right)^{\frac{1}{p}} . \tag{4.19}
\end{align*}
$$

So, by (4.18) and (4.19) we conclude

$$
\begin{align*}
& \left\|s_{n}\left[\sigma \phi w^{-1}\right] w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}\left(\mathcal{I}_{k}\right)} \\
& \quad \leq C_{18} \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\left(a_{2^{k}}\right)\left(1-\frac{a_{2^{k+1}}}{a_{n}}\right)^{-\frac{1}{2}} \log \left(C T\left(a_{2^{k+1}}\right)\right)\left(a_{2^{k+1}}-a_{2^{k}}\right)^{\frac{1}{p}} . \tag{4.20}
\end{align*}
$$

Noting (4.11), we see $n \geq 2^{l+3}$ for $k \leq l$, so

$$
1-\frac{a_{2^{k+1}}}{a_{n}} \geq 1-\frac{a_{2^{k+1}}}{a_{2^{k+3}}} \geq C_{19} \frac{1}{T\left(a_{2^{k}}\right)} \quad \text { and } \quad a_{2^{k+1}}-a_{2^{k}} \leq C_{20} \frac{a_{2^{k}}}{T\left(a_{2^{k}}\right)}
$$

On the other hand, using Lemma 3.2(b), we see $\Phi\left(a_{t}\right) \sim \delta_{t}$. Hence, we have

$$
\begin{aligned}
\Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\left(a_{2^{k}}\right) & \sim \delta_{2^{k}}^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}=\left(\frac{1}{2^{k} T\left(a_{2^{k}}\right)}\right)^{\frac{2}{3}\left(\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}\right)} \\
& = \begin{cases}\left(\frac{1}{2^{k} T\left(a_{2^{k}}\right)}\right)^{\frac{2}{3} \Delta}, & 0<p \leq 4 ; \\
\left(\frac{1}{2^{k} T\left(a_{2^{k}}\right)}\right)^{\frac{2}{3}\left(\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)\right)}, & 4<p .\end{cases}
\end{aligned}
$$

Hence, from (4.20) we have

$$
\begin{aligned}
& \left\|s_{n}\left[\sigma \phi w^{-1}\right] w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}\left(\mathcal{I}_{k}\right)} \\
& \quad \leq C_{19} \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\left(a_{2^{k}}\right) T^{\frac{1}{2}}\left(a_{2^{k}}\right) \log \left(C T\left(a_{2^{k+1}}\right)\right)\left(\frac{a_{2^{k}}}{T\left(a_{2^{k}}\right)}\right)^{\frac{1}{p}} \\
& \quad \leq C_{19} \log \left(C T\left(a_{2^{k+1}}\right)\right) a_{2^{k}}^{\frac{1}{p}} \begin{cases}\left(\frac{1}{2^{k}}\right. \\
\left(\frac{1}{2^{k}}\right)^{\frac{2}{3} \Delta} T^{-\frac{2}{3} \Delta+\frac{1}{2}-\frac{1}{p}}\left(a_{2^{k}}\right), & 1<p \leq 4 ;\end{cases}
\end{aligned}
$$

From Lemma 2.1 (2.2), we know

$$
T^{-\frac{2}{3} \Delta+\frac{1}{2}-\frac{1}{p}}\left(a_{2^{k}}\right) \leq C_{1} C(\lambda, \eta)\left(2^{k}\right)^{\frac{2(\eta+\lambda-1)}{\lambda+1} \max \left\{-\frac{2}{3} \Delta+\frac{1}{2}-\frac{1}{p}, 0\right\}},
$$

and

$$
T^{-\frac{2}{3} \Delta+\frac{1}{3}\left(1-\frac{1}{p}\right)}\left(a_{2^{k}}\right) \leq C_{2} C(\lambda, \eta)\left(2^{k}\right)^{\frac{2(\eta+\lambda-1)}{\lambda+1} \max \left\{-\frac{2}{3} \Delta+\frac{1}{3}\left(1-\frac{1}{p}\right), 0\right\}}
$$

Therefore, we continue with Lemma 2.1(a) as

$$
\begin{align*}
\leq & C_{20} C(\lambda, \eta) \log \left(C T\left(a_{2^{k+1}}\right)\right) \\
& \times \begin{cases}\left(\frac{1}{2^{k}}\right. & \frac{2}{3} \Delta-\frac{\eta}{p}-\frac{2(\eta+\lambda-1)}{\lambda+1} \max \left\{-\frac{2}{3} \Delta+\frac{1}{2}-\frac{1}{p}, 0\right\} \\
\left(\frac{1}{2^{k}}\right)^{\frac{2}{3}\left(\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)\right)-\frac{\eta}{p}-\frac{2(\eta+\lambda-1)}{\lambda+1} \max \left\{-\frac{2}{3} \Delta+\frac{1}{3}\left(1-\frac{1}{p}\right), 0\right\},}, & 4<p \leq 4 ;\end{cases} \tag{4.21}
\end{align*}
$$

First, let $1<p \leq 4$. Then (4.8), that is,

$$
\Delta> \begin{cases}0, & 1<p \leq 2 ; \\ \frac{3}{2} \frac{\lambda-1}{3 \lambda-1} \frac{p-2}{p}, & 2<p \leq 4\end{cases}
$$

implies

$$
\Delta>\frac{3}{2} \frac{\lambda-1}{3 \lambda-1} \frac{p-2}{p} \quad \text { and } \quad \Delta>0
$$

iff

$$
\frac{2}{3} \Delta-\frac{2(\lambda-1)}{\lambda+1}\left(-\frac{2}{3} \Delta+\frac{1}{2}-\frac{1}{p}\right)>0 \quad \text { and } \quad \Delta>0
$$

iff

$$
\frac{2}{3} \Delta-\frac{2(\lambda-1)}{\lambda+1} \max \left\{-\frac{2}{3} \Delta+\frac{1}{2}-\frac{1}{p}, 0\right\}>0 .
$$

This means that there exists a positive constant $\eta_{1}>0$ small enough such that

$$
A\left(\eta_{1}\right):=\frac{2}{3} \Delta-\frac{\eta_{1}}{p}-\frac{2\left(\eta_{1}+\lambda-1\right)}{\lambda+1} \max \left\{-\frac{2}{3} \Delta+\frac{1}{2}-\frac{1}{p}, 0\right\}>0 .
$$

Now, let $p>4$. Then (4.8), that is,

$$
\Delta>\frac{\lambda-1}{3 \lambda-1} \frac{p-1}{p}-\frac{1}{4} \frac{\lambda+1}{3 \lambda-1} \frac{p-4}{p}
$$

implies

$$
\Delta>\frac{\lambda-1}{3 \lambda-1}\left(1-\frac{1}{p}\right)-\frac{\lambda+1}{3 \lambda-1}\left(\frac{1}{4}-\frac{1}{p}\right) \quad \text { and } \quad \Delta+\frac{1}{4}-\frac{1}{p}>0
$$

iff

$$
\frac{2}{3}\left(\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)\right)-\frac{2(\lambda-1)}{\lambda+1}\left(-\frac{2}{3} \Delta+\frac{1}{3}\left(1-\frac{1}{p}\right)\right)>0
$$

and

$$
\frac{2}{3}\left(\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)\right)>0
$$

iff

$$
\frac{2}{3}\left(\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)\right)-\frac{2(\lambda-1)}{\lambda+1} \max \left\{-\frac{2}{3} \Delta+\frac{1}{3}\left(1-\frac{1}{p}\right), 0\right\}>0 .
$$

Similarly to the previous case, this means that there exists a positive constant $\eta_{2}>0$ small enough such that

$$
B\left(\eta_{2}\right):=\frac{2}{3}\left(\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)\right)-\frac{\eta_{2}}{p}-\frac{2\left(\eta_{2}+\lambda-1\right)}{\lambda+1} \max \left\{-\frac{2}{3} \Delta+\frac{1}{3}\left(1-\frac{1}{p}\right), 0\right\}>0 .
$$

Now, we estimate $I_{p, k}$. From (4.21), we have

$$
\begin{aligned}
& \left\|s_{n}\left[\sigma \phi w^{-1}\right] w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}\left(\mathcal{I}_{k}\right)} \\
& \quad \leq C_{20} C(\lambda, \eta) \log \left(C T\left(a_{2^{k+1}}\right)\right) \begin{cases}\left(\frac{1}{2^{k}}\right)^{A(\eta)}, & 1<p \leq 4 ; \\
\left(\frac{1}{2^{k}}\right)^{B(\eta)}, & 4<p .\end{cases}
\end{aligned}
$$

For $\eta>0$ small enough, we can see $A(\eta)>A\left(\eta_{1}\right)>0$ and $B(\eta)>B\left(\eta_{2}\right)>0$. Let $\tau:=$ $\min \left\{A\left(\eta_{1}\right), B\left(\eta_{2}\right)\right\} / 2$. Then for small enough $\eta>0$, we have

$$
\begin{aligned}
\left\|s_{n}\left[\sigma \phi w^{-1}\right] w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}\left(\mathcal{I}_{k}\right)} & \leq C_{20} C(\lambda, \eta) \log \left(C T\left(a_{2^{k+1}}\right)\right)\left(\frac{1}{2^{k}}\right)^{2 \tau} \\
& \leq C_{21} C(\lambda, \eta)\left(\frac{1}{2^{k}}\right)^{\tau},
\end{aligned}
$$

because we see that for all $k>0$,

$$
\log \left(C T\left(a_{2^{k+1}}\right)\right)\left(\frac{1}{2^{k}}\right)^{\tau}<C_{22} .
$$

Therefore, under the conditions (4.8) we have

$$
\begin{align*}
\left\|s_{n}\left[\sigma \phi w^{-1}\right] w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}\left(a_{2} \leq|x| \leq a_{\frac{n}{8}}^{8}\right.}^{p} & \leq \sum_{k=1}^{l}\left\|s_{n}\left[\sigma \phi w^{-1}\right] w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}\left(\mathcal{I}_{k}\right)}^{p} \\
& \leq C_{21} C(\lambda, \eta) \sum_{k=1}^{l}\left(\frac{1}{2^{k}}\right)^{\tau} \leq C_{23} C(\lambda, \eta) \tag{4.22}
\end{align*}
$$

The estimation of

$$
\left\|s_{n}\left[\sigma \phi w^{-1}\right] w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}\left(|x| \leq a_{2}\right)}^{p}
$$

is similar. In fact, for $x \in\left[-a_{2}, a_{2}\right]$, we split

$$
H\left[\sigma \phi p_{j} w\right](x)=\left(\int_{-\infty}^{-2 a_{2}}+P . V \cdot \int_{-2 a_{2}}^{2 a_{2}}+\int_{2 a_{2}}^{\infty}\right) \frac{\left(\sigma \phi p_{j} w\right)(t)}{x-t} d t
$$

Here we see that

$$
\begin{aligned}
\left|\int_{-\infty}^{-2 a_{2}} \frac{\left(\sigma \phi p_{j} w\right)(t)}{x-t} d t\right| & =\left|\int_{2 a_{2}}^{\infty} \frac{\left(\sigma \phi p_{j} w\right)(-t)}{x+t} d t\right| \leq\left|\int_{2 a_{2}}^{\infty} \frac{\left(\sigma \phi p_{j} w\right)(-t)}{t-a_{2}} d t\right| \\
& =\left|\int_{0}^{\infty} \frac{\left(\sigma \phi p_{j} w\right)\left(-s-2 a_{2}\right)}{s+a_{2}} d t\right|
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\int_{2 a_{2}}^{\infty} \frac{\left(\sigma \phi p_{j} w\right)(t)}{x-t} d t\right| & =\left|\int_{2 a_{2}}^{\infty} \frac{\left(\sigma \phi p_{j} w\right)(t)}{t-x} d t\right| \leq\left|\int_{2 a_{2}}^{\infty} \frac{\left(\sigma \phi p_{j} w\right)(t)}{t-a_{2}} d t\right| \\
& =\left|\int_{0}^{\infty} \frac{\left(\sigma \phi p_{j} w\right)\left(s+2 a_{2}\right)}{s+a_{2}} d s\right|
\end{aligned}
$$

So, we can estimate $\int_{-\infty}^{-2 a_{2}}$ and $\int_{2 a_{2}}^{\infty}$ as we did I_{1} before (see (4.12)). We can estimate the second integral as follows: By M. Riesz's theorem,

$$
\left\|P . V . \int_{-2 a_{2}}^{2 a_{2}} \frac{\left(\sigma \phi p_{j} w\right)(t)}{x-t} d t\right\|_{L_{p}\left(|t| \leq 2 a_{2}\right)}^{p} \leq C \int_{-2 a_{2}}^{2 a_{2}}\left|\left(\sigma \phi p_{j} w\right)(t)\right|^{p} d t \leq C a_{n}^{-\frac{p}{2}} \leq C .
$$

Now, under the assumption (4.8), we can select $\eta_{0}>0$ small enough such that

$$
\Delta> \begin{cases}0, & 1<p \leq 2 ; \\ \frac{3}{2} \frac{\lambda+\eta_{0}-1}{3 \lambda+2 \eta_{0}-1} \frac{p-2}{p}, & 2<p \leq 4 ; \\ \max \left\{\frac{\lambda+\eta_{0}-1}{3 \lambda+2 \eta_{0}-1} \frac{p-1}{p}-\frac{1}{4} \frac{\lambda+1}{3 \lambda+2 \eta_{0}-1} \frac{p-4}{p}, 0\right\}, & 4<p .\end{cases}
$$

Consequently, from (4.22) with η_{0} we have the result (4.9).

Let $0<\alpha<1$, then for g_{n} in Lemma 4.5 we estimate $L_{n}\left(g_{n}\right)$ over $\left[-a_{\alpha n}, a_{\alpha n}\right]$.

Lemma 4.7 (cf. [3, Lemma 4.4]) Let $1<p<\infty$ and $0<\varepsilon<1$. Let $\left\{g_{n}\right\}$ be as in Lemma 4.4, but we exchange (4.3) with

$$
\left|g_{n}(x) w(x)\right| \leq \varepsilon \phi(x), \quad x \in \mathbb{R}, n \geq 1
$$

Then for $1<p<\infty$,

$$
\lim \sup _{n \rightarrow \infty}\left\|L_{n}\left(g_{n}\right) w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}\left(|x| \leq a_{\frac{n}{8}}^{8}\right.} \leq C \varepsilon
$$

Proof Let

$$
\chi_{n}:=\chi_{\left[-a_{\frac{n}{8}}, a_{\frac{n}{8}}\right]} ; \quad h_{n}:=\operatorname{sign}\left(L_{n}\left(g_{n}\right)\right)\left|L_{n}\left(g_{n}\right)\right|^{p-1} \chi_{n} w^{p-2} \Phi^{\left(\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}\right) p}
$$

and

$$
\sigma_{n}:=\operatorname{sign} s_{n}\left[h_{n}\right] .
$$

We shall show that

$$
\begin{equation*}
\left\|L_{n}\left(g_{n}\right) w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}\left(|x| \leq a_{\frac{n}{8}}^{8}\right.} \leq \varepsilon\left\|s_{n}\left[\sigma_{n} \phi w^{-1}\right] w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}\left(|x| \leq a_{\frac{n}{8}}\right)^{2}} \tag{4.23}
\end{equation*}
$$

Then from Lemma 4.5 we will conclude (4.22). Using orthogonality of $f-s_{n}[f]$ to \mathcal{P}_{n-1}, and the Gauss quadrature formula, we see that

$$
\begin{aligned}
& \left\|L_{n}\left(g_{n}\right) w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}\left(|x| \leq a_{\frac{n}{8}}^{8}\right)}^{p} \\
& \quad=\int_{\mathbb{R}} L_{n}\left(g_{n}\right)(x) h_{n}(x) w^{2}(x) d x \\
& \quad=\int_{\mathbb{R}} L_{n}\left(g_{n}\right)(x) s_{n}\left[h_{n}\right](x) w^{2}(x) d x=\sum_{j=1}^{n} \lambda_{j, n} g_{n}\left(x_{j, n}\right) s_{n}\left[h_{n}\right]\left(x_{j, n}\right) \\
& \\
& =\sum_{\left|x_{j, n}\right| \leq a_{n}} \lambda_{j, n} g_{n}\left(x_{j, n}\right) s_{n}\left[h_{n}\right]\left(x_{j, n}\right) \quad\left(\text { see }(4.4), \text { that is, the definition of } g_{n}\right) \\
& \\
& \leq \varepsilon \sum_{\left|x_{j, n}\right| \leq a_{n}} \lambda_{j, n} w^{-1}\left(x_{j, n}\right) \phi\left(x_{j, n}\right)\left|s_{n}\left[h_{n}\right]\left(x_{j, n}\right)\right| .
\end{aligned}
$$

Here, if we use Lemma 4.2 with $\psi=\phi$, we continue as

$$
\begin{aligned}
& \leq C \varepsilon \int_{\mathbb{R}}\left|s_{n}\left[h_{n}\right](x)\right| \phi(x) w(x) d x \\
& =C \varepsilon \int_{\mathbb{R}} s_{n}\left[h_{n}\right](x) \sigma_{n} \phi(x) w^{-1}(x) w^{2}(x) d x=C \varepsilon \int_{\mathbb{R}} h_{n}(x) s_{n}\left[\sigma_{n} \phi w^{-1}\right](x) w^{2}(x) d x \\
& =C \varepsilon \int_{-a_{\frac{n}{8}}}^{a_{\frac{n}{8}}} h_{n}(x) s_{n}\left[\sigma_{n} \phi w^{-1}\right](x) w^{2}(x) d x .
\end{aligned}
$$

Using Hölder's inequality with $q=p /(p-1)$, we continue this as

$$
\begin{aligned}
& \leq C \varepsilon\left(\int_{-a_{\frac{n}{8}}}^{a_{\frac{n}{8}}}\left|h_{n}(x) w(x) \Phi^{-\left(\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}\right)}(x)\right|^{q} d x\right)^{1 / q}\left(\int_{-a_{\frac{n}{8}}}^{a_{\frac{n}{8}}}\left|s_{n}\left[\sigma_{n} \phi w^{-1}\right] w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right|^{p} d x\right)^{\frac{1}{p}} \\
& =C \varepsilon\left\|L_{n}\left(g_{n}\right) w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}\left(|x| \leq a_{\frac{n}{8}}^{8}\right)}^{p-1}\left\|s_{n}\left[\sigma_{n} \phi w^{-1} w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right]\right\|_{L_{p}\left(|x| \leq a_{\frac{n}{8}}\right)^{2}}
\end{aligned}
$$

Cancellation of $\left\|L_{n}\left(g_{n}\right) w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}\left(|x| \leq a_{n}\right)}^{p-1}$ gives (4.23).
Proof of Theorem 2.2 In proving the theorem, we split our functions into pieces that vanish inside or outside $\left[-a_{\frac{n}{9}}, a_{\frac{n}{9}}\right]$. Throughout, we let χ_{S} denote the characteristic function of a set S. Also, we set for some fixed $\beta>0$,

$$
\phi(x)=\left(1+x^{2}\right)^{-\beta / 2},
$$

and suppose (2.5). We note that (2.5) means (4.8). Let $0<\varepsilon<1$. We can choose a polynomial P such that

$$
\left\|(f-P) w \phi^{-1}\right\|_{L_{\infty}(\mathbb{R})} \leq \varepsilon
$$

(see Lemma 3.8). Then we have

$$
\begin{align*}
& \left\|\left(f-L_{n}(f)\right) w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}(\mathbb{R})} \\
& \quad \leq\left\|(f-P) w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}(\mathbb{R})}+\left\|L_{n}(P-f) w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}(\mathbb{R})} \\
& \quad \leq \varepsilon\left\|\phi \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}(\mathbb{R})}+\left\|L_{n}(P-f) w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}(\mathbb{R})} \\
& \quad \leq C \varepsilon+\left\|L_{n}(P-f) w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}(\mathbb{R})^{*}} . \tag{4.24}
\end{align*}
$$

Here we used that

$$
\left\|\phi \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}(\mathbb{R})}<\infty
$$

because $\Delta>0$ and Φ^{-1} grows faster than any power of x (see Lemma 3.9). Next, let

$$
\chi_{n}:=\chi\left[-a_{\frac{n}{9}}, a_{\frac{n}{9}}\right],
$$

and write

$$
P-f=(P-f) \chi_{n}+(P-f)\left(1-\chi_{n}\right)=: g_{n}+f_{n} .
$$

By Lemma 4.4 we have

$$
\lim _{n \rightarrow \infty}\left\|L_{n}\left(f_{n}\right) w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{4}\right)^{+}}\right\|_{L_{p}(\mathbb{R})}=0
$$

By Lemma 4.5 we have

$$
\lim _{n \rightarrow \infty}\left\|L_{n}\left(g_{n}\right) w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{4}\right)^{+}}\right\|_{L_{p}\left(|x| \geq a \frac{n}{8}\right)}=0
$$

and by Lemma 4.7,

$$
\lim \sup _{n \rightarrow \infty}\left\|L_{n}\left(g_{n}\right) w \Phi^{\Delta+\left(\frac{1}{4}-\frac{1}{p}\right)^{+}}\right\|_{L_{p}\left(|x| \leq a_{\frac{n}{8}}^{8}\right.} \leq C \varepsilon
$$

Here we take $\varepsilon>0$ as $\varepsilon \rightarrow 0$, then with (4.24) we have the result.

5 Proof of Theorem 2.4

Lemma 5.1 (cf. [3, Lemma 3.1]) Let $w \in \mathcal{F}\left(C^{2}+\right)$. Let $0<\alpha<\frac{1}{4}$ and

$$
\sum_{n}(x):=\sum_{\left|x_{k, n}\right| \geq a_{\alpha n}}\left|l_{k, n}(x)\right| w^{-1}\left(x_{k, n}\right) .
$$

Then we have for $x \in \mathbb{R}$,

$$
\sum_{n}(x) w(x) \Phi^{1 / 4}(x) \leq C \log n
$$

Proof From Lemma 4.1 and Lemma 3.6 with $p=\infty$, we have the result easily.

Lemma 5.2 Let $w \in \mathcal{F}\left(C^{2}+\right)$. Let $0<\alpha<\frac{1}{4}$ and

$$
\sum_{n}^{\prime}(x):=\sum_{\left|x_{k, n}\right| \leq a_{\alpha n}}\left|l_{k, n}(x)\right| w^{-1}\left(x_{k, n}\right) .
$$

Then we have

$$
\sum_{n}^{\prime}(x) w(x) \Phi(x)^{3 / 4} \leq C \log n
$$

Proof By Lemma 3.5(c), Lemma 3.4(d) and Lemma 3.5(b),

$$
\begin{aligned}
\sum_{n}^{\prime}(x) & =\sum_{\left|x_{k, n}\right| \leq a_{\alpha n}}\left|l_{k, n}(x)\right| w^{-1}\left(x_{k, n}\right) \\
& =\frac{\left|p_{n}(x)\right|}{\left|x-x_{j_{x}, n}\right|\left|P_{n}^{\prime}\left(x_{j_{x}, n}\right)\right| w\left(x_{j_{x}, n}\right)}+\sum_{\substack{\left|x_{k, n}\right| \leq a_{\alpha n} \\
k \neq j_{x}}} \frac{\left|p_{n}(x)\right|}{\left|x-x_{k, n}\right|\left|P_{n}^{\prime}\left(x_{k, n}\right)\right| w\left(x_{k, n}\right)} \\
& \leq C w(x)^{-1}+a_{n}^{1 / 2}\left|p_{n}(x)\right| \sum_{\left|x_{k, n}\right| \leq a_{\alpha n},}^{k \neq j_{x}} \frac{\varphi_{n}\left(x_{k, n}\right)\left(1-\frac{\left|x_{k, n}\right|}{a_{n}}\right)}{\left|x-x_{k, n}\right|} \\
& \sim C w(x)^{-1}+\frac{a_{n}^{3 / 2}}{n}\left|p_{n}(x)\right| \sum_{\substack{\left|x_{k, n}\right| \leq a_{\alpha n}, k \neq j_{x}}} \frac{1-\frac{\left|x_{k, n}\right|}{a_{2 n}}}{\sqrt{1-\frac{\left|x_{k, n}\right|}{a_{n}}}}\left(1-\frac{\left|x_{k, n}\right|}{a_{n}}\right)^{1 / 4} \frac{1}{\left|x-x_{k, n}\right|} \\
& \sim C w(x)^{-1}+\frac{a_{n}^{3 / 2}}{n}\left|p_{n}(x)\right| \sum_{\substack{\left|x_{k, n}\right| \leq a_{\alpha n}, k \neq j_{x}}}\left(1-\frac{\left|x_{k, n}\right|}{a_{n}}\right)^{3 / 4} \frac{1}{\left|x-x_{k, n}\right|},
\end{aligned}
$$

where we used the fact

$$
1-\frac{\left|x_{k, n}\right|}{a_{2 n}} \sim 1-\frac{\left|x_{k, n}\right|}{a_{n}}, \quad\left|x_{k, n}\right| \leq a_{\alpha n} .
$$

So,

$$
\begin{aligned}
\sum_{n}^{\prime}(x) & \leq C w(x)^{-1}+\frac{a_{n}^{3 / 2}}{n}\left|p_{n}(x)\right| \sum_{\substack{\left|x_{k, n}\right| \leq a_{\alpha n}, k \neq j_{x}}}\left(1-\frac{\left|x_{k, n}\right|}{a_{n}}\right)^{3 / 4} \frac{1}{\left|x_{j_{x}, n}-x_{k, n}\right|} \\
& \leq C w(x)^{-1}+\frac{a_{n}^{3 / 2}}{n}\left|p_{n}(x)\right| \sum_{\substack{\left|x_{k, n}\right| \leq a_{\alpha n}, k \neq j_{x}}}\left(1-\frac{\left|x_{k, n}\right|}{a_{n}}\right)^{3 / 4} \frac{1}{\sum_{j_{x} \lessgtr i \lessgtr k} \varphi_{n}\left(x_{i, n}\right)} \\
& \leq C w(x)^{-1}+a_{n}^{1 / 2}\left|p_{n}(x)\right| \sum_{\substack{\left|x_{k, n}\right| \leq a_{\alpha n}, k \neq j_{x}}}\left(1-\frac{\left|x_{k, n}\right|}{a_{n}}\right)^{3 / 4} \frac{1}{\sum_{j_{x} \lessgtr i \lessgtr k} \sqrt{1-\left|x_{i, n}\right| / a_{n}}} .
\end{aligned}
$$

Therefore we have by Lemma 3.6 with $p=\infty$,

$$
\begin{aligned}
\sum_{n}^{\prime}(x) w(x) \Phi(x)^{3 / 4} \leq & C+C a_{n}^{1 / 2}\left|p_{n}(x)\right| w(x) \Phi(x)^{1 / 4} \\
& \times \sum_{\substack{\left|x_{k, n}\right| \leq a_{\alpha n}, k \neq j_{x}}}\left(1-\frac{\left|x_{k, n}\right|}{a_{n}}\right)^{3 / 4}\left(1-\frac{\left|x_{j_{x}, n}\right|}{a_{n}}\right)^{1 / 2} \frac{1}{\sum_{j_{x} \lessgtr i \lessgtr k} \sqrt{1-\left|x_{i, n}\right| / a_{n}}} \\
\leq & C \sum_{\substack{\left|x_{k, n}\right| \leq a_{\alpha n} \\
k \neq j_{x}}} \frac{1}{\left|j_{x}-k\right|} \sim \log n .
\end{aligned}
$$

Lemma 5.3 ([8, Theorem 1]) Let $w \in \mathcal{F}\left(C^{2}+\right)$. Then there exists a constant $C_{0}>0$ such that for every absolutely continuous function f with $w f^{\prime} \in C_{0}(\mathbb{R})$ (this means $w(x) f^{\prime}(x) \rightarrow 0$ as $|x| \rightarrow \infty)$ and every $n \in \mathbb{N}$, we have

$$
E_{n}(w ; f) \leq C \frac{a_{n}}{n} E_{n-1}\left(w ; f^{\prime}\right) .
$$

Proof of Theorem 2.4 There exists $P_{n-1} \in \mathcal{P}_{n}$ such that

$$
\left|\left(f(x)-P_{n-1}(x)\right) w(x)\right| \leq 2 E_{n-1}(w ; f) .
$$

Therefore, by Lemma 5.1 and Lemma 5.2,

$$
\begin{aligned}
& \left|\left(f(x)-L_{n}(f)(x)\right) w(x) \Phi^{3 / 4}(x)\right| \\
& \quad \leq\left|\left(f(x)-P_{n-1}(x)\right) w(x) \Phi^{1 / 4}(x)\right|+\left|L_{n}\left(f-P_{n-1}\right)(x) w(x) \Phi^{3 / 4}(x)\right| \\
& \quad=\left|\left(f(x)-P_{n-1}(x)\right) w(x) \Phi^{3 / 4}(x)\right| \\
& \quad+\left|w(x) \Phi^{3 / 4}(x) \sum_{k=1}^{n}\left(f\left(x_{k, n}\right)-P_{n-1}\left(x_{k, n}\right)\right) w\left(x_{k, n}\right) l_{k, n}(x) w^{-1}\left(x_{k, n}\right)\right|
\end{aligned}
$$

$$
\leq 2 E_{n-1}(w ; f)\left\{1+w(x) \Phi^{3 / 4}(x)\left|\sum_{k=1}^{n} l_{k, n}(x) w^{-1}\left(x_{k, n}\right)\right|\right\}
$$

$$
\leq C E_{n-1}(w ; f) \log n
$$

Let $w f^{(r)} \in C_{0}(\mathbb{R})$. If we repeatedly use Lemma 5.3 , then we have

$$
\left|\left(f(x)-L_{n}(f)(x)\right) w(x) \Phi^{3 / 4}(x)\right| \leq C_{r}\left(\frac{a_{n}}{n}\right)^{r} E_{n-r-1}\left(w ; f^{(r)}\right) \log n .
$$

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors conceived of the study, participated in its design and coordination, drafted the manuscript and participated in the sequence alignment. All authors read and approved the final manuscript.

Author details

${ }^{1}$ Department of Mathematics Education, Sungkyunkwan University, Seoul, 110-745, Republic of Korea. ${ }^{2}$ Department of Mathematics, Meijo University, Nagoya, 468-8502, Japan.

Acknowledgements

The authors thank the referees for many kind suggestions and comments.
Received: 10 April 2012 Accepted: 2 October 2012 Published: 17 October 2012

References

1. Levin, AL, Lubinsky, DS: Orthogonal Polynomials for Exponential Weights. Springer, New York (2001)
2. Jung, HS, Sakai, R: Specific examples of exponential weights. Commun. Korean Math. Soc. 24(2), 303-319 (2009)
3. Damelin, SB, Lubinsky, DS: Necessary and sufficient conditions for mean convergence of Lagrange interpolation for Erdős weights. Can. J. Math. 48(4), 710-736 (1996)
4. Jung, HS, Sakai, R: Derivatives of integrating functions for orthonormal polynomials with exponential-type weights. J. Inequal. Appl. 2009, Article ID 528454 (2009)
5. Jung, HS, Sakai, R: Orthonormal polynomials with exponential-type weights. J. Approx. Theory 152, 215-238 (2008)
6. Mhaskar, HN: Introduction to the Theory of Weighted Polynomial Approximation. World Scientific, Singapore (1996)
7. Lubinsky, DS: A survey of weighted polynomial approximation with exponential weights. Surv. Approx. Theory 3, 1-105 (2007)
8. Sakai, R, Suzuki, N: Favard-type inequalities for exponential weights. Pioneer J. Math. Math. Sci. 3(1), 1-16 (2011)

doi:10.1186/1029-242X-2012-237
 Cite this article as: Jung and Sakai: Mean and uniform convergence of Lagrange interpolation with the Erdős-type weights. Journal of Inequalities and Applications 2012 2012:237.

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

```
Submit your next manuscript at \ springeropen.com
```


[^0]: © 2012 Jung and Sakai; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

