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Some events of a US Army/NASA Lewis Research Center brush seals program are
reviewed, and the development of ceramic brush seals is described. Some preliminary room-
temperature flow data are modeled and compare favorably to the results of Ergun.
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INTRODUCTION

Recognizing the remarkable brush seal accom-
plishments of Ferguson [1988] and Flower [1990],
Fig. 1, NASA Lewis Research Center embarked on
a program to develop the fundamentals character-
izing flow and dynamics of brush seals.
The program entailed

(1) Developing a heuristic brush seal bulk flow
model and code for determining the flow and
pressure drop in brush seal systems that
would be suitable for both designers and
researchers.

(2) Utilizing an existing water tunnel facility and
fabricating an experimental oil tunnel facility
to visualize flows through simulated brush seal
sections.
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(3) Setting up an approach for determining rub
characteristics, debris, bristle flexure cycles,
and seal life associated with long-term opera-
tions for the brush seal and rub runner as a

system (tribopairing).
(4) Integrating observations from an airflow

tunnel of the flow through sequences of nylon
bristle brushes, such as bristle flexure, flutter,
edge loss, and clearances leakage.

Toward this end, a bulk flow model and
computer code were developed. The model
centered on the forces acting on a single bristle
and the flow through a porous medium consisting
of fibrous type materials. Although the details of
the brush are proprietary, estimates of its dimen-
sions and allowances for multiple bristles and
packing were made and input into the model. By
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FIGURE Circular brush seal (Courtesy of Cross Mfg. Ltd.).
FIGURE 2 Comparison of brush seal bulk flow model with
experimental data of Cross Mfg. Ltd.

using one data point from Cross Mfg. Ltd., the
geometric and flow parameters were established,
and predictions of flow and pressure drop followed
as illustrated in Fig. 2.
A simulated brush seal section with Lucite

bristles was fabricated and placed into a water
tunnel at NASA Lewis. The flow was seeded with
magnesium oxide particles and illuminated with a
sheet of laser light. The light provided two-
dimensional slices of the flow, revealing a

complexity not envisioned (Fig. 3). By moving the
light beam, the tunnel was surveyed to show flows
along the bristles and up and down through the
bristles, revealing complex vortex attachments and
surface boundary layers. Video tapes of these flow
fields were made to illustrate the complexity of
brush seal flows by Braun et al. [1990].

Using these flow visualization methods a special
oil tunnel was fabricated as well as sets of simulated
brush seal sections with Lucite bristles. Because the
refraction indexes of the Lucite and the oil were

matched, these sections could not be seen once they
were immersed in the oil, but the magnesium oxide
flow tracers illuminated by a sheet of laser light
provided two-dimensional slices of flows through
the sections that were recorded on video tape.
Frame-grabbing techniques and software devel-
oped were used to quantify these flows.
The simple brush seal bulk flow model and code

evolved into more complex forms, ineluding exten-
sions to other gases by using the theory of
corresponding states. The code still required
geometric information and one data point to
determine the flow and pressure drop (Hendricks
et al. [1992]; Carlile et al. [1992]). Concurrently, a
numerical method was developed to characterize
the two-dimensional flow patterns about sets of
pins simulating flow patterns in brush seals. The
code has been validated experimentally and faith-
fully reproduced the flow patterns associated with
a variety of two-dimensional arrays of pins (Braun
and Kudriavtsev [1993]).
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(c)

FIGURE 3 Observed flow patterns in brush seals. (a) Rivering. (b) Jetting. (c) Vortical flow. (d) Lateral and parallel flow. (e)
End-wall flow. (f) Flow at bristle tips. (g) Flow along bristles.

DEVELOPMENT OF CERAMIC
BRUSH SEALS

Testing and modeling brush seal systems
(Hendricks et al. [1993]; Hendricks et al. [1991])
including flow, thermal effects, and rubbing effects
and projecting the sealing needs of future propul-
sion systems revealed the need for seals that can
withstand high surface speeds and temperatures.
Therefore, a brush seal made of silicon carbide
bristles and metallic plates and an aluminum oxide
brush seal were to be developed. The former is

anticipated to operate at 1200 fps and 1500 F and is
suitable for configurations now in the design stage.
The latter is anticipated to operate at 2000F and
can be used in the next generation of engines. Both
types could be used in static sealing applications.
The craftsmanship of the 5.1-in.-diameter silicon

carbide bristle/metallic plate brush seal fabricated
and delivered by Cross Mfg. Ltd. was superb. Each
bristle appeared to be well manufactured and to be
placed as well as any metallic bristle with tips ground
to a perfect contour to provide the standard 5-mil

interference. Truly a remarkable achievement. The
silicon carbide bristle/metallic plate brush seal was
installed for flow testing. At first the rotor could be
turned in only one direction. After operation it
could be rotated by hand in either direction but
rotates freely in one direction only. The flow rate
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FIGURE 4 Normalized flow data for silicon carbide bristle/
metallic plates brush seal at ambient temperature and 2600 rpm,
5.1-in. seal.

data at ambient temperatures were consistent
(Fig. 4) considering that a brush seal is not a

positive seal system and leaks like a porous medium.

OTHER MODELING EFFORTS

In addition to the modeling already cited, several
other researchers have developed models to corre-

late and interpret brush seal flow data. These
models also require heuristic information and
many follow the geometric considerations and
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FIGURE 5 Sketch of brush seal geometry.

modeling of the NASA models. In some cases the
design methods are characterized, but the details
for epplication are absent. In other cases the results
are simply related to a flow coefficient, and others
they are related to geometric packing (Holle et al.
[1992]) and provide a simple code methodology.
Other flexure models follow the NASA bristle
loading model. Still others have provided some
results for geometric variations (Gorelov et al.
[1988]) or for other types of ceramic configura-
tions, such as fiberglass. Although these models
and the NASA models provide physical insight into
brush seal flow characteristics, the Ergun [1952]
porous flow model (with modifications for brush
seals, see Fig. 5)

(1)

could be used to correlate and predict brush seal
flows with simplicity (Fig. 6) where the constants a
and b are empirically determined (Hendricks et al.
[1993]). Two data points would be required to
establish geometric and flow parameters, and the
gaseous results for simple corresponding-states
fluids appear to fit quite well. The effects of surface
speed are not well established.
However a direct application of the Ergun model

provides useful dimensionless forms:

AP(15d 3)Go
150/(Re/(1 e)) + 1.75 (2)
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FIGURE 6 Simplified brush seal modeling based on Ergun
relation, standard volumetric flow rate verses pressure drop
across brush seal for gaseous helium, air (or nitrogen or oxy-
gen), argon, and carbon dioxide. AP=25V(#/#0)I)’+
O.O0015M(p/po)l)"2, where M is molecular weight, # is viscos-
ity, p is density, and subscript zero denotes standard condi-
tions (1 bar, 300 K); for helium use M in place of and
b 0. Data from Carlile et al. (5)

Re- 1.5 God/# Go-PO-
(3)

A 7r(do di)/4 Dp 1.5d

Yore. 1-- Vs/ Vt
7rUod2/((2)(1 + do/di)(t)cos(O + )).

(4)

For a well constructed brush seal, the footprint
length becomes

Lfp d+ eo)/COS(0 + p), (5)

where eo is the manufacturing tolerance, and the
total number of bristles per row becomes

No rdi/Lfp (6)

and the upper bound on the thickness and number
of rows becomes

(t) dNx rddi No/No (7)
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FIGURE 7 Dimensionless flow loss versus Reynolds number taken from Ergun (11) with superimposed brush seal data for air,
carbon dioxide, and helium from Carlile et al. (5). Grid background from Bird, R.B.; Stewart, W.E.; and Lightfoot, E.N:
Transport Phenomena, John Wiley Press, New York, 1960, p. 200.

where No is the number of bristles per unit length as

provided by the manufacturer or by micro-exam-
ination of the brush interface.
The values of P and Re/(1- ) are calculated

from the data set of Carlile et al. [1992] and
overplotted on the results presented by Ergun
[1952] as illustrated in Fig. 7. The principles of
corresponding states were applied to the thermo-
physical properties used in reduction of the data.

While some differences are noted between the
working fluids (helium, air, carbon-dioxide) the
major scatter appears at low pressure drops and
flow rates where experimental error is most acute.
The dynamic leakage at low surface speeds does
not differ significantly from the static results except
at very low flows. These effects can be seen in the
divergence of the helium data at low Reynolds
numbers.
And although the results of Fig. 7 appear quite

promising, the analysis should be applied with
caution as brush seal flows are quite complex
(Braun et al. [1990]; Hendricks et al. [1992]; Carlile
et al. [1992]; Braun and Kudriavtsev [1993]) and
further corroboration is required.

CONCLUSIONS

Recognizing the propulsion system requirements of
next-generation engines, the NASA Lewis
Research Center and the U.S. Army Office have
modeled brush seal flows and successfully devel-
oped, fabricated and flow checked a silicon carbide.

bristle/metallic plate brush seal system.

NOMENCLATURE

a,b
A
d

6’o

Go
Gr-- Go/G*
G*

Ergun constants, see Fig. 6
flow area without bristles
bristle diameter
fence diameter
shaft diameter
manufacturing tolerance
mass flux without bristles
reduced mass flux

V/PcPc/Zc (6010 g/cmZ-s for
Nitrogen)

bristle footprint length
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M

AP
Re
Z

V

P

molecular weight
number of bristles per unit circumference
number of bristle rows
number of bristles in a row (circumferential)
pressure drop
Reynolds number without bristles
compressibility (PV/RT)
bristle pack thickness
volume
volumetric flow rate
mass flow rate
dimensionless flow loss
porosity
density
viscosity

Subscripts

c thermodynamic critical point
s solid
o reference condition
t total
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