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A boundary value problem for a stationary nonlinear dispersive equation of 2𝑙 + 1 order on an interval (0, 𝐿) was considered. The
existence, uniqueness, and continuous dependence of a regular solution have been established.

1. Introduction

This work concerns the existence, uniqueness, and contin-
uous dependence of regular solutions to a boundary value
problem for one class of nonlinear stationary dispersive
equations posed on bounded intervals,

𝑎𝑢 + 𝑙∑
𝑗=1

(−1)𝑗+1𝐷2𝑗+1𝑥 𝑢 + 𝑢𝑢𝑥 = 𝑓 (𝑥) , 𝑙 ∈ N, (1)

where 𝑎 is a positive constant. This class of stationary
equations appears naturally while one wants to solve a
corresponding evolution equation

𝑢𝑡 + 𝑙∑
𝑗=1

(−1)𝑗+1𝐷2𝑗+1𝑥 𝑢 + 𝑢𝑢𝑥 = 0, 𝑙 ∈ N, (2)

making use of an implicit semidiscretization scheme:

𝑢𝑛 − 𝑢𝑛−1ℎ + 𝑙∑
𝑗=1

(−1)𝑗+1𝐷2𝑗+1𝑥 𝑢𝑛 + 𝑢𝑛𝑢𝑛𝑥 = 0, 𝑙 ∈ N, (3)

where ℎ > 0, [1]. Comparing (3) with (1), it is clear that 𝑎 =1/ℎ > 0 and 𝑓(𝑥) = 𝑢𝑛−1/ℎ.
For 𝑙 = 1, we have the well-known generalized KdV

equation and for 𝑙 = 2 the Kawahara equation. Initial

value problems for the Kawahara equation, which had been
derived in [2] as a perturbation of the Korteweg-de Vries
(KdV) equation, have been considered in [3–12] and attracted
attention due to various applications of those results in
mechanics and physics such as dynamics of long small-
amplitude waves in various media [13–15]. On the other
hand, last years appeared publications on solvability of initial-
boundary value problems for dispersive equations (which
included the KdV and Kawahara equations) in bounded and
unbounded domains [16–23]. In spite of the fact that there
is not some clear physical interpretation for the problems on
bounded intervals, their study is motivated by numerics [24].
The KdV and Kawahara equations have been developed for
unbounded regions of wave propagations; however, if one is
interested in implementing numerical schemes to calculate
solutions in these regions, there arises the issue of cutting
off a spatial domain approximating unbounded domains by
bounded ones. In this case, some boundary conditions are
needed to specify a solution.Therefore, precise mathematical
analysis of mixed problems in bounded domains for disper-
sive equations is welcome and attracts attention of specialists
in this area [16–19, 21, 25].

As a rule, simple boundary conditions at 𝑥 = 0 and𝑥 = 1 such as 𝑢 = 𝑢𝑥 = 0|𝑥=0, 𝑢 = 𝑢𝑥 = 𝑢𝑥𝑥 = 0|𝑥=1
for the Kawahara equation were imposed. Different kind of
boundary conditions was considered in [19, 26]. Obviously,
boundary conditions for (1) are the same as for (2). Because
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of that, study of boundary value problems for (1) helps to
understand solvability of initial-boundary value problems for
(2).

Last years, publications on dispersive equations of higher
orders appeared [7, 9, 10, 21, 27]. Here, we propose (1) as a
stationary analog of (2) because the last equation includes
classical models such as the KdV and Kawahara equations.

The goal of our work is to formulate a correct boundary
value problem for (1) and to prove the existence, uniqueness,
and continuous dependence on perturbations of 𝑓(𝑥) for
regular solutions.

The paper has the following structure. Section 1 is Intro-
duction. Section 2 contains formulation of the problem and
main results of the article. In Section 3 we give some useful
facts. Section 4 is devoted to the boundary value problem for
a complete linear equation, necessary to prove in Section 5
the existence of regular solutions for the original problem.
Finally, in Section 6 uniqueness is proved which provided
certain restriction on 𝑓 as well as continuous dependence of
solutions.

2. Formulation of the Problem and
Main Results

For real 𝑎 > 0, consider the following one-dimensional
stationary higher-order equation:

𝑎𝑢 + 𝑙∑
𝑗=1

(−1)𝑗+1𝐷2𝑗+1𝑢 + 𝑢𝐷𝑢 = 𝑓 in (0, 𝐿) (4)

subject to boundary conditions

𝐷𝑘𝑢 (0) = 𝐷𝑘𝑢 (𝐿) = 𝐷𝑙𝑢 (𝐿) = 0, 𝑘 = 0, . . . , 𝑙 − 1, (5)

where 0 < 𝐿 < ∞, 𝑙 ∈ N, 𝐷𝑖 = 𝑑𝑖/𝑑𝑥𝑖, 𝐷1 ≡ 𝐷 are the
derivatives of order 𝑖 ∈ N, and 𝑓 ∈ 𝐿2(0, 𝐿) is the given
function.

Throughout this paper we adopt the usual notation (⋅, ⋅),‖ ⋅ ‖, and ‖ ⋅ ‖𝐻𝑖 , 𝑖 ∈ N, for the inner product and the norm in𝐿2(0, 𝐿) and the norm in 𝐻𝑖(0, 𝐿), respectively [28]. Symbols𝐶0, 𝐶𝑖, 𝑖 ∈ N, mean positive constants appearing during the
text.

The main results of the article are the following theorem.

Theorem 1. Let 𝑓 ∈ 𝐿2(0, 𝐿). Then for fixed 𝑎 > 0, problem
(4)-(5) admits at least one regular solution 𝑢 = 𝑢(𝑥) ∈𝐻2𝑙+1(0, 𝐿) such that

‖𝑢‖𝐻2𝑙+1 ≤ 𝐶6 ((1 + 𝑥) , 𝑓2)1/2 (6)

with 𝐶6 depending only on 𝐿, 𝑙, 𝑎, and ((1 + 𝑥), 𝑓2). Moreover,
if 𝑙 ≥ 2 and ((1 + 𝑥), 𝑓2)1/2 < (2𝑎/3)√𝑎𝛽/2 with 𝛽 =
min{𝑎/2, 1}, then the solution is uniquely defined and depends
continuously on 𝑓. For 𝑙 = 1 the uniqueness and continuous
dependence are satisfied if ((1 + 𝑥), 𝑓2)1/2 is sufficiently small.

3. Preliminary Results

Lemma 2. For all 𝑢 ∈ 𝐻1(0, 𝐿), such that 𝑢(𝑥0) = 0 for some𝑥0 ∈ [0, 𝐿], one has
sup
𝑥∈(0,𝐿)

|𝑢 (𝑥)| ≤ √2 ‖𝑢‖1/2 ‖𝐷𝑢‖1/2 . (7)

Proof. Let 𝑥0 ∈ [0, 𝐿], such that 𝑢(𝑥0) = 0. Then for any 𝑥 ∈(0, 𝐿)
𝑢2 (𝑥) = ∫𝑥

𝑥0

𝐷 [𝑢2 (𝜉)] 𝑑𝜉 ≤ 2 ∫𝑥
𝑥0

𝑢 (𝜉) 𝐷 (𝜉) 𝑑𝜉
≤ 2 ∫𝐿
0

|𝑢 (𝑥)| |𝐷𝑢 (𝑥)| 𝑑𝑥 ≤ 2 ‖𝑢‖ ‖𝐷𝑢‖ . (8)

From this, the result follows immediately.

We will use the following version of the Gagliardo-
Nirenberg’s inequality [29–31].

Theorem 3. For 1 ≤ 𝑞, 𝑟 ≤ ∞ suppose 𝑢 belongs to 𝐿𝑞(0, 𝐿)
and its derivatives of order 𝑚 belong to 𝐿𝑟(0, 𝐿). Then for the
derivatives 𝐷𝑖𝑢, 0 ≤ 𝑖 < 𝑚 the following inequalities hold:𝐷𝑖𝑢𝐿𝑝 ≤ 𝐾1 𝐷𝑚𝑢𝜃𝐿𝑟 ‖𝑢‖1−𝜃𝐿𝑞 + 𝐾2 ‖𝑢‖𝐿𝑞 , (9)

where 1𝑝 = 𝑖 + 𝜃 (1𝑟 − 𝑚) + (1 − 𝜃) 1𝑞 , (10)

for all 𝜃 ∈ [𝑖/𝑚, 1] (the constants 𝐾1, 𝐾2 depending only on 𝐿,𝑚, 𝑖, 𝑞, and 𝑟).
We will use the following fixed point theorem [32].

Theorem 4 (Schaefer’s fixed point theorem). Let 𝑋 be a real
Banach Space. Suppose 𝐵 : 𝑋 → 𝑋 is a compact and
continuous mapping. Assume further that the set{𝑢 ∈ 𝑋 | 𝑢 = 𝜆𝐵𝑢 for some 0 ≤ 𝜆 ≤ 1} (11)

is bounded. Then 𝐵 has a fixed point.

We start with the linearized version of (4), (5).

4. Linear Problem

Consider the linear equation

𝐴𝑢 ≡ 𝑎𝑢 + 𝑙∑
𝑗=1

(−1)𝑗+1𝐷2𝑗+1𝑢 = 𝑓 in (0, 𝐿) (12)

subject to boundary conditions (5).

Theorem 5. Let 𝑓 ∈ 𝐿2(0, 𝐿). Then problem (12)-(5) admits a
unique regular solution 𝑢 = 𝑢(𝑥) ∈ 𝐻2𝑙+1(0, 𝐿) such that‖𝑢‖𝐻2𝑙+1 ≤ 𝐶3 𝑓 (13)

with 𝐶3 depending only on 𝐿 and 𝑎.
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Proof. Denote

𝑈 (𝑢) ≡ Id2𝑙+1

((((((((
(

𝑢 (0)...𝐷𝑙−1𝑢 (0)𝑢 (𝐿)...𝐷𝑙𝑢 (𝐿)

))))))))
)

, (14)

where Id2𝑙+1 is the identity matrix of order 2𝑙 + 1. Suppose𝑓 ∈ 𝐶([0, 𝐿]) and consider the following problem:𝐴𝑢 = 𝑓,𝑈 (𝑢) = 0 (15)

as well as the associated homogeneous problem𝐴𝑢 = 0, (16)𝑈 (𝑢) = 0. (17)

It is known, [33, 34], that (15) has a unique classical solution
if and only if (16)-(17) has only the trivial solution.

Let 𝑢 ∈ 𝐶2𝑙+1([0, 𝐿]) be a nontrivial solution of (16)-(17).
Multiplying (16) by 𝑢 and integrating over (0, 𝐿), we have

𝑎 ‖𝑢‖2 + 𝑙∑
𝑗=1

(−1)𝑗+1 (𝐷2𝑗+1𝑢, 𝑢) = 0. (18)

By integration by parts and the principle of finite induction,
we calculate(𝐷2𝑗+1𝑢, 𝑢)

= [ 𝑗∑
𝑘=1

(−1)𝑘+1𝐷𝑘−1𝑢 (𝑥) 𝐷(2𝑗+1)−𝑘𝑢 (𝑥)]𝑥=𝐿
𝑥=0

+ [(−1)𝑗 12 (𝐷𝑗𝑢 (𝑥))2]𝑥=𝐿
𝑥=0

(19)

for all 𝑗 ∈ N. Fixing 𝑙 ∈ N and making use of (5), we find that

(𝐷2𝑗+1𝑢, 𝑢) = 0 for 𝑗 ∈ {1, . . . , 𝑙 − 1} ,
(𝐷2𝑙+1𝑢, 𝑢) = (−1)𝑙+1 12 (𝐷𝑙𝑢 (0))2 . (20)

Thus

𝑙∑
𝑗=1

(−1)𝑗+1 (𝐷2𝑗+1𝑢, 𝑢) = (−1)𝑙+1 (−1)𝑙+1 12 (𝐷𝑙𝑢 (0))2
= 12 (𝐷𝑙𝑢 (0))2 ; (21)

therefore 𝑎 ‖𝑢‖2 + 12 (𝐷𝑙𝑢 (0))2 = 0 (22)

which implies 𝑎‖𝑢‖2 ≤ 0. Since 𝑎 > 0, it follows that 𝑢 ≡ 0.
Therefore, (15) has a unique classical solution 𝑢 ∈𝐶2𝑙+1([0, 𝐿]) given by

𝑢 (𝑥) = ∫𝐿
0

𝐺 (𝑥, 𝜉) 𝑓 (𝜉) 𝑑𝜉, (23)

where 𝐺 : [0, 𝐿] × [0, 𝐿] → R is Green’s function associated
with problem (16)-(17), [33, 34]. That is,𝐺 (𝑥, 𝜉)

= {{{{{{{{{{{
V (𝑥 − 𝜉) + 2𝑙∑

𝑘=0

𝑢𝑘 (𝑥) 𝑑𝑘 (𝜉) , 0 ≤ 𝜉 ≤ 𝑥 ≤ 𝐿
2𝑙∑
𝑘=0

𝑢𝑘 (𝑥) 𝑑𝑘 (𝜉) , 0 ≤ 𝑥 < 𝜉 ≤ 𝐿,
(24)

with

𝑢𝑘 (𝑥) = V2𝑙−𝑘 (𝑥) + 2𝑙∑
𝑠=𝑘+1

𝑏2𝑙+1−𝑠V𝑠−𝑘−1 (𝑥) ,
𝑘 = 0, . . . , 2𝑙, (25)

where 𝑏2𝑙+1−𝑠 are the coefficients of (12). The function V is a
unique solution to the following initial value problem:

𝑎𝑢 + 𝑙∑
𝑗=1

(−1)𝑗+1𝐷2𝑗+1𝑢 = 0 in R

𝐷2𝑙𝑢 (0) = 1,𝐷𝑖𝑢 (0) = 0,𝑖 = 0, . . . , 2𝑙 − 1,
(26)

and the continuous real functions 𝑑𝑘 are determined by 𝑢𝑘, V,
and (5).

We prove the following estimates.

Estimate I. Multiplying (12) by 𝑢, we obtain
𝑎 ‖𝑢‖2 + 12 (𝐷𝑙𝑢 (0))2 = (𝑓, 𝑢) . (27)

By Cauchy-Schwarz’s inequality, we get

‖𝑢‖ ≤ 1𝑎 𝑓 . (28)

Estimate II. Multiplying (12) by (1 + 𝑥)𝑢 and integrating over(0, 𝐿) we have
𝑎 (𝑢, (1 + 𝑥) 𝑢) + 𝑙∑

𝑗=1

(−1)𝑗+1 (𝐷2𝑗+1𝑢, (1 + 𝑥) 𝑢)
= (𝑓, (1 + 𝑥) 𝑢) . (29)
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Integration by parts and the principle of finite induction give(𝐷2𝑗+1𝑢, (1 + 𝑥) 𝑢)
= [ 𝑗∑
𝑘=1

(−1)𝑘+1 (1 + 𝑥) 𝐷𝑘−1𝑢 (𝑥) 𝐷(2𝑗+1)−𝑘𝑢 (𝑥)]𝑥=𝐿
𝑥=0

+ [ 𝑗∑
𝑘=1

(−1)𝑘 𝑘𝐷𝑘−1𝑢 (𝑥) 𝐷2𝑗−𝑘𝑢 (𝑥)]𝑥=𝐿
𝑥=0

+ [(−1)𝑗 (1 + 𝑥)2 (𝐷𝑗𝑢 (𝑥))2]𝑥=𝐿
𝑥=0

+ (−1)𝑗+1 (2𝑗 + 1)2 𝐷𝑗𝑢2

(30)

for all 𝑗 ∈ N. Fixing 𝑙 ∈ N and making use of (5), we get

(𝐷2𝑗+1𝑢, (1 + 𝑥) 𝑢) = (−1)𝑗+1 (2𝑗 + 1)2 𝐷𝑗𝑢2
for 𝑗 ∈ {1, . . . , 𝑙 − 1} ,

(𝐷2𝑙+1𝑢, (1 + 𝑥) 𝑢) = (−1)𝑙+1 12 (𝐷𝑙𝑢 (0))2
+ (−1)𝑙+1 (2𝑙 + 1)2 𝐷𝑙𝑢2 .

(31)

Therefore
𝑙∑
𝑗=1

(−1)𝑗+1 (𝐷2𝑗+1𝑢, (1 + 𝑥) 𝑢)
= 𝑙∑
𝑗=1

(2𝑗 + 12 ) 𝐷𝑗𝑢2 + 12 (𝐷𝑙𝑢 (0))2 . (32)

Applying Schwarz’s inequality on the right-hand side of (29),
we conclude ‖𝑢‖𝐻𝑙0 ≤ 𝐶0 𝑓 (33)

with 𝐶0 depending only on 𝐿 and 𝑎.
Estimate III. Rewriting (12) in the form

(−1)𝑙+1𝐷2𝑙+1𝑢 = 𝑓 − 𝑎𝑢 − 𝑙−1∑
𝑗=1

(−1)𝑗+1𝐷2𝑗+1𝑢, (34)

we estimate𝐷2𝑙+1𝑢 ≤ 𝑓 + 𝑎 ‖𝑢‖ + 𝑙−1∑
𝑗=1

𝐷2𝑗+1𝑢 . (35)

For 𝑙 = 1we have∑𝑙−1𝑗=1(−1)𝑗+1𝐷2𝑗+1𝑢 = 0 and for 𝑙 ≥ 2 denote𝐽 = {1, . . . , 𝑙 − 1} and𝐼1 = {𝑗 ∈ 𝐽 | 2𝑗 + 1 ≤ 𝑙} ,𝐼2 = {𝑗 ∈ 𝐽 | 𝑙 < 2𝑗 + 1 < 2𝑙 + 1} . (36)

Hence we can write
𝑙−1∑
𝑗=1

𝐷2𝑗+1𝑢 = ∑
𝑗∈𝐼1

𝐷2𝑗+1𝑢 + ∑
𝑗∈𝐼2

𝐷2𝑗+1𝑢 . (37)

Then (35) becomes𝐷2𝑙+1𝑢 ≤ 𝑓 + 𝑎 ‖𝑢‖ + ∑
𝑗∈𝐼1

𝐷2𝑗+1𝑢
+ ∑
𝑗∈𝐼2

𝐷2𝑗+1𝑢 . (38)

Making use of (33), we get𝑎 ‖𝑢‖ + ∑
𝑗∈𝐼1

𝐷2𝑗+1𝑢 ≤ (𝑎 + 𝑙) 𝐶0 𝑓 . (39)

On the other hand, 𝑙 < 2𝑗 + 1 < 2𝑙 + 1 for all 𝑗 ∈ 𝐼2. Hence, by
Theorem 3, there are 𝐾𝑗1, 𝐾𝑗2, depending only on 𝐿 and 𝑙, such
that𝐷2𝑗+1𝑢 ≤ 𝐾𝑗1 𝐷2𝑙+1𝑢𝜃𝑗 ‖𝑢‖1−𝜃𝑗 + 𝐾𝑗2 ‖𝑢‖ ,

with 𝜃𝑗 = 2𝑗 + 12𝑙 + 1 . (40)

Making use of Young’s inequality with 𝑝𝑗 = 1/𝜃𝑗, 𝑞𝑗 = 1/(1 −𝜃𝑗), and arbitrary 𝜖 > 0, we get𝐷2𝑗+1𝑢 ≤ 𝜖 𝐷2𝑙+1𝑢 + 𝐶𝑗1 (𝜖) ‖𝑢‖ + 𝐾𝑗2 ‖𝑢‖ , (41)

where 𝐶𝑗1(𝜖) = [𝑞𝑗(𝑝𝑗𝜖/(𝐾𝑗1)𝑝𝑗)𝑞𝑗/𝑝𝑗]−1. Summing over 𝑗 ∈ 𝐼2
and making use of (28), we find∑
𝑗∈𝐼2

𝐷2𝑗+1𝑢 ≤ 𝑙𝜖 𝐷2𝑙+1𝑢
+ ( 1𝑎 ∑

𝑗∈𝐼2

(𝐶𝑗1 (𝜖) + 𝐾𝑗2)) 𝑓 . (42)

Substituting (39), (42) into (38), we obtain𝐷2𝑙+1𝑢≤ 𝑙𝜖 𝐷2𝑙+1𝑢
+ (1 + (𝑎 + 𝑙) 𝐶0 + 1𝑎 ∑

𝑗∈𝐼2

(𝐶𝑗1 (𝜖) + 𝐾𝑗2)) 𝑓 . (43)

Taking 𝜖 = 1/2𝑙, we conclude𝐷2𝑙+1𝑢 ≤ 𝐶2 𝑓 , (44)

where 𝐶2 depends only on 𝐿, 𝑙, and 𝑎.
Again by Theorem 3, for all 𝑖 = 𝑙 + 1, . . . , 2𝑙, there are 𝐾𝑖1,𝐾𝑖2 depending only on 𝐿 and 𝑙 such that𝐷𝑖𝑢 ≤ 𝐾𝑖1 𝐷2𝑙+1𝑢𝜃𝑖 ‖𝑢‖1−𝜃𝑖 + 𝐾𝑖2 ‖𝑢‖ ,

with 𝜃𝑖 = 𝑖2𝑙 + 1 . (45)
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Making use of (28), (44), we obtain

𝐷𝑖𝑢 ≤ (𝐾𝑖1𝐶𝜃𝑖2𝑎1−𝜃𝑖 + 𝐾𝑖2𝑎 ) 𝑓 , for 𝑖 = 𝑙 + 1, . . . , 2𝑙. (46)

Taking into account (33), (44), and (46), we conclude that 𝑢 ∈𝐻2𝑙+1(0, L) and ‖𝑢‖𝐻2𝑙+1 ≤ 𝐶3 𝑓 (47)

with𝐶3 depending only on𝐿, 𝑙, and 𝑎. Uniqueness of𝑢 follows
from (28). In fact, such calculations must be performed for
smooth solutions and the general case can be obtained via
density arguments. Therefore, the proof of the Theorem 5 is
complete.

5. Nonlinear Case

Given 𝑢 ∈ 𝐻10 (0, 𝐿), set 𝐹 fl 𝑓 − 𝑢𝐷𝑢. Clearly, 𝐹 ∈ 𝐿2(0, 𝐿)
and by Lemma 2,‖𝐹‖ ≤ 𝑓 + ‖𝑢𝐷𝑢‖

≤ 𝑓 + ( sup
𝑥∈(0,𝐿)

|𝑢 (𝑥)|2)1/2 ‖𝐷𝑢‖
≤ 𝑓 + √2 ‖𝑢‖1/2 ‖𝐷𝑢‖3/2 .

(48)

By the Young inequality with 𝑝 = 4, 𝑞 = 4/3, and 𝜖 = 1, we
obtain ‖𝐹‖ ≤ 𝑓 + ‖𝑢‖2𝐻10 . (49)

Let𝑤 ∈ 𝐻2𝑙+1(0, 𝐿) be a unique solution of the linear equation
𝑎𝑤 + 𝑙∑

𝑗=1

(−1)𝑗+1𝐷2𝑗+1𝑤 = 𝐹 in (0, 𝐿) (50)

subject to boundary conditions (5). By (47), we know addi-
tionally that‖𝑤‖𝐻2𝑙+1 ≤ 𝐶3 ‖𝐹‖ ≤ 𝐶3 (𝑓 + ‖𝑢‖2𝐻10 ) . (51)

Let us henceforth write 𝐵𝑢 = 𝑤 whenever 𝑤 is derived from𝑢 via (50), (5). We assert that 𝐵 : 𝐻10 (0, 𝐿) → 𝐻10 (0, 𝐿) is
compact and continuous.

Indeed, if {𝑢𝑘} is a bounded sequence in𝐻10 (0, 𝐿), then, in
view of estimate (51), we have that sequence {𝑤𝑘} is bounded
in 𝐻2𝑙+1(0, 𝐿). Since 𝐻2𝑙+1(0, 𝐿) is compactly embedded in𝐻10 (0, 𝐿), then there exists a convergent in 𝐻10 (0, 𝐿) subse-
quence {𝐵𝑢𝑘𝑠}∞𝑠=1; therefore 𝐵 is compact.

Similarly, let 𝑢𝑘 → 𝑢 in 𝐻10 (0, 𝐿), then there are a
subsequence {𝑤𝑘𝑠}∞𝑠=1 and a function 𝑤 ∈ 𝐻10 (0, 𝐿) such that𝑤𝑘𝑠 → 𝑤 in 𝐻10 (0, 𝐿). Write (50) in the form

𝑎𝑤𝑘𝑠 + 𝑙∑
𝑗=1

(−1)𝑗+1𝐷2𝑗+1𝑤𝑘𝑠 = 𝑓 − 𝑢𝑘𝑠𝐷𝑢𝑘𝑠 (52)

for all 𝑠 ∈ N. Consequently by (51), passing to the limit as𝑠 → ∞, we find

𝑎𝑤 + 𝑙∑
𝑗=1

(−1)𝑗+1𝐷2𝑗+1𝑤 = 𝑓 − 𝑢𝐷𝑢. (53)

Thus 𝑤 = 𝐵𝑢. Hence, 𝑢𝑘 → 𝑢 in 𝐻10 (0, 𝐿) implies 𝐵𝑢𝑘 → 𝐵𝑢
in 𝐻10 (0, 𝐿). This proves that 𝐵 is continuous.

Finally, we must show that the set{𝑢 ∈ 𝐻10 (0, 𝐿) | 𝑢 = 𝜆𝐵𝑢 for some 0 ≤ 𝜆 ≤ 1} (54)

is bounded in 𝐻10 (0, 𝐿). Assume 𝑢 ∈ 𝐻10 (0, 𝐿) such that𝑢 = 𝜆𝐵𝑢 for some 0 < 𝜆 ≤ 1, (55)

then

𝑎 (𝑢𝜆) + 𝑙∑
𝑗=1

(−1)𝑗+1𝐷2𝑗+1 (𝑢𝜆) = 𝑓 − 𝑢𝐷𝑢
in (0, 𝐿) ;

𝐷𝑘 (𝑢𝜆) (0) = 𝐷𝑘 (𝑢𝜆) (𝐿) = 𝐷𝑙 (𝑢𝜆) (𝐿) = 0,
𝑘 = 0, . . . , 𝑙 − 1,

(56)

that is,

𝑎𝑢 + 𝑙∑
𝑗=1

(−1)𝑗+1𝐷2𝑗+1𝑢 + 𝜆𝑢𝐷𝑢 = 𝜆𝑓 in (0, 𝐿) (57)

and 𝑢 satisfies boundary conditions (5).

5.1. A Priori Estimates

Estimate IV. Multiplying (57) by 𝑢 and integrating over (0, 𝐿),
we have

𝑎 ‖𝑢‖2 + 𝑙∑
𝑗=1

(−1)𝑗+1 (𝐷2𝑗+1𝑢, 𝑢) + 𝜆 (𝑢𝐷𝑢, 𝑢)
= (𝜆𝑓, 𝑢) . (58)

Integrating by parts and using boundary conditions (5), we
get 𝜆 (𝑢𝐷𝑢, 𝑢) = 0. (59)

Hence, similar to (28), we obtain‖𝑢‖ ≤ 1𝑎 𝑓 . (60)

Estimate V. Multiplying (57) by (1 + 𝑥)𝑢 and integrating over(0, 𝐿), we have
𝑎 (𝑢, (1 + 𝑥) 𝑢) + 𝑙∑

𝑗=1

(−1)𝑗+1 (𝐷2𝑗+1𝑢, (1 + 𝑥) 𝑢)
+ 𝜆 (𝑢𝐷𝑢, (1 + 𝑥) 𝑢) = (𝜆𝑓, (1 + 𝑥) 𝑢) . (61)
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It is easy to verify that

𝑙∑
𝑗=1

(−1)𝑗+1 (𝐷2𝑗+1𝑢, (1 + 𝑥) 𝑢)
= 𝑙∑
𝑗=1

(2𝑗 + 12 ) 𝐷𝑗𝑢2 + 12 (𝐷𝑙𝑢 (0))2 . (62)

Integrating by parts, using boundary conditions (5) and
Lemma 2, we get

−𝜆 (𝑢𝐷𝑢, (1 + 𝑥) 𝑢) = 𝜆3 ∫𝐿
0

𝑢3 (𝑥) 𝑑𝑥
≤ 13 ∫𝐿
0

|𝑢 (𝑥)| |𝑢 (𝑥)|2 𝑑𝑥
≤ 13 sup
𝑥∈(0,𝐿)

|𝑢 (𝑥)| ∫𝐿
0

|𝑢 (𝑥)|2 𝑑𝑥
≤ √23 ‖𝑢‖5/2 ‖𝐷𝑢‖1/2 .

(63)

By the Young inequality, with 𝑝 = 4, 𝑞 = 4/3, and 𝜖 = 21/4,
we obtain𝜆 (𝑢𝐷𝑢, (1 + 𝑥) 𝑢) ≥ −12 ‖𝐷𝑢‖2 − 𝑏 ‖𝑢‖10/3 , (64)

where 𝑏 = 2−5/33−1/2.
Moreover, by the Young inequality with arbitrary 𝜖 > 0,

we get

(𝑓, (1 + 𝑥) 𝑢) ≤ 𝜖2 ((1 + 𝑥) , 𝑢2) + 12𝜖 ((1 + 𝑥) , 𝑓2) ; (65)

therefore(𝑎 − 𝜖2) ((1 + 𝑥) , 𝑢2) + ‖𝐷𝑢‖2
+ 𝑙∑
𝑗=2

(2𝑗 + 12 ) 𝐷𝑗𝑢2 + 12 (𝐷𝑙𝑢 (0))2
≤ 𝑏 ‖𝑢‖10/3 + 12𝜖 ((1 + 𝑥) , 𝑓2) .

(66)

Since

∫𝐿
0

(1 + 𝑥) 𝑓2𝑑𝑥 = 𝑓2 + ∫𝐿
0

𝑥𝑓2𝑑𝑥 ≥ 𝑓2 , (67)

it follows from (28) that(𝑎 − 𝜖2) ((1 + 𝑥) , 𝑢2) + ‖𝐷𝑢‖2
+ 𝑙∑
𝑗=2

(2𝑗 + 12 ) 𝐷𝑗𝑢2 + 12 (𝐷𝑙𝑢 (0))2
≤ ( 12𝜖 + 𝑏𝑎10/3 ((1 + 𝑥) , 𝑓2)2/3) ((1 + 𝑥) , 𝑓2) .

(68)

Taking 𝜖 = 𝑎 > 0, we conclude‖𝑢‖𝐻𝑙0 ≤ 𝐶4 ((1 + 𝑥) , 𝑓2)1/2 , (69)

where

𝐶4 = 1√𝛽 ( 12𝑎 + 𝑏𝑎10/3 ((1 + 𝑥) , 𝑓2)2/3)1/2 ,
𝛽 = min {𝑎2 , 1} . (70)

Remark 6. Note that estimate (69) does not depend on 𝐿 ∈(0, ∞). This estimate may be used to prove the existence of a
weak solution, 𝑢 ∈ 𝐻𝑙0(0, 𝐿).
Estimate VI. Rewriting (57) in the form

(−1)𝑙+1𝐷2𝑙+1𝑢 = 𝜆𝑓 − 𝑎𝑢 − 𝑙−1∑
𝑗=1

(−1)𝑗+1𝐷2𝑗+1𝑢
− 𝜆𝑢𝐷𝑢, (71)

we estimate𝐷2𝑙+1𝑢 ≤ 𝑓 + 𝑎 ‖𝑢‖ + ∑
𝑗∈𝐼1

𝐷2𝑗+1𝑢
+ ∑
𝑗∈𝐼2

𝐷2𝑗+1𝑢 + ‖𝑢𝐷𝑢‖ . (72)

By (69),𝑎 ‖𝑢‖ + ∑
𝑗∈𝐼1

𝐷2𝑗+1𝑢 ≤ (𝑎 + 𝑙) 𝐶4 ((1 + 𝑥) , 𝑓2)1/2 ,
‖𝑢𝐷𝑢‖ ≤ √2 ‖𝑢‖1/2 ‖𝐷𝑢‖3/2 ≤ ‖𝑢‖2𝐻10≤ 𝐶24 ((1 + 𝑥) , 𝑓2) .

(73)

Acting in the same way as we have proved (42),∑
𝑗∈𝐼2

𝐷2𝑗+1𝑢
≤ 𝑙𝜖 𝐷2𝑙+1𝑢

+ ( 1𝑎 ∑
𝑗∈𝐼2

(𝐶𝑗1 (𝜖) + 𝐾𝑗2)) ((1 + 𝑥) , 𝑓2)1/2 .
(74)

Substituting (73), (74) into (72), we obtain𝐷2𝑙+1𝑢≤ 𝑙𝜖 𝐷2𝑙+1𝑢
+ ( 1𝑎 ∑

𝑗∈𝐼2

(𝐶𝑗1 (𝜖) + 𝐾𝑗2)) ((1 + 𝑥) , 𝑓2)1/2
+ (1 + (𝑎 + 𝑙) 𝐶4) ((1 + 𝑥) , 𝑓2)1/2 .

(75)
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Setting 𝜖 = 1/2𝑙, we conclude𝐷2𝑙+1𝑢 ≤ 𝐶5 ((1 + 𝑥) , 𝑓2)1/2 , (76)

where 𝐶5 depends only on 𝐿, 𝑙, 𝑎, and ((1 + 𝑥), 𝑓2).
Making use of (60), (76), andTheorem 3, we obtain𝐷𝑖𝑢 ≤ (𝐾𝑖1𝐶𝜃𝑖5𝑎1−𝜃𝑖 + 𝐾𝑖2𝑎 ) ((1 + 𝑥) , 𝑓2)1/2 ,

for 𝑖 = 𝑙 + 1, . . . , 2𝑙. (77)

Taking into account (69), (76), and (77), we finally conclude‖𝑢‖𝐻2𝑙+1 ≤ 𝐶6 ((1 + 𝑥) , 𝑓2)1/2 (78)

with 𝐶6 depending only on 𝐿, 𝑙, 𝑎, and ((1 + 𝑥), 𝑓2).
Applying Theorem 4, we complete the proof of the

existence part of Theorem 1.

6. Uniqueness and Continuous Dependence

We separated two cases.

(1) Case 𝑙 ≥ 2. Let 𝑢1 and 𝑢2 be two distinct solutions of (4)-
(5). Then the difference 𝑢 = 𝑢1 − 𝑢2 satisfies the equation

𝑎𝑢 + 𝑙∑
𝑗=1

(−1)𝑗+1𝐷2𝑗+1𝑢 + 𝑢1𝐷𝑢 + 𝑢𝐷𝑢2 = 0 (79)

and boundary conditions (5).
Multiplying (79) by 𝑢 and integrating over (0, 𝐿), we have

𝑎 ‖𝑢‖2 + 𝑙∑
𝑗=1

(−1)𝑗+1 (𝐷2𝑗+1𝑢, 𝑢) + (𝑢1𝐷𝑢, 𝑢)
+ (𝑢𝐷𝑢2, 𝑢) = 0. (80)

Integrating by parts and using boundary conditions (5), we
get (𝑢1𝐷𝑢, 𝑢) ≥ −12 sup

𝑥∈(0,𝐿)

𝐷𝑢1 (𝑥) ‖𝑢‖2 . (81)

Similarly, (𝑢𝐷𝑢2, 𝑢) ≥ − sup
𝑥∈(0,𝐿)

𝐷𝑢2 (𝑥) ‖𝑢‖2 . (82)

We reduce (80) to the inequality

(𝑎 − 12 sup
𝑥∈(0,𝐿)

𝐷𝑢1 (𝑥) − sup
𝑥∈(0,𝐿)

𝐷𝑢2 (𝑥)) ‖𝑢‖2 ≤ 0. (83)

For 𝑖 = 1, 2, we have 𝑢𝑖 ∈ 𝐻2𝑙+1(0, 𝐿) and 𝐷𝑢𝑖(𝐿) = 𝐷𝑢𝑖(0) =0. By Lemma 2 and estimate (69), we obtain

sup
𝑥∈(0,𝐿)

𝐷𝑢𝑖 (𝑥) ≤ √2 𝐷𝑢𝑖1/2 𝐷2𝑢𝑖1/2
≤ √22 (𝐷𝑢𝑖 + 𝐷2𝑢𝑖) ≤ √2 𝑢𝑖𝐻𝑙0≤ √2𝐶4 ((1 + 𝑥) , 𝑓2)1/2

(84)

with

𝐶4 = 1√𝛽 ( 12𝑎 + 2−5/33−1/3𝑎10/3 ((1 + 𝑥) , 𝑓2)2/3)1/2 . (85)

Therefore (83) can be rewritten as

(𝑎 − 3√22 𝐶4 ((1 + 𝑥) , 𝑓2)1/2) ‖𝑢‖2 ≤ 0. (86)

Since

2𝑎3 √ 𝑎𝛽2 < √2 4√3𝑎7/4 ∀𝑎 > 0, (87)

it follows that if ((1 + 𝑥), 𝑓2)1/2 < (2𝑎/3)√𝑎𝛽/2, for fixed 𝑎 >0, then
𝐶4 < ( 1𝑎𝛽)1/2 (88)

and consequently

𝑎 − 3√22 𝐶4 ((1 + 𝑥) , 𝑓2)1/2 > 0. (89)

Hence, (86) implies ‖𝑢‖ = 0 and uniqueness is proved for𝑙 ≥ 2.
To show continuous dependence of solutions of pertur-

bations of 𝑓(𝑥), let 𝑓𝑖 ∈ 𝐿2(0, 𝐿) such that

((1 + 𝑥) , 𝑓2𝑖 )1/2 < 2𝑎3 √ 𝑎𝛽2 , 𝑖 = 1, 2. (90)

Consider 𝑢1 and 𝑢2 solutions of (4)-(5) with the right-hand
sides 𝑓1 and 𝑓2, respectively. Then, similar to (83), 𝑢1 − 𝑢2
satisfies the following inequality:

(𝑎 − 12 sup
𝑥∈(0,𝐿)

𝐷𝑢1 (𝑥) − sup
𝑥∈(0,𝐿)

𝐷𝑢2 (𝑥)) 𝑢1 − 𝑢2
≤ 𝑓1 − 𝑓2 (91)

which can be rewritten as

(𝑎 − 3√22 𝐶𝑀4 𝑀) 𝑢1 − 𝑢2 ≤ 𝑓1 − 𝑓2 , (92)

where𝑀 = max {((1 + 𝑥) , 𝑓21 )1/2 , ((1 + 𝑥) , 𝑓22 )1/2} ,
𝐶𝑀4 = 1√𝛽 ( 12𝑎 + 𝑏𝑎10/3𝑀4/3)1/2 . (93)

Making use of (90), we obtain𝑢1 − 𝑢2 ≤ 𝐶7 𝑓1 − 𝑓2 (94)
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with 𝐶7 = (𝑎 − (3√2/2)𝐶𝑀4 𝑀)−1 > 0. Hence ‖𝑓1 − 𝑓2‖ →0 implies ‖𝑢1 − 𝑢2‖ → 0. This proves the continuous
dependence for 𝑙 ≥ 2.
(2) Case 𝑙 = 1. For 𝑙 = 1, problem (4)-(5) becomes𝑎𝑢 + 𝐷3𝑢 + 𝑢𝐷𝑢 = 𝑓 in (0, 𝐿) (95)𝑢 (0) = 𝑢 (𝐿) = 𝐷𝑢 (𝐿) = 0. (96)

Let 𝑢1 and 𝑢2 be two distinct solutions of (95)-(96). Then the
difference 𝑢 = 𝑢1 − 𝑢2 satisfies the equation𝑎𝑢 + 𝐷3𝑢 + 12𝐷 (𝑢21 − 𝑢22) = 0 (97)

and boundary conditions (96).
Multiplying (97) by 𝑢 and integrating over (0, 𝐿), we have

𝑎 ‖𝑢‖2 + 12 (𝐷𝑢 (0))2 + 12 (𝐷 (𝑢21 − 𝑢22) , 𝑢) = 0. (98)

Integrating by parts and using the boundary conditions (96),
we get12 (𝐷 (𝑢21 − 𝑢22) , 𝑢) = 12 (𝐷 [(𝑢1 + 𝑢2) 𝑢] , 𝑢)

= −12 ((𝑢1 + 𝑢2) 𝑢, 𝐷𝑢)
= −14 ((𝑢1 + 𝑢2) , 𝐷 [𝑢2])
= 14 (𝐷 (𝑢1 + 𝑢2) , 𝑢2)
≤ 14 sup
𝑥∈(0,𝐿)

𝐷 (𝑢1 + 𝑢2) (𝑥) ‖𝑢‖2
(99)

and (98) becomes

[𝑎 − 14 ( sup
𝑥∈(0,𝐿)

𝐷𝑢1 (𝑥) + sup
𝑥∈(0,𝐿)

𝐷𝑢2 (𝑥))] ‖𝑢‖2
≤ 0. (100)

By (60), (69), it follows that𝐷3𝑢𝑖 ≤ 2 𝑓 + 𝐶24 ((1 + 𝑥) , 𝑓2) , 𝑖 = 1, 2. (101)

According to Theorem 3 and (60), (101), we estimate for 𝑖 =1, 2
sup
𝑥∈(0,𝐿)

𝐷𝑢𝑖 (𝑥) ≤ 𝐾1 𝐷3𝑢𝑖1/2 𝑢𝑖1/2 + 𝐾2 𝑢𝑖
≤ 𝐾12 𝐷3𝑢𝑖 + (𝐾12 + 𝐾2) 𝑢𝑖
≤ 𝐾12 𝐶24 ((1 + 𝑥) , 𝑓2)

+ (𝐾1 + 𝐾12𝑎 + 𝐾2𝑎 ) 𝑓 .
(102)

Suppose ((1 + 𝑥), 𝑓2)1/2 < 1, then ((1 + 𝑥), 𝑓2) < ((1 +𝑥), 𝑓2)1/2; therefore
sup
𝑥∈(0,𝐿)

𝐷𝑢𝑖 (𝑥)
≤ [𝐾12 𝐶24 + (𝐾1 + 𝐾12𝑎 + 𝐾2𝑎 )] ((1 + 𝑥) , 𝑓2)1/2 ,

𝑖 = 1, 2.
(103)

Hence we can rewrite (100) as follows:

[𝑎 − (𝐾14 𝐶24 + (𝐾12 + 𝐾14𝑎 + 𝐾22𝑎 )) ((1 + 𝑥) , 𝑓2)1/2]
⋅ ‖𝑢‖2 ≤ 0. (104)

For a fixed 𝑎 > 0 assume that((1 + 𝑥) , 𝑓2)1/2
< min{√2 4√3𝑎7/4, 4𝑎2𝛽(1 + 2𝑎𝛽 + 𝛽) 𝐾1 + 2𝛽𝐾2} . (105)

Then 𝐶24 < 1/𝑎𝛽 and

[𝑎 − (𝐾14 𝐶24 + (𝐾12 + 𝐾14𝑎 + 𝐾22𝑎 )) ((1 + 𝑥) , 𝑓2)1/2]
> 0; (106)

hence (104) implies ‖𝑢‖ = 0. Assuming that, for 𝑙 = 1,
((1 + 𝑥) , 𝑓2)1/2

< min{1, √2 4√3𝑎7/4, 4𝑎2𝛽(1 + 2𝑎𝛽 + 𝛽) 𝐾1 + 2𝛽𝐾2} , (107)

we complete the proof of uniqueness.The continuous depen-
dence for this case follows in the same manner as it has been
done for the case 𝑙 ≥ 2 provided ((1 + 𝑥), 𝑓2)1/2 is sufficiently
small.

This completes the proof of the uniqueness and continu-
ous dependence part of Theorem 1.
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