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The Fock quantization of free fields propagating in cosmological backgrounds is in general not unambiguously defined due to the
nonstationarity of the space-time. For the case of a scalar field in cosmological scenarios, it is known that the criterion of unitary
implementation of the dynamics serves to remove the ambiguity in the choice of Fock representation (up to unitary equivalence).
Here, applying the same type of arguments and methods previously used for the scalar field case, we discuss the issue of the
uniqueness of the Fock quantization of the Dirac field in the closed FRW space-time proposed by D’Eath and Halliwell.

1. Introduction

The physics of the very early universe, and in particular rele-
vant quantum phenomena, can nowadays be tested, compar-
ing the predictions of theoretical models against quite accu-
rate observational data. Besides scalar fields, it is therefore
important to explore the impact of different matter sources as
well (in this respect, see [1]). Concerning fermion fields, and
in particular Dirac spinors, a consistent framework to deal
with the corresponding quantum field theory in a cosmo-
logical context was put forward several years ago by D’Eath
and Halliwell [2] (see also [3] for a more general discussion).
In particular, [2] considers a concrete Fock quantization
of the (fully inhomogeneous) Dirac field, on homogeneous
and isotropic background space-time, namely, the closed
Friedmann-Robertson-Walker (FRW) cosmological model.

As it is typically the case regarding the quantization of
systems with an infinite number of degrees of freedom, also
in the quantization of the Dirac field in curved space-time,
one must face the issue of ambiguity, or lack of uniqueness
in the quantization procedure. Just like in the scalar field

case, the ambiguity in the quantization can be seen to lie
in the choice of a so-called complex structure in the space
of solutions (of the Dirac equation in this case). For the
analogous problem concerning the scalar field, it was shown
[4–8] that the requirement of a unitary implementation of
the dynamics, combined with a natural implementation of
spatial symmetries, leads to a unique quantization (modulo
unitary equivalence), thus removing the ambiguity problem.
The unitary evolution criterion replaces here the well-known
requirements based on invariance under space-time symme-
tries (such as the Poincaré group or the symmetries of the
de Sitter space) or on stationarity, which are unavailable, for
example, in typical inflationary and cosmological scenarios.

In the previous work [9], it was shown that D’Eath and
Halliwell’s [2] quantization of the Dirac field in the closed
FRW cosmology satisfies requirements similar to those just
mentioned in the scalar field context; namely, the complex
structure chosen in [2] is invariant under the symmetries
of the field equations (which of course include 𝑆𝑂(4), the
isometry group of the spatial sections) and admits a unitary
implementation of the dynamics. Most importantly, it was

Hindawi
Advances in Mathematical Physics
Volume 2018, Article ID 2450816, 7 pages
https://doi.org/10.1155/2018/2450816

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/205634506?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0002-3219-903X
https://doi.org/10.1155/2018/2450816


2 Advances in Mathematical Physics

shown that a large class of seemingly natural alternatives to
D’Eath and Halliwell’s quantization actually lead to the same
quantization (modulo unitary equivalence) once unitary
implementation of the dynamics is required, thus providing
a strong indication that full uniqueness of the quantization
result is valid for the Dirac field, in perfect correspondence
with the previous results obtained for the scalar field case.
Moreover, such a uniqueness result was indeed obtained
later on, as a corollary of a more general analysis presented
in [10] (see also [11, 12]). However, the approach taken in
[10] was substantially different from the line of reason-
ing previously adopted for the scalar field. In particular,
in [10], two different types of ambiguities were addressed
simultaneously. In fact, besides the usual ambiguity in the
choice of the quantum representation for a fixed classical
field description, time-dependent scalings of the fermion
field modes (after an appropriate mode decomposition) were
also allowed, effectively modifying the original D’Eath and
Halliwell parametrization of the system. In this respect, a
sort of time-dependent complex structure was introduced in
[10], leading to a more effective and economic mathematical
treatment.On the other hand, this different perspectivemight
have contributed to a less than full appreciation of the results
obtained in [10]. In the current work, we recover the line
of reasoning followed in the scalar field case, presenting a
new and fully independent proof of part of the results of
[10]. In particular, we will show that, preserving D’Eath and
Halliwell’s field description, the quantization of the Dirac
field put forward in [2] is essentially unique, in the sense
that all Fock quantizations determined by 𝑆𝑂(4)-invariant
complex structures admitting a unitary implementation of
the dynamics are unitarily equivalent.

Let us mention that there are similarities between the
unitary evolution requirement and the so-called Hadamard
condition, in the sense that some type of ultraviolet regularity
is imposed in both cases. Moreover, for space-time with com-
pact spatial sections, all (pure Fock) Hadamard states lead to
unitarily equivalent quantizations [13, 14]. We present here a
different approach towards uniqueness of the quantization,
insisting on a unitary implementation of the dynamics at the
quantum level. A brief discussion concerning the relation
between these two approaches is presented in Section 5.

2. The Model and Its Quantization

In this section, we present a very brief review of the quantum
treatment of the Dirac field in the unit three-sphere 𝑆3,
following [2, 9].

Let us consider the closed FRWcosmologicalmodel, with
metric

𝑑𝑠2 = 𝑒2�훼(�휂) (−𝑑𝜂2 + 𝑑Ω23) , (1)

where 𝜂 denotes conformal time and 𝑑Ω23 is the metric on𝑆3. The massive Dirac spinor Ψ is taken in the Weyl repre-
sentation; that is, it is described by a pair of two-component
spinors, 𝜙�퐴 and 𝜒�퐴 , with opposite chirality. The spinors𝜙�퐴 and 𝜒�퐴 can be expanded in complete bases of spinor
harmonics on 𝑆3 provided by the eigenmodes of the Dirac

operator, hereby denoted by 𝜌�푛�푝�퐴 , 𝜎�푛�푝�퐴 and 𝜌�푛�푝
�퐴
, 𝜎�푛�푝
�퐴
. Here, 𝑛 ∈

N, the degeneracy of each eigenspace is

𝑔�푛 = (𝑛 + 1) (𝑛 + 2) = 𝜔2�푛 − 14 , (2)

with 𝜔�푛 = 𝑛 + 3/2, and the label 𝑝 = 1, . . . , 𝑔�푛 accounts for
the degeneracy of the eigenspaces.

Explicitly, the two-component spinors (and their Hermi-
tian conjugates) can be expanded in modes as follows:

𝜙�퐴 (𝑥)
= 𝑒−3�훼(�휂)/22𝜋 ∑

�푛�푝�푞

�̆��푝�푞�푛 [𝑚�푛�푝 (𝜂) 𝜌�푛�푞�퐴 (x) + 𝑟�푛�푝 (𝜂) 𝜎�푛�푞�퐴 (x)] ,
𝜒�퐴 (𝑥)
= 𝑒−3�훼(�휂)/22𝜋 ∑

�푛�푝�푞

̆𝛽�푝�푞�푛 [𝑠�푛�푝 (𝜂) 𝜌�푛�푞�퐴 (x) + 𝑡�푛�푝 (𝜂) 𝜎�푛�푞�퐴 (x)] ,
(3)

with

∑
�푛�푝�푞

fl
∞∑
�푛=0

�푔𝑛∑
�푝=1

�푔𝑛∑
�푞=1

. (4)

The Grassmann variables 𝑚�푛�푝, 𝑟�푛�푝, 𝑠�푛�푝, and 𝑡�푛�푝 therefore
describe the fermionic degrees of freedom, after mode
decomposition. In the above expressions, the coefficients �̆��푝�푞�푛
and ̆𝛽�푝�푞�푛 are the matrix elements of two constant matrices �̆��푛
and ̆𝛽�푛, each of dimension 𝑔�푛 and block-diagonal form, with
blocks given, respectively, by

(1 1
1 −1) ,

( 1 −1
−1 −1) .

(5)

They are included by convenience, to avoid dynamical cou-
plings between mode components with different values of 𝑝.

The mode components of the Dirac equation, deduced
from the Einstein-Dirac action, can be summarized in the
following set of differential equations (and corresponding
complex conjugates) [2]:

𝑥�耠�푛�푝 = 𝑖𝜔�푛𝑥�푛�푝 − 𝑖𝑚𝑒�훼𝑦�푛�푝,
𝑦�耠�푛�푝 = 𝑖𝜔�푛𝑦�푛�푝 + 𝑖𝑚𝑒�훼𝑥�푛�푝. (6)

In the above equations,𝑚 stands for the mass of the fermion
field, and the prime denotes derivative with respect to
conformal time. We are adopting here the notation (𝑥�푛�푝, 𝑦�푛�푝)
to denote any of the sets of pairs (𝑚�푛�푝, 𝑠�푛�푝) or (𝑡�푛�푝, 𝑟�푛�푝).

As mentioned in the Introduction, the ambiguity in the
Fock quantization of the Dirac field resides in the choice of
a complex structure in the space of solutions of the Dirac
equation.This in turn amounts to a choice of a set of classical
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annihilation- and creation-like variables, to be quantized as
annihilation and creation operators (see [9] for details).

The preferred choice of annihilation- and creation-like
variables considered in [2] diagonalizes the Hamiltonian and
is defined as follows. The annihilation-like variables of the
particles and antiparticles are chosen to be

𝑎(�푥,�푦)�푛�푝 = √12 − 12𝜉�푛 𝑥�푛�푝 + √
12 + 12𝜉�푛𝑦�푛�푝,

𝑏(�푥,�푦)�푛�푝 = √12 + 12𝜉�푛 𝑥�푛�푝 − √
12 − 12𝜉�푛𝑦�푛�푝,

(7)

with

𝜉�푛 = √1 + (𝑚𝑒�훼𝜔�푛 )
2. (8)

The creation-like variables 𝑎(�푥,�푦)†�푛�푝 fl 𝑎(�푥,�푦)�푛�푝 and 𝑏(�푥,�푦)†�푛�푝 fl

𝑏(�푥,�푦)�푛�푝 are their complex conjugates. When a complete Hamil-
tonian analysis of the Einstein-Dirac action is performed, one
finds that these variables indeed satisfy the Dirac brackets
characteristic of annihilation- and creation-like variables for
particles and antiparticles; namely,

{𝑎(�푥,�푦)�푛�푝 , 𝑎(�푥,�푦)†�푛�푝 } = {𝑏(�푥,�푦)�푛�푝 , 𝑏(�푥,�푦)†�푛�푝 } = −𝑖,
{𝑎(�푥,�푦)�푛�푝 , 𝑏(�푥,�푦)�푛�푝 } = 0. (9)

Let us call reference complex structure and reference
quantization the ones determined by the choice of variables
introduced above.

The main feature of this quantization is that it allows a
unitary implementation of the classical field dynamics in the
quantum theory. Let us see exactly what this means. Since
both the equations of motion and the relations (7) are linear,
it is clear that the variables defined by relations (7) evolve
linearly in time. In particular, the evolution from an arbitrary
initial time 𝜂0 to any other time 𝜂 is given by a Bogoliubov
transformation of the form

(𝑎(�푥,�푦)�푛�푝
𝑏(�푥,�푦)†�푛�푝 )

�휂

= 𝐵�푛 (𝜂, 𝜂0)(𝑎(�푥,�푦)�푛�푝
𝑏(�푥,�푦)†�푛�푝 )

�휂0

, (10)

with

𝐵�푛 = (𝛼�푓�푛 𝛽�푓�푛𝛽�푔�푛 𝛼�푔�푛) , (11)

where 𝛼�푓�푛 and 𝛽�푓�푛 are coefficients (dependent on 𝜂 and 𝜂0)
whose full expression can be found in [9].

It turns out that a classical transformation of type (10)
can be unitarily implemented (in the Fock representation
defined by the complex structure corresponding to the choice
of variables (7)) if and only if [15] the sum

∑
�푛

𝑔�푛 (𝛽�푓�푛 2 + 𝛽�푔�푛 2) (12)

is finite. Of course, since in the present case one is interested
in the unitary implementation of the dynamics, one must
require that the above sum be finite for all values of time 𝜂
and 𝜂0, which was proven to be the case [9].

3. Alternative Complex Structures and
Unitarity Condition

The question that we now want to answer is the following:
is the quantization described in the previous section unique?
In what sense? We have learned from the analysis of similar
cases involving scalar fields that the requirement of unitary
implementation of the dynamics is a successful criterion in
the selection of quantum representations. In fact, together
with the requirement of invariance of the complex structure
under remaining spatial symmetries, the unitary dynamics
condition selects a unique quantization (modulo unitary
equivalence) for the scalar field propagating in a nonstation-
ary homogeneous and isotropic space-time background [7],
typical of cosmological scenarios. Note that the invariance
of the complex structure guarantees a natural unitary imple-
mentation of the symmetries in question, and it is therefore
reasonable to restrict attention to those invariant complex
structures. Of course, our considerations should be extended
to noninvariant complex structures whenever the physical
conditions require it or if physically relevant noninvariant
complex structures are known to exist. That is not the case
in the present situation, to the best of our knowledge. On
the other hand, the unitary implementation of the dynamics
cannot be made via complex structures that remain invariant
under evolution, for the simple reason that such complex
structures do not exist, due to the lack of stationarity.

As shown in detail in [10], the general form of a complex
structure that remains invariant under the action of the isom-
etry group of 𝑆3 on the space of two-component spinors is
very simple to characterize. Such an invariant complex struc-
ture is associated with a different choice of annihilation- and
creation-like variables {𝑎(�푥,�푦)�푛�푝 , �̃�(�푥,�푦)�푛�푝 , 𝑎(�푥,�푦)†�푛�푝 , �̃�(�푥,�푦)†�푛�푝 }, related to
our reference variables (7) bymeans of a transformation (and
its complex conjugate) of the type

(𝑎(�푥,�푦)�푛�푝
�̃�(�푥,�푦)†�푛�푝 ) = 𝐾�푛(𝑎(�푥,�푦)�푛�푝

𝑏(�푥,�푦)†�푛�푝 ) , (13)

with

𝐾�푛 = (𝜅�푓�푛 𝜆�푓�푛𝜆�푔�푛 𝜅�푔�푛) , (14)

where the time-independent matrices 𝐾�푛, 𝑛 ∈ N, are arbi-
trary 2 × 2 unitary matrices; that is, they satisfy the relations

𝜅�푓�푛 2 + 𝜆�푓�푛 2 = 1,𝜅�푔�푛 2 + 𝜆�푔�푛2 = 1,
𝜅�푓�푛 𝜆�푔�푛 + 𝜆�푓�푛𝜅�푔�푛 = 0,

(15)

as follows from (9).
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Among the large class of quantum representations of the
Dirac field determined by the invariant complex structures
as above, there are certainly an infinite number of repre-
sentations that are not unitarily equivalent to our reference
quantization. In fact, the condition for unitary equivalence
reads [15, 16]

∑
�푛

𝑔�푛 (𝜆�푓�푛 2 + 𝜆�푔�푛2) < ∞, (16)

which is obviously not satisfied by an arbitrary sequence of
matrices𝐾�푛.

At this point, it should be mentioned that there is an
important difference—first noted in [9]—with respect to
the previously studied scalar field case, which we will now
address. Note that orthogonality conditions (15) (contrary to
corresponding symplectic conditions in the scalar field case)
can be fulfilled with 𝜆�푓�푛 = 𝜆�푔�푛 = 1, 𝜅�푓�푛 = 𝜅�푔�푛 = 0. It is clear that
a transformation of this type simply interchanges particles
with antiparticles and therefore has no physical meaning,
since that distinction is conventional to begin with. However,
if one allows such a transformation for an infinite number of
modes, one ends up with two formally inequivalent quantiza-
tions, since the equivalence condition (16) is clearly violated.
In order to eliminate the artificially inequivalent complex
structures associated with these types of transformations,
we will adhere to a fixed convention as to what is called
particle and antiparticle, which we will not allow to change
(except possibly for a finite number of modes). A concrete
implementation of this notion is to require, for example, that
the sequences {𝜅�푓�푛 } and {𝜅�푔�푛 } in (14) have no subsequences
that tend to zero, which we will assume from now on. There
still remains, of course, a large class of physically meaningful
complex structures.

We are going to show, precisely, that once unitary imple-
mentation of the dynamics is imposed as a requirement,
only those complex structures that satisfy (16) survive. As
a preparation, let us state a preliminary consequence of the
existence of unitary dynamics.

One can easily show (see [4]) that a complex structure
associated with a choice of variables (13), determined by
matrices 𝐾�푛, allows a unitary implementation of the dynam-
ics if and only if the time-dependent transformation deter-
mined by the sequence ofmatrices𝐾�푛𝐵�푛(𝜂, 𝜂0)𝐾−1�푛 is unitarily
implementable with respect to our reference quantization. A
straightforward computation shows that, as a consequence,
the following two sequences must be square-summable, ∀𝜂:

√𝑔�푛 ((𝜅�푓�푛 )2 𝛽�푓�푛 − (𝜆�푓�푛)2 𝛽�푔�푛 + 𝜅�푓�푛 𝜆�푓�푛 (𝛼�푔�푛 − 𝛼�푓�푛 )) ,
√𝑔�푛 ((𝜅�푔�푛 )2 𝛽�푔�푛 − (𝜆�푔�푛)2 𝛽�푓�푛 + 𝜅�푔�푛𝜆�푔�푛 (𝛼�푓�푛 − 𝛼�푔�푛)) .

(17)

Since we know that (i) the sequences √𝑔�푛𝛽�푓�푛 and √𝑔�푛𝛽�푔�푛
are square-summable, because the sum (12) was shown to
be finite [9], and (ii) the sequences 𝜅�푛 and 𝜆�푛 are bounded,

it follows (from linearity of the set of square-summable
sequences) that necessarily

∑
�푛

𝑔�푛 𝜅�푓�푛 𝜆�푓�푛 (𝛼�푔�푛 − 𝛼�푓�푛 )2 < ∞,
∑
�푛

𝑔�푛 𝜅�푔�푛𝜆�푔�푛 (𝛼�푓�푛 − 𝛼�푔�푛)2 < ∞. (18)

These conditions are therefore consequences of the require-
ment of unitarity of the dynamics. We will take these as the
starting point for our next section, where we will prove that
conditions (18) in fact imply that (16) is satisfied.

4. Uniqueness of the Quantization

A detailed asymptotic analysis of the evolution matrices 𝐵�푛
(11) was performed in [9]. Following the same procedure that
allowed obtaining an expression for 𝛽ℎ�푛 in the limit of large𝑛 (equation (3.18) in [9]), we obtain the following expression
for 𝛼�푔�푛 − 𝛼�푓�푛 , ∀𝜂, in the limit of large 𝑛:

(𝛼�푔�푛 − 𝛼�푓�푛 ) (𝜂, 𝜂0) = 2𝑖 {[𝑓�푛2 (𝜂) 𝑓�푛2 (𝜂0) − 𝑓�푛1 (𝜂)
⋅ 𝑓�푛1 (𝜂0)] 𝑒−I(Λ1𝑛(�휂))sin(𝜔�푛Δ𝜂
+ ∫�휂
�휂0

R (Λ1�푛 (𝜂)) 𝑑𝜂) + [𝑓�푛1 (𝜂) 𝑓�푛2 (𝜂0) + 𝑓�푛2 (𝜂)
⋅ 𝑓�푛1 (𝜂0)] Γ�푛 𝑒Δ�훼 [𝑒−I(Λ1𝑛(�휂))sin(𝜔�푛Δ𝜂
+ ∫�휂
�휂0

R (Λ1�푛 (𝜂)) 𝑑𝜂 + 𝜑�푛) − 𝑒I(Λ2𝑛(�휂))sin(𝜔�푛Δ𝜂
+ ∫�휂
�휂0

R (Λ2�푛 (𝜂)) 𝑑𝜂 − 𝜑�푛)]} .

(19)

In the above expression, we have Δ𝜂 = 𝜂 − 𝜂0, Δ𝛼 = 𝛼(𝜂) −𝛼(𝜂0),
𝑓�푛1 = √12 − 12𝜉�푛 =

𝑚𝑒�훼2𝜔�푛 + O (𝜔−2�푛 ) ,
𝑓�푛2 = √1 − 𝑓�푛1 2 = 1 + O (𝜔−2�푛 ) ,
Γ�푛 = 𝑚𝑒�훼(�휂0)2𝜔�푛 + 𝑖𝛼�耠 (𝜂0) =

𝑚𝑒�훼(�휂0)2𝜔�푛 + O (𝜔−2�푛 ) ,
(20)

𝜑�푛 is the phase of Γ�푛, and Λ1�푛 and Λ2�푛 are time-dependent
functions, defined in the appendix of [9], which have the
property of being of order O(𝜔−1�푛 ) in the limit of large 𝑛.

Taking into account the asymptotic limits of the coeffi-
cients 𝑓�푛1 , Γ�푛, Λ1�푛, and Λ2�푛, it follows that all the terms in



Advances in Mathematical Physics 5

√𝑔�푛𝜅�푓�푛 𝜆�푓�푛(𝛼�푔�푛 − 𝛼�푓�푛 ) are square-summable, with the possible
exception of the term

2𝑖√𝑔�푛𝜅�푓�푛 𝜆�푓�푛𝑓�푛2 (𝜂) 𝑓�푛2 (𝜂0) 𝑒−I(Λ1𝑛)
⋅ sin(𝜔�푛Δ𝜂 + ∫�휂

�휂0

R (Λ1�푛 (𝜂)) 𝑑𝜂) . (21)

However, since we are assuming that the sequence√𝑔�푛𝜅�푓�푛 𝜆�푓�푛(𝛼�푔�푛 − 𝛼�푓�푛 ) itself is square-summable, it follows that
sequence (21) is square-summable as well. Moreover, since𝑓�푛2 (𝜂)𝑓�푛2 (𝜂0)𝑒−I(Λ1𝑛) actually tends to one in the large 𝑛 limit,
we conclude that

∑
�푛

𝑔�푛 𝜅�푓�푛 𝜆�푓�푛 2 sin2 (𝜔�푛Δ𝜂 + ∫�휂
�휂0

R (Λ1�푛 (𝜂)) 𝑑𝜂) < ∞. (22)

Obviously, the same reasoning leads to the conclusion that

∑
�푛

𝑔�푛 𝜅�푔�푛𝜆�푔�푛2 sin2 (𝜔�푛Δ𝜂 + ∫�휂
�휂0

R (Λ1�푛 (𝜂)) 𝑑𝜂) < ∞. (23)

These two conditions are therefore consequences of (18),
which are in turn a consequence of our requirement of
unitary implementation of the dynamics. From this point on,
the proof that (22)-(23) implies (16) can be done along the
lines of the argument presented in [6]. Let us then introduce
the shifted time 𝑇 fl 𝜂 − 𝜂0 and rewrite the elements of the
sequence appearing in (22) in the form

√𝑔�푛𝜅�푓�푛 𝜆�푓�푛 sin [𝜔�푛𝑇 + ∫�푇
0
𝑑𝜂R (Λ1�푛 (𝜂 + 𝜂0))] . (24)

The function

𝑧 (𝑇) fl lim
�푀→∞

�푀∑
�푛=1

𝑔�푛 𝜅�푓�푛 2 𝜆�푓�푛 2

⋅ sin2 [𝜔�푛𝑇 + ∫�푇
0
𝑑𝜂R (Λ1�푛 (𝜂 + 𝜂0))]

(25)

therefore exists for all 𝑇 in the domain of 𝜂−𝜂0. In particular,𝑧(𝑇) is well defined on some closed subinterval I�퐿 = [𝑎, 𝑎+𝐿],
where 𝐿 is some finite positive number.

Luzin’s theorem [17] guarantees that, for every 𝛿 > 0, there
exist (i) a measurable set 𝐸�훿 ⊂ I�퐿 such that its complement 𝐸�훿
with respect to I�퐿 satisfies∫�퐸𝛿 𝑑𝑇 < 𝛿 and (ii) a function𝐹�훿(𝑇)
which is continuous on I�퐿 and coincides with 𝑧(𝑇) in 𝐸�훿. In
particular, defining 𝐼�훿 fl ∫

�퐸𝛿
𝐹�훿(𝑇)𝑑𝑇, we obtain from Luzin’s

theorem
�푀∑
�푛=1

𝑔�푛 𝜅�푓�푛 2 𝜆�푓�푛 2

⋅ ∫
�퐸𝛿

sin2 [𝜔�푛𝑇 + ∫�푇
0
𝑑𝜂R (Λ1�푛 (𝜂 + 𝜂0))] 𝑑𝑇

≤ ∫
�퐸𝛿

𝑧 (𝑇) 𝑑𝑇 = 𝐼�훿, ∀𝑀 ∈ N
+.

(26)

This inequality provides us with a bound on ∑𝑔�푛|𝜅�푓�푛 |2|𝜆�푓�푛 |2.
To show it, we note that, ∀𝑛,
∫
�퐸𝛿

sin2 [𝜔�푛𝑇 + ∫�푇
0
𝑑𝜂R (Λ1�푛 (𝜂 + 𝜂0))] 𝑑𝑇

= ∫
I𝐿

sin2 [𝜔�푛𝑇 + ∫�푇
0
𝑑𝜂R (Λ1�푛 (𝜂 + 𝜂0))] 𝑑𝑇

− ∫
�퐸𝛿

sin2 [𝜔�푛𝑇 + ∫�푇
0
𝑑𝜂R (Λ1�푛 (𝜂 + 𝜂0))] 𝑑𝑇

≥ ∫
I𝐿

sin2 [𝜔�푛𝑇 + ∫�푇
0
𝑑𝜂R (Λ1�푛 (𝜂 + 𝜂0))] 𝑑𝑇 − 𝛿.

(27)

Applying now an integration by parts and a bound just like
in the appendix of [6], we find the following for the integral
over I�퐿:

∫
I𝐿

sin2 [𝜔�푛𝑇 + ∫�푇
0
𝑑𝜂R (Λ1�푛 (𝜂 + 𝜂0))] 𝑑𝑇

≥ 𝐿2 − 12𝜔�푛0 (1 − 𝐷) −
∫
I𝐿

𝐶�耠 (𝑇 + 𝜂0) 𝑑𝑇4𝜔3�푛0 (1 − 𝐷)2
fl Λ �푛0 .

(28)

Here, 𝐶 is the coefficient of the term in 𝜔−1�푛 of the Laurent
series expansion ofR(Λ1�푛).This expression is valid for 𝑛 ≥ 𝑛0,
where 𝑛0 is any fixed (positive) integer such that 𝜔2�푛0 is larger
than the maximum of the function |𝐶(𝑇 + 𝜂0)|/(2𝐷) in the
interval I�퐿, and𝐷 < 1 is any fixed constant. We are assuming
also that 𝑛0 is such that Λ �푛0 > 0 (which can certainly be
achieved with an appropriate choice, since Λ �푛0 tends to 𝐿/2
when 𝑛0 tends to infinity).

Let us introduce the above result in the last inequality of
(27), to obtain

∫
�퐸𝛿

sin2 [𝜔�푛𝑇 + ∫�푇
0
𝑑𝜂R (Λ1�푛 (𝜂 + 𝜂0))] 𝑑𝑇

≥ Λ �푛0 − 𝛿.
(29)

We choose now 𝛿 such that Λ �푛0 > 𝛿, which is certainly
possible. Then, it follows from (26) that, for all𝑀 ≥ 𝑛0,

�푀∑
�푛=�푛0

𝑔�푛 𝜅�푓�푛 2 𝜆�푓�푛 2 ≤ 𝐼�훿Λ �푛0 − 𝛿 . (30)

Since 𝑛0 is fixed and the above bound is true for arbitrarily
large 𝑀, it follows that the sequence √𝑔�푛𝜅�푓�푛 𝜆�푓�푛 is square-
summable.

At this point, let us recall from the discussion in the
previous section that, without loss of physical generality,
the sequence {𝜅�푓�푛 } can be assumed to be bounded from
below. Thus, it follows moreover that the sequence √𝑔�푛𝜆�푓�푛 is
square-summable. Finally, since obviously the same reason-
ing applies to (23), one is led to the conclusion that condition
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(16) is satisfied. It is therefore proven that the quantization
of the Dirac field put forward in [2] is indeed unique up to
unitary equivalence, under the requirements of invariance
of the complex structure and unitary implementation of the
dynamics.

5. Conclusions and Discussion

We have analyzed the issue of the uniqueness of the Fock
quantization of the Dirac field in the closed FRW space-
time proposed by D’Eath and Halliwell [2]. We have worked
with a fixed parametrization of the system, leaving aside
the extra freedom that resides in the possibility of applying
(to the variables to be quantized) further time-dependent
transformations. It was therefore possible to address the
uniqueness issue in exactly the same way as previously done
for the scalar field case. In this sense, the results obtained
here are more restricted than those of [10] but were proven
in a fully independent way, using arguments that are more
familiar to the quantum cosmology literature. It was fully
confirmed that once a convention for particles-antiparticles
is agreed upon, D’Eath and Halliwell’s Fock quantization is
indeed unique, subjected to the requirements of invariance
of the complex structure under the group of spatial isometries
and unitary implementation of the dynamics in Fock space.

A question that deserves discussion is the following. It has
been argued by several authors that the so-called Hadamard
states and corresponding quantum representations are phys-
ically privileged for quantum field theory in curved space-
time since, in particular, they allow a regularization of the
stress-energy tensor and a well-defined (perturbative) con-
struction of interacting theories. Moreover, it is known—as
a consequence of more general results in [14] and following
previous results for the scalar field—that, for theDirac field in
globally hyperbolic space-time with compact spatial sections,
all pure Fock Hadamard states lead to unitarily equivalent
quantizations. In the special case of cosmological space-time,
such as the case considered in the present paper, another
privileged family of states is known, that of adiabatic states,
and again all adiabatic states (of sufficiently high order) give
rise to unitarily equivalent representations (in the spatially
compact case) [18]. Moreover, adiabatic states (of sufficiently
high order) and Hadamard states belong to the same unitary
equivalence class (in the spatially compact case). Thus,
criteria leading to unitarily equivalent quantizations (in the
spatially compact case) do exist, and in that strict sense
the results of the current paper bring essentially no novelty,
except that of an alternative approach.

A similar question emerged in the previous studies of
analogous (e.g., using the criteria of unitary implementation
of the dynamics) uniqueness of quantization results con-
cerning the scalar field [4–8]. It is again well known that,
for the scalar field in globally hyperbolic space-time (with
compact spatial sections), all pure Fock Hadamard states
give rise to unitarily equivalent quantizations [13]. For the
case of the scalar field in the closed FRW space-time, the
relation between the quantum representation selected by
the unitary evolution requirement and the one provided by
Hadamard states was discussed in some detail in [7], with

the following conclusions. Once the time-dependent scaling𝜙 → 𝜑 = 𝑎𝜙 is taken into account, where 𝑎 is the FRW scale
factor, the two criteria lead to equivalent quantizations. In
more precise terms, the unique (unitary equivalence class of)
quantum representation determined by the requirement of
unitary implementation of the classical dynamics of the field𝜑 induces a Fock quantization of the original field 𝜙 which is
unitarily equivalent to the ones associatedwith both adiabatic
and Hadamard states. (See [19] for a general definition of
adiabatic states and [20, 21] for the special FRW setting. In the
particular case of compact spatial sections, it can be shown
that all adiabatic and Hadamard states give rise to unitarily
equivalent representations [21].)

If one believes, as we do, that preserving unitarity of
the dynamics as much as possible is a desirable aspect in
quantum physics, the fact that this perspective actually leads
to a quantum theory that is equivalent to the one associated
with the celebrated Hadamard states appears by itself as an
interesting and reassuring result.

Based on the previous experience with the scalar field, we
likewise expect that, in the current context of the Dirac field
in the closed FRW space-time, both Hadamard states and
the requirement of unitary implementation of the dynamics
would lead to essentially equivalent quantizations. However,
the detailed analysis of the relation between the two different
approaches in the Dirac field case seems rather involved, in
comparison with the previous study concerning the scalar
field [7], and it falls outside the scope of the present work.
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