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We show that if the non-Gaussian part of the cumulants of a random matrix model obeys some scaling bounds in the size of the
matrix, thenWigner’s semicircle law holds.This result is derived using the replica technique and an analogue of the renormalisation
group equation for the replica effective action.

1. Introduction

Random matrix theory (see the classical text [1]) first
appeared in physics in Wigner’s work on the level spacing
in large nuclei. Since then, it has proven to have multiple
applications to physics and other branches of science (see,
e.g., [2]). Most of these applications rely on the universal
behaviour of some of the observables for matrices of large
size. A simple example is Wigner’s semicircle law for the
eigenvalue density that holds in the large𝑁 limit for matrices
whose entries are independent and identically distributed.

Understanding the universal behaviour of eigenvalue dis-
tributions and correlations ranks among the major problems
in randommatrix theory. In this respect, the renormalisation
group turns out to be a powerful technique. Introduced in the
context of critical phenomena in statistical mechanics by K.
Wilson to account for the universality of critical exponents,
the latter has also been proven to be useful in understanding
probability theory. For instance, it leads to an insightful proof
of the central limit theorem (see the review by Jona-Lasinio
[3] and references therein).

The renormalisation group has been used to derive
the semicircle law for random matrices in the pioneering
work of Brézin and Zee [4]. In the latter approach, the
renormalisation group transformation consists in integrating
over the last line and columnof amatrix of size𝑁+1 to reduce

it to amatrix of size𝑁.This leads to a differential equation for
the resolvent 𝐺(𝑧) = 1/𝑁⟨Tr(𝑧 − 𝑀)−1⟩ in the large 𝑁 limit
whose solution yields the semicircle law.

In this paper, we follow a different route: we first express
the resolvent as an integral over replicas and introduce a
differential equation for the replica effective action. This
differential equation is a very simple analogue of Polchinski’s
exact renormalisation group equation [5]. It is used to derive
inductive bounds on the various terms, ensuring that the
semicircle law is obeyed provided the cumulants of the
original matrix model fulfil some simple scaling bounds in
the large𝑁 limit.

This paper is based on some work in collaboration with
Krajewski et al. in which we extend Wigner’s law to random
matrices whose entries fail to be independent [6] to which we
refer for further details.There have been other works on such
an extension (see [7–9]).

2. What Are Random Matrices?

A random matrix is a probability law on a space of matrices,
usually given by the joint probability density on its entries:

𝜌 (𝑀) = 𝜌 (𝑀11,𝑀12, . . .) . (1)
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Thus, a random matrix of size 𝑁 is defined as a collection
of 𝑁2 random variables. However, there is a much richer
structure than this, relying notably on the spectral properties
of the matrices.

Here, we restrict our attention to a single randommatrix.
Note that it is also possible to consider several random
matrices, in which case the noncommutative nature ofmatrix
multiplication plays a fundamental role, leading to the theory
of noncommutative probabilities.

There are two important classes of probability laws on
matrices:

(i) Wigner ensemble: the entries are all independent
variables:

𝜌 (𝑀) = ∏
�푖,�푗

𝜌�푖�푗 (𝑀�푖�푗) , (2)

up to the Hermitian condition𝑀�푖�푗 = 𝑀�푗�푖.
(ii) Unitary ensemble: the probability law is invariant

under unitary transformations:

𝜌 (𝑈𝑀𝑈†) = 𝜌 (𝑀) , (3)

for any unitary matrix 𝑈 ∈ 𝑈(𝑁).
The only probability laws that belong to both classes are

the Gaussian ones:

𝜌 (𝑀) ∝ exp − 12𝜎2Tr (𝑀)2 , (4)

up to a shift of𝑀 by a fixed scalar matrix.
The main objects of interest are the expectation values of

observables, defined as

⟨O⟩ = ∫𝑑𝑀𝜌 (𝑀)O (𝑀) . (5)

Among the observables, the spectral observables defined as
symmetric functions of the eigenvalues of 𝑀 play a crucial
role in many applications. This is essentially due to their
universal behaviour: in the large 𝑁 limit, for some matrix
ensembles and in particular regimes, the expectation values
of specific spectral observables do not depend on the details
of the probability law 𝜌(𝑀).

Universality is at the root of the numerous applications
to physics and other sciences, since the results we obtain
are largely model-independent. Among the applications to
physics, let us quote the statistics of energy levels in heavy
nuclei, disordered mesoscopic systems, quantum chaos, chi-
ral Dirac operators, and so forth.

3. Wigner’s Semicircle Law

In this paper, we focus on the eigenvalue density, defined as

𝜌 (𝜆) = 1𝑁 ⟨ ∑
1≤�푖≤�푁

𝛿 [𝜆 − 𝜆�푖 ( 𝑀√𝑁)]⟩ . (6)
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Figure 1: Spectrum of a large (𝑁 = 1000) Hermitian matrix with a
Gaussian distribution (𝜎 = 1).

In particular, a universal behaviour is expected in the large𝑁
limit for some ensembles.

For a Gaussian random Hermitian matrix 𝜌(𝑀) ∝
exp − (1/2𝜎2)Tr(𝑀2), the eigenvalue density obeys Wigner’s
semicircle law:

lim
�푁→∞

∫
R

𝑑𝜆 𝜆�푘𝜌 (𝜆)
= {{{

12𝜋𝜎�푘+2 ∫
2�휎

−2�휎
𝑑𝜆 𝜆�푘√4𝜎2 − 𝜆2, if 𝑘 is even,

0, if 𝑘 is odd.
(7)

Empirically, 𝜌(𝜆) may be determined by plotting the his-
togramof eigenvalue of amatrix taken at randomwith a given
probability law (see Figure 1).

The derivation of Wigner’s semicircle in the large𝑁 limit
is based on the resolvent (also known as the Green function):

𝐺 (𝑧) = lim
�푁→+∞

1𝑁 ⟨Tr(𝑧 − 𝑀√𝑁)
−1⟩

= 𝑧2𝜎2 (1 − √1 − 4𝜎
2

𝑧2 ) .
(8)

Then, the density of eigenvalues is recovered as

𝜌 (𝜆) = 𝐺 (𝜆 − i0+) − 𝐺 (𝜆 + i0+)2i𝜋 , (9)

where we have used the relation1𝑥 ± i0+ = p.v. 1𝑥 ∓ 2i𝜋𝛿 (𝑥) . (10)

In the large 𝑁 limit, for the Gaussian model, the resolvent
obeys the self-consistency equation (also known as the
Schwinger-Dyson equation) (see, e.g., [10], Section VII.4):

𝐺 (𝑧) = ∞∑
�푘=0

𝜎�푘𝐺�푘 (𝑧)𝑧�푘+1 = 1𝑧 − 𝜎𝐺 (𝑧) . (11)
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Its solution that behaves as 1/𝑧 for large 𝑧 is
𝐺 (𝑧) = 𝑧2𝜎2 (1 − √1 − 4𝜎

2

𝑧2 ) . (12)

Taking the cut of the square root on the negative real axis, we
obtain Wigner’s semicircle law (7) in the large𝑁 limit.

The semicircle law is not limited to the Gaussian case; it
also holds forWignermatrices in the large𝑁 limit. A random
Hermitian𝑁 ×𝑁matrix is a Wigner matrix if

(i) real and imaginary parts of upper diagonal elements
are independent and identically distributed (i.i.d.)
with mean 0 and variance 𝜎;

(ii) diagonal elements are i.i.d. with finite mean and
variance and independent of the off-diagonal ones.

Then, in the limit 𝑁 → +∞, the eigenvalue distribution
of𝑀/√𝑁 is the semicircle law (7).

The original proof is of combinatorial nature and involves
the expectation of the moments:

lim
�푁→+∞

1𝑁�푘/2+1 ⟨Tr (𝑀�푘)⟩
= {{{

(2𝑙)!(𝑙!)2 (𝑙 + 1) , for 𝑘 = 2𝑙 even,
0, for 𝑘 odd.

(13)

To derive this result, the idea is to first factorise 𝜌 for aWigner
ensemble as

𝜌 (𝑀) = ∏
�푖

𝜌�耠 (𝑀�푖�푖)∏
�푖<�푗

𝜌�耠�耠 (Re𝑀�푖�푗) 𝜌�耠�耠 (Im𝑀�푖�푗) , (14)

where 𝜌�耠 is the common probability density of the real
diagonal terms and 𝜌�耠�耠 is the common probability density of
the real and imaginary parts of the off-diagonal terms.

Then, we expand the trace and integrate over the inde-
pendent real variables 𝑀�푖�푖, Re𝑀�푖�푗, and Im𝑀�푖�푗. The power
of 𝑁 in the expectation of a given moment arises from the
denominator 1/𝑁�푘/2+1 and from the number of independent
indices in the summations. In the large 𝑁 limit, the only
configurations that survive are counted by Catalan numbers:𝐶�푙 = (2𝑙)!/(𝑙!)2(𝑙+1). Since the latter also appear in the Taylor
expansion,

𝑧2𝜎2 (1 − √1 − 4𝜎
2

𝑧2 ) = ∑
�푙≥0

(2𝑙)!(𝑙!)2 (𝑙 + 1) 𝜎
2�푙

𝑧2�푙+1 , (15)

we conclude that

𝐺 (𝑧) = lim
�푁→+∞

1𝑁 ⟨Tr(𝑧 − 𝑀√𝑁)
−1⟩

= lim
�푁→+∞

∞∑
�푘=0

1𝑧�푘+1 1𝑁�푘/2+1 ⟨Tr (𝑀�푘)⟩

= 𝑧2𝜎2 (1 − √1 − 4𝜎
2

𝑧2 ) .
(16)
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Figure 2: Examples of graph associated with cumulants.

This is the form of the resolvent which leads to Wigner’s
semicircle law. Here, we see universality at work: in the large𝑁 limit, the eigenvalue density is given by the semicircle law,
whatever the probability densities 𝜌�耠 and 𝜌�耠�耠 are. However,
this result relies on the independence of the matrix elements.
In the next section, wewill extend it tomatrices whose entries
are not necessary independent.

4. Wigner’s Law beyond Wigner Ensembles

Let us introduce the cumulants, defined through their gener-
ating function:

⟨𝑀�푖1�푗1 ⋅ ⋅ ⋅𝑀�푖𝑘�푗𝑘⟩�푐
= 𝜕𝜕𝐽�푗1�푖1 ⋅ ⋅ ⋅

𝜕𝜕𝐽�푗𝑘�푖𝑘 log ⟨expTr (𝑀𝐽)⟩
�퐽=0 .

(17)

In the physics terminology, these are the connected correla-
tion functions. In particular, the Gaussian cumulants vanish
beyond the quadratic term:

𝜌 (𝑀) ∝ exp − 12𝜎2Tr (𝑀2)
⇒ {{{

⟨𝑀�푖�푗𝑀�푘�푙⟩�푐 = 𝜎2𝛿�푖�푙𝛿�푗�푘
vanish otherwise.

(18)

Therefore, cumulants of degree higher than 2 are a measure
of the deviation from the Gaussian case.

Turning back to the general case, for each cumulant, we
construct an oriented graph as follows (see Figure 2 for some
examples):

(i) Vertices are distinct matrix indices in the cumulant.
(ii) There is an edge from 𝑖 to 𝑗 for every𝑀�푖�푗.
Since nonquadratic cumulants measure deviations from

the Gaussian case, if the perturbation is small, it is reasonable
to expect that the semicircle law is still obeyed.

To state this result, recall that an oriented graph is
Eulerian if every vertex has an equal number of incoming and
outgoing edges. Equivalently, it means that every connected
component admits an Eulerian cycle, that is, an oriented
cycle that passes through all edges, respecting the orientation.
Furthermore, let us denote by V(𝐺), 𝑒(𝐺), and 𝑐(𝐺) the
numbers of vertices, edges, and connected components of 𝐺,
respectively.
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Theorem 1 (Wigner’s law for matrices with dependent
entries). Let 𝜌�푁 be a probability law on the space of Hermitian𝑁×𝑁matrices𝑀 such that its cumulants can be decomposed
as 𝐶�퐺 = 𝐶�耠�퐺+𝐶�耠�耠�퐺, with 𝐶�耠�퐺 being a Gaussian cumulant and 𝐶�耠�耠�퐺
being a perturbation such that, uniformly in the vertex indices𝑖1, . . . , 𝑖V(�퐺) (i.e., all constants involved should not depend on
these indices),

(i) lim�푁→∞𝑁V(�퐺)−�푐(�퐺)−�푒(�퐺)/2𝐶�耠�耠�퐺(𝑖1, . . . , 𝑖V(�퐺)) = 0 if 𝐺 is
Eulerian,

(ii) 𝑁V(�퐺)−�푐(�퐺)−�푒(�퐺)/2𝐶�耠�耠�퐺(𝑖1, . . . , 𝑖V(�퐺))is bounded if 𝐺 is not
Eulerian.

Then, the moments of the eigenvalue distribution of the matrix𝑀/√𝑁 converge towards the moments of the semicircle law,
with 𝜎 given by the Gaussian cumulant ⟨𝑀�푖�푗𝑀�푘�푙⟩�푐 = 𝜎2𝛿�푖�푙𝛿�푗�푘:

lim
�푁→∞

∫
R

𝑑𝜆 𝜆�푘𝜌�푁 (𝜆)

= {{{{{
12𝜋𝜎�푘+2 ∫

2�휎

−2�휎
𝑑𝜆 𝜆�푘√4𝜎2 − 𝜆2 if 𝑘 is even,

0 if 𝑘 is odd.
(19)

For instance, for the graph

i j

k
l

which is not Eulerian, with V = 3, 𝑒 = 4, and 𝑐 = 2, the
cumulant should obey

1𝑁 ⟨(𝑀�푖�푗)2𝑀�푗�푘𝑀�푙�푙⟩�푐 ≤ 𝐾, (20)

with 𝐾 being a constant that does not depend on the indices𝑖, 𝑗, 𝑘, and 𝑙. On the other hand, for the graph

i j,

which is Eulerian, with V = 2, 𝑒 = 4, and 𝑐 = 1, we impose

lim
�푁→+∞

1𝑁 ⟨(𝑀�푖�푗)2 (𝑀�푗�푖)2⟩�푐 = 0 (21)

uniformly in 𝑖 and 𝑗.
As an illustration, we recover the case ofWigner matrices

(with finite moments). Indeed,

(i) there is no graph with V ≥ 3 (independence of off diagonal matrix elements);

(ii) for V = 1 and V = 2, 𝑒 ≥ 3, bounds are satisfied because of 1/𝑁�푒/2 and all moments are assumed to be finite;

(iii) C
i j (𝑖, 𝑗) = ⟨𝑀�푖�푗⟩�푐 = ⟨𝑀�푖�푗⟩ = 0 (off diagonal elements have mean value 0);

(iv)
C

i j (𝑖, 𝑗) = ⟨𝑀�푖�푖𝑀�푗�푗⟩�푐 = ⟨𝑀�푖�푖𝑀�푗�푗⟩ − ⟨𝑀�푖�푖⟩⟨𝑀�푗�푗⟩ = 0 (independence of diagonal elements);

(v)
C

i j (𝑖, 𝑗) = ⟨𝑀�푖�푗𝑀�푗�푗⟩�푐 = ⟨𝑀�푖�푗𝑀�푗�푗⟩ − ⟨𝑀�푖�푗⟩⟨𝑀�푗�푗⟩ = 0 (independence of diagonal and off diagonal elements);

(vi)
C

i j (𝑖, 𝑗) = ⟨𝑀�푖�푗𝑀�푖�푗⟩�푐 = ⟨𝑀�푖�푗𝑀�푖�푗⟩ − ⟨𝑀�푖�푗⟩⟨𝑀�푖�푗⟩ = ⟨(Re𝑀�푖�푗)2 − (Im𝑀�푖�푗)2⟩ + 2i⟨Re𝑀�푖�푗Im𝑀i�푗⟩ = 0 (independence
of real and imaginary parts and equality of their distributions with mean value 0);

(vii)
C

i j = 𝜎2 is the Gaussian cumulant leading to the semicircle law.

The case of unitarily invariant matrices is critical since
the bounds are saturated (see [6]). This is consistent since we
know that the semicircle law is not obeyed by unitary non-
Gaussian ensembles [11].

It is possible to give a combinatorial proof of this result
based on the relation between moments and cumulants:

⟨𝑀�푖1�푗1 ⋅ ⋅ ⋅𝑀�푖𝑘�푗𝑘⟩
= ∑
�퐼1,...,�퐼𝑝 partition of
{(�푖1 ,�푗1),...,(�푖𝑘 ,�푗𝑘)}

⟨∏
�푖�푗∈�퐼1

𝑀�푖�푗⟩
�푐

⋅ ⋅ ⋅⟨∏
�푖�푗∈�퐼𝑝

𝑀�푖�푗⟩
�푐

. (22)

In the moment method, we have to estimate

1𝑁�푘/2+1 ⟨Tr (𝑀�푘)⟩
= 1𝑁�푘/2+1 ∑

1≤�푖1 ,...,�푖𝑘≤�푁

⟨𝑀�푖1�푖2 ⋅ ⋅ ⋅𝑀�푖𝑘�푖1⟩ .
(23)

Then, we express the moments in (23) in terms of cumulants
using (22) and represent each cumulant as a graph. Because
of the trace, one has to draw Eulerian cycles on the graphs
after some vertex identifications.Then, the scaling bounds on
the cumulants can be used to show that only Gaussian terms
survive.
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5. Proof Based on the Replica Effective Action

Let us give a renormalisation group proof of this result based
on the replica effective action. The use of replicas in random
matrix theory is a classical subject (see, e.g., [12] or [13]). To
begin with, let us note that

Tr(𝑧 − 𝑀√𝑁)
−1 = 𝜕𝜕𝑧 log det(𝑧 − 𝑀√𝑁) . (24)

It is convenient to express the logarithm using the replica
method. First, observe that

log (𝐴) = lim
�푛→0

𝐴�푛 − 1𝑛 . (25)

Then, we express the 𝑛th power of the determinant as a
Gaussian integral over 𝑛 replicas of a complex vector of size𝑁 (with a factor of 𝜋�푛�푁 included in the measure):1

det�푛 (𝑧 −𝑀) = ∫𝑑𝑋 exp − Tr (𝑋† (𝑧 −𝑀)𝑋) , (26)

which fit into an𝑁 × 𝑛 complex matrix𝑋 = (𝑋�푖,�푎) 1≤�푖≤�푁
1≤�푎≤�푛

.
The limit 𝑛 → 0 may be worrisome; its meaning is as

follows. Because of 𝑈(𝑛) invariance, any perturbative result
in powers of 1/𝑧 is a polynomial in 𝑛, from which we retain
only the linear term. Of course, this may not hold beyond
perturbation theory, where replica symmetry breaking can
occur.

After averaging over𝑀 with the random matrix density𝜌(𝑀), we obtain the following expression for the resolvent:

𝐺 (𝑧)
= − 1𝑁 𝜕𝜕𝑧 [∫𝑑𝑋 exp {−Tr (𝑋†𝑋) + 𝑉0 (𝑋)}] order 1

in �푛
, (27)

where the replica potential is

𝑉0 (𝑋) = log⟨exp Tr(𝑋† 𝑀√𝑁𝑋)⟩ . (28)

Because of the logarithm, the potential involves the cumu-
lants and can be expanded over graphs as

𝑉0 (𝑋) = ∑
�퐺

oriented graph

1|Aut (𝐺)|𝑁�푒(�퐺)/2
⋅ ∑
1≤�푖1 ,...,�푖V(𝐺)≤�푁

all different

𝐶�퐺 (𝑖1, . . . , 𝑖V(�퐺))

⋅ ∏
�푒 edge

(𝑋𝑋†)
�푖𝑠(𝑒)�푖𝑡(𝑒)

,
(29)

where 𝑠(𝑒) is the source of edge 𝑒 and 𝑡(𝑒) is its target.
Let us introduce a replica effective action, obtained by a

partial integration:

𝑉 (𝑡, 𝑋) = log∫𝑑𝑌exp{−Tr (𝑌†𝑌)𝑡 + 𝑉0 (𝑋 + 𝑌)}
− 𝑁𝑛 log 𝑡.

(30)

= +


t

Figure 3: Graphical interpretation of the renormalisation group
equation.

The parameter 𝑡 ranges between 0 (where we have no
integration, 𝑉(𝑡 = 0,𝑋) = 𝑉0(𝑋)) and 𝑡 = 1/𝑧.

The effective potential obeys a semigroup property that
follows from Gaussian convolution (see, e.g., [14], Section
A10.1):

𝑉 (𝑡 + 𝑠, 𝑋)
= log∫𝑑𝑌exp{−Tr (𝑌†𝑌)𝑠 + 𝑉 (𝑡, 𝑋 + 𝑌)}
− 𝑁𝑛 log 𝑠.

(31)

For small 𝑠 = 𝑑𝑡, it translates into the following renormalisa-
tion group equation, which is a simple version of Polchinski’s
exact renormalisation group equation [5]:

𝜕𝑉 (𝑡, 𝑋)𝜕𝑡 = ∑
�푖,�푎

(𝜕2𝑉 (𝑡, 𝑋)𝜕𝑋�푖,�푎𝜕𝑋�푖,�푎 +
𝜕𝑉 (𝑡, 𝑋)𝜕𝑋�푖,�푎

𝜕𝑉 (𝑡, 𝑋)𝜕𝑋�푖,�푎 ) . (32)

The first term on the RHS is referred to as the loop term,
since it creates a new loop in the Feynman graph expansion
of the effective action, while the second inserts a one-particle
reducible line and is referred to as the tree term (see Figure 3).

Taking into account the boundary condition 𝑉(𝑡 = 0,𝑋) = 𝑉0(𝑋), it is convenient to write (32) in integral form:

𝑉 (𝑡, 𝑋)
= 𝑉0 (𝑋)
+ ∫�푡
0
𝑑𝑠∑
�푖,�푎

(𝜕2𝑉 (𝑠, 𝑋)𝜕𝑋�푖,�푎𝜕𝑋�푖,�푎 +
𝜕𝑉 (𝑠, 𝑋)𝜕𝑋�푖,�푎

𝜕𝑉 (𝑠, 𝑋)𝜕𝑋�푖,�푎 ) .
(33)

This allows us to derive inductive bounds in powers of 𝑡 =1/𝑧.
From a physical point of view, we evaluate the effective

potential by a large succession of small partial integrations,
with a total weight given by 𝑡. Let us stress that, in our context,
this differential equation is merely a tool to control the 𝑡
dependence of the effective action after integrating with a 𝑡-
dependent propagator.



6 Advances in High Energy Physics

2V

Xi,aXi,a

V

Xi,a

V

Xi,a

(loop term)

:

(tree term)

:



G



G

GG1

1

G2

2 1 = 2→

→

Figure 4: Action of the differential operators on the vertices of the effective action.

The effective potential also admits an expansion over
graphs:

𝑉 (𝑡, 𝑋) = ∑
�퐺

oriented graph

1|Aut (𝐺)|𝑁�푒(�퐺)/2
⋅ ∑
1≤�푖1 ,...,�푖V(𝐺)≤�푁

all different

𝐶�퐺 (𝑡; 𝑖1, . . . , 𝑖V(�퐺))

⋅ ∏
�푒 edge

(𝑋𝑋†)
�푖𝑠(𝑒)�푖𝑡(𝑒)

.
(34)

This leads to a graphical interpretation of the action of the two
differential operators in the renormalisation group equation
(see Figure 4). Indeed, in the expansion (see (34)), an edge
joining a vertex carrying label 𝑖 to a vertex carrying 𝑗 is
equipped with a factor ∑�푎𝑋�푖,�푎𝑋�푗,�푎, with 𝑎 being a replica
index. Then, the differential operator 𝜕/𝜕𝑋�푖,�푎 (resp., 𝜕/𝜕𝑋�푗,�푎)
removes the outgoing (resp., incoming) half edge. Finally, the
remaining half edges are reattached and the vertices identified
to yield a new graph on the RHS of (33), with one less edge.
These operations are performed on the same graph for the
loop term and on distinct ones for the tree term.

Let us decompose the effective cumulants appearing in
(34) into Gaussian ones and perturbations and expand both
in a power series in 𝑡 = 1/𝑧:

𝐶�퐺 (𝑡) = ∞∑
�푘=0

𝑡�푘 [[ 𝐶
�耠(�푘)
�퐺⏟⏟⏟⏟⏟⏟⏟

Gaussian

+ 𝐶�耠�耠(�푘)�퐺⏟⏟⏟⏟⏟⏟⏟⏟⏟
perturbation

]
] . (35)

The Gaussian terms are those that are constructed using only
theGaussian term in the initial potential𝑉0(𝑋). Even if𝑉0(𝑋)
is quartic in 𝑋, this does not hold for the Gaussian part of𝑉�푡(𝑋), which contains terms of all orders. The perturbation
collects all the remaining terms; they contain at least one non-
Gaussian perturbation from 𝑉0(𝑋).

The renormalisation group equation (33) allows us to
prove inductively on 𝑘 that the perturbations 𝐶�耠�耠(�푘)�퐺 obey the
same scaling bound imposed on 𝐶�耠�耠(0)�퐺 = 𝐶�耠�耠�퐺(0) and that the
purely Gaussian terms do not grow too fast.

(i) lim�푁→∞𝑁V(�퐺)−�푐(�퐺)−�푒(�퐺)/2[𝐶�耠�耠(�푘)�퐺 ] order 0
in �푛

= 0 if 𝐺 is
Eulerian.

(ii) 𝑁V(�퐺)−�푐(�퐺)−�푒(�퐺)/2[𝐶�耠�耠(�푘)�퐺 ] order 0
in �푛

is bounded if 𝐺 is not
Eulerian.

(iii) 𝑁V(�퐺)−�푐(�퐺)−�푒(�퐺)/2[𝐶�耠(�푘)�퐺 ] order 0in �푛
is bounded for any 𝐺.

This involves a combinatorial discussion based on the
graphical interpretation of Figure 4 which can be found in
[6]. Let us simply mention that the terms that may violate the
bounds are of higher order in 𝑛.Thus, they are harmless when
taking the limit 𝑛 → 0 before the limit𝑁 → +∞.

Finally, using (27) and the renormalisation group equa-
tion (33), the resolvent can be expressed as

iG(z) =
1
z

+
1

N3/2z2 .
∑

1≤i≤N

( ; i)C
ＩＬ＞？Ｌ 0 ＣＨ n

1
z

[ ] (36)

The scaling bounds for the non-Gaussian cumulants impose,
perturbatively in 1/𝑧,

C
i
( ; i) =0.ＦＣＧ

N→∞

1

N ＩＬ＞？Ｌ 0 ＣＨ n
1
z

[ ] (37)

Therefore, only the Gaussian cumulants contribute and we
recover Wigner’s semicircle law.

6. Conclusion and Outlook

In this paper, we have argued that Wigner’s semicircle law
remains valid for matrices with dependent entries. The
deviation from the independent case is measured by the joint
cumulants of the entries, which are assumed to fulfil some
scaling bound for large 𝑁. To establish this result, we have
introduced an effective action for the replicas. This effective
action obeys a renormalisation group equation that allowed
us to prove perturbative bounds on the effective cumulants.
As a consequence of these bounds, only the Gaussian terms
contribute in the large 𝑁 limit, thus establishing the validity
of Wigner’s semicircle law.

It may also be of interest to investigate the case of the
sum of a random matrix𝑀 and a deterministic one 𝐴 (see,
e.g., [13], where such a model is discussed). In this case, the
resolvent is expressed as
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𝐺 (𝑧) = − 1𝑁 𝜕𝜕𝑧 [∫ 𝑑𝑋 exp {−Tr (𝑋† (𝐴 + 𝑧)𝑋) + 𝑉0 (𝑋)}] order 1
in �푛

. (38)

In our context, the deterministic matrix 𝐴 induces a non-
trivial kinetic for the replicas. In particular, if 𝐴 is a discrete
Laplacian, it yields a nontrivial renormalisation group flow
that bears some similarities with the QFT renormalisation
group. In this case, we expect to exploit the true power of the
renormalisation group equation, with a discussion of fixed
points and scaling dimensions.
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