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In manifold learning, the aim of alignment is to derive the global coordinate of manifold from the local coordinates of manifold’s
patches. At present,most ofmanifold learning algorithms assume that the relation between the global and local coordinates is locally
linear and based on this linear relation align the local coordinates ofmanifold’s patches into the global coordinate ofmanifold.There
are two contributions in this paper. First, the nonlinear relation between the manifold’s global and local coordinates is deduced by
making use of the differentiation of local pullback functions defined on the differential manifold. Second, themethod of local linear
iterative alignment is used to align the manifold’s local coordinates into the manifold’s global coordinate. The experimental results
presented in this paper show that the errors of noniterative alignment are considerably large and can be reduced to almost zero
within the first two iterations.The large errors of noniterative/linear alignment verify the nonlinear nature of alignment and justify
the necessity of iterative alignment.

1. Introduction

Several papers published in Science in 2000 started the
research on manifold learning [1, 2]. From then on, manifold
learning has made great progress and produced many repre-
sentative algorithms as well as a lot of improvements around
these representative algorithms, such as ISOMAP [2], Locally
Linear Embedding (LLE) [1, 3], Hessian LLE (HLLE) [4],
Local Tangent Space Alignment (LTSA) [5], Laplacian Eigen-
maps (LE) [6], Diffusion Maps [7], and Maximum Variance
Unfolding (MVU) [8].Manifold learning as a way ofmachine
learning has achieved good performance in many applica-
tions of machine learning.

It may be worth noting that although many machine
learning algorithms claim to be manifold learning algo-
rithms, they seem to have nothing to do with the topological
manifolds defined in mathematics, not to mention the differ-
ential manifolds. The manifold learning algorithm proposed
in this paper is based on the mathematical characteristics
of topological/differential manifolds. This kind of algorithms
can be divided into two stages: local homeomorphism and

alignment.Themathematical foundation of local homeomor-
phism is based on the definition of topological manifolds,
while the mathematical foundation of alignment is based on
the characteristics of differential manifolds. In local home-
omorphism, a manifold is divided into a finite number of
overlapped local regions. Each local region is homeomorphic
to an open set of Euclidean space. The local regions are
called patches of manifold and the open sets homeomorphic
to the patches are called local coordinates of patches or
local coordinates of manifold directly. In alignment, the local
coordinates are aligned in Euclidean space to form an area
corresponding to themanifold.The area is called global coor-
dinate ofmanifold.This paper only focuses on alignment; that
is to say, we assume that the local coordinates have already
been obtained during local homeomorphism and under this
assumption we only study how to derive global coordinates
from local coordinates.

The remaining sections are arranged as follows. In Sec-
tion 2, some related works are reviewed briefly. In Sec-
tion 3, the mathematical foundations of manifold learning
are laid. In Section 4, the local nonlinear relation between
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the global and local coordinates is deduced mathematically.
In Section 5, the local linear iterative alignment (LLIA)
solution to nonlinear alignment is proposed. In Section 6 the
experimental results are presented. In Section 7, some con-
clusions are given.

2. Related Works

There are three kinds of alignment in manifold learning:
local coordinate alignment, patch alignment, and manifold
alignment. The alignment in the algorithm proposed in this
paper belongs to local coordinate alignment.

The local coordinate alignment is based on themathemat-
ical definition of manifold. According to the mathematical
definition of manifold, a manifold can be divided into a num-
ber of overlapped patches and each patch is homeomorphic to
an open set of Euclidean space. The open sets are called local
coordinates of manifold.The local coordinate alignment is to
align the local coordinates in Euclidean space to form a larger
open set which will be correspondent to the manifold glob-
ally. This larger open set is called global coordinate of mani-
fold. The local coordinate alignment can be done by aligning
local coordinates one by one on the light of geometrical
intuition [9–11] or by turning alignment into an eigenvalue-
solving problem with differential geometry [5, 12–15].

Thepatch alignment [16] ismore algebraic than geometri-
cal. Before alignment, the given data𝑋 = {𝑥

1
, . . . , 𝑥

𝑁
} have to

be divided into overlapped patches 𝑋
𝑛
= {𝑥
𝑛
1

, . . . , 𝑥
𝑛
𝐾

} ⊆ 𝑋,
𝑛 = 1, . . . , 𝑁. The patch alignment is then formulated as
follows:
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components are 0. More complicated schemes to calculate 𝐿
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based on the local similarity, local linearity, local geometry,
and so on in𝑋
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can be found in [17–19].

In supervised or semisupervised learning, besides the
inherent attributes of data; there are discriminative labels
assigned to data. Many recent researches in patch alignment
try to incorporate the discriminative labels into the calcula-
tion of 𝐿

𝑛
. For example, in MPA algorithm [20], the neigh-
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in [20, 21].
The manifold alignment is involved in a number of high-

dimensional datasets which are taken from different man-
ifolds. These datasets are all reduced to a low-dimensional
Euclidean space and aligned according to certain rules. For
example, let 𝑋𝑓 = {𝑥

𝑓

1
, . . . , 𝑥

𝑓

𝑁
𝑓
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where 𝜔𝑓
𝑖,𝑗
is the similarity between 𝑦𝑓
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and 𝑦𝑓
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and 𝑦𝑔
𝑗
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𝑗
. If 𝑦𝑓
𝑖
and 𝑦𝑔
𝑗
are notmatching points between𝑋𝑓 and

𝑋
𝑔, 𝜔(𝑓,𝑔)
𝑖,𝑗

= 0. How to determine the matching points and
how to calculate the similarity are application-dependent.
More complicated manifold learning algorithms can be
founded in [22–27].

3. Mathematical Foundations of
Manifold Learning

Manifold learning can be divided into two stages: local home-
omorphism and alignment. In this section we will elaborate
the mathematical foundations of local homeomorphism and
alignment.

3.1. Mathematical Foundations of Local Homeomorphism. Let
𝑀 be aHausdorff topological space; if, for all𝑥 ∈ 𝑀, there is a
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Homeomorphic 
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𝜑x(x)

Θx = 𝜑x(Xx)

x

Xx

M(d-dimensional topological manifold) Rd(d-dimensional Euclidean space)

Figure 1: Definition of topological manifolds, 𝑋
𝑥
is the neighbourhood of 𝑥, Θ

𝑥
is an open set in 𝑅𝑑, and 𝜑

𝑥
is a homeomorphic mapping

between𝑋
𝑥
and Θ

𝑥
.

neighbourhood𝑋
𝑥
⊆ 𝑀 of 𝑥 such that𝑋

𝑥
is homeomorphic

to an open set Θ
𝑥
of 𝑑-dimensional Euclidean space 𝑅

𝑑,
then 𝑀 is called an 𝑑-dimensional topological manifold
(see Figure 1). Now let 𝜑

𝑥
: 𝑋
𝑥
→ Θ
𝑥
be the homeomorphic

mapping between 𝑋
𝑥
and Θ

𝑥
; (𝑋
𝑥
, 𝜑
𝑥
) is called a chart of𝑀

and {(𝑋
𝑥
, 𝜑
𝑥
) | 𝑥 ∈ 𝑀} is called an atlas of𝑀.

In manifold learning, the neighbourhood 𝑋
𝑥
is called a

patch of𝑀 and the open set Θ
𝑥
= 𝜑
𝑥
(𝑋
𝑥
) is called the local

coordinate of 𝑋
𝑥
. Furthermore, let Θ̃

𝑥
= Θ
𝑥
− {𝜑
𝑥
(𝑥)} and
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: 𝑋
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𝑥
, �̃�
𝑥
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𝑥
(𝑥

) − 𝑥.

It is clear that �̃�
𝑥
is also a homeomorphic mapping between

𝑋
𝑥
and another open set Θ̃

𝑥
. An important feature of �̃�

𝑥

which will facilitate the mathematical deduction of nonlinear
alignment is that �̃�

𝑥
(𝑥) = 0. Hereafter, all the local home-

omorphic mappings used in this paper are assumed to have
this feature.

Furthermore, the set {𝑋
𝑥
| 𝑥 ∈ 𝑀} is an open cover

of 𝑀; that is, 𝑀 = ⋃
𝑥∈𝑀

𝑋
𝑥
. If 𝑀 is compact, then there

must be a finite subset of {𝑋
𝑥
| 𝑥 ∈ 𝑀} such that this finite

subset is also an open cover of 𝑀 [28]. More specifically, if
𝑀 is a 𝑑-dimensional compact manifold, then there must be
a finite number of points 𝑥

1
, . . . , 𝑥

𝑁
and the corresponding

neighbourhoods𝑋
1
, . . . , 𝑋

𝑁
such that

(1) 𝑋
𝑛

is homeomorphic to an open set Θ
𝑛

of 𝑑-
dimensional Euclidean space 𝑅𝑑, 𝑛 = 1, . . . , 𝑁.

(2) {𝑋
1
, . . . , 𝑋

𝑁
} is a finite open cover of𝑀; that is,𝑀 =

⋃
𝑁

𝑛=1
𝑋
𝑛
.

In practice, the given data 𝑥
1
, . . . , 𝑥

𝑁
are always assumed

to be taken from a compact manifold𝑀 and have the neigh-
bourhoods 𝑋

1
, . . . , 𝑋

𝑁
which are locally homeomorphic to

the open setsΘ
1
, . . . , Θ

𝑁
of Euclidean space.The aim ofman-

ifold learning during the stage of local homeomorphism is to
find these neighbourhoods 𝑋

1
, . . . , 𝑋

𝑁
and then derive the

local coordinates Θ
1
, . . . , Θ

𝑁
of these neighbourhoods. It is

clear that the existence of the neighbourhoods and their local
coordinates is guaranteed by the mathematical definition of

topological manifold. At present, the most commonly used
method of finding the neighbourhoods is the K Nearest
Neighbours (KNN) method and the most commonly used
method of deriving the local coordinates of neighbourhoods
is the so-called tangent space method, that is, the local PCA
method [5, 29].

3.2. Mathematical Foundations of Alignment. Let 𝑀 be a
topological manifold and {(𝑋

𝑥
, 𝜑
𝑥
) | 𝑥 ∈ 𝑀} an atlas of𝑀; if,

for any two charts (𝑋
𝑥
, 𝜑
𝑥
) and (𝑋

𝑧
, 𝜑
𝑧
) such that𝑋

𝑥
∩𝑋
𝑧

̸=

⌀, the mapping 𝜑
𝑧
∘ 𝜑
−1

𝑥
: 𝜑
𝑥
(𝑋
𝑥
∩𝑋
𝑧
) → 𝜑

𝑧
(𝑋
𝑥
∩𝑋
𝑧
) is𝐶∞

differentiable, then𝑀 is called 𝐶∞ differential manifold (see
Figure 2). In the rest part of this paper the manifolds are all
assumed to be 𝐶∞ differential manifolds.

Let 𝑓 : 𝑀 → 𝑅 be a function defined on the differential
manifold 𝑀. Generally speaking, 𝑓 cannot be differentiated
directly on𝑀. In order to define the differentiability of 𝑓 on
𝑀, we have to define its local pullback function first. Now
let 𝑥 ∈ 𝑀. According to the definition of manifold, there
must be a neighbourhood 𝑋

𝑥
⊆ 𝑀 of 𝑥 such that 𝑋

𝑥
is

homeomorphic to an open set Θ
𝑥
of Euclidean space 𝑅

𝑑,
where 𝑑 is the dimension of 𝑀. Let 𝜑

𝑥
: 𝑋
𝑥
→ Θ
𝑥
be the

homeomorphic mapping between 𝑋
𝑥
and Θ

𝑥
, the so-called

local pullback function of 𝑓 is then defined as 𝑓
𝑥
= 𝑓 ∘ 𝜑

−1

𝑥
:

Θ
𝑥
→ 𝑅 (see Figure 3).
Note that, in the theory of topological spaces, being

homeomorphic means being identical. Also note that man-
ifold is a kind of topological space. Therefore, when limited
within the local regions𝑋

𝑥
and Θ

𝑥
, 𝑓 can be regarded as the

same with its local pullback function 𝑓
𝑥
= 𝑓 ∘ 𝜑

−1

𝑥
.

Furthermore, according to the definition of differential
manifold, if𝑀 is𝐶∞ differentiable, so is the function𝜑

𝑧
∘𝜑
−1

𝑥
.

Therefore, if the function 𝜑
𝑧
is replaced with 𝑓 in 𝜑

𝑧
∘ 𝜑
−1

𝑥
,

then the differentiability of 𝑓 ∘ 𝜑
−1

𝑥
is completely dependent

on 𝑓. This is the reason why the differentiability of 𝑓 within
the local region 𝑋

𝑥
is defined by the differentiability of its

local pullback function 𝑓
𝑥
= 𝑓 ∘ 𝜑

−1

𝑥
within the local region

Θ
𝑥
. More specifically, by making use of 𝜑

𝑥
(𝑥) = 0, that is,
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Xz
Xx

Rd

Rd

𝜑x

𝜑z

𝜑x ∘ 𝜑−1
z

𝜑x 𝜑z

M(d-dimensional differential manifolds)

Xx ∩ Xz

(Xx ∩ Xz) (Xx ∩ Xz)

C∞ differentiable

Figure 2: Definition of differential manifolds: (𝑋
𝑥
, 𝜑
𝑥
) and (𝑋

𝑧
, 𝜑
𝑧
) are two charts, 𝑋

𝑥
∩ 𝑋
𝑧

̸= ⌀, and𝑀 is said to be 𝐶∞ differentiable if
𝜑
𝑧
∘ 𝜑
−1

𝑥
is 𝐶∞ differentiable.

𝑥 = 𝜑
−1

𝑥
(0), the gradient vector and Hessian matrix of 𝑓 at 𝑥

can be expressed as follows:

∇𝑓 (𝑥) = ∇𝑓 (𝜑
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𝑥
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𝑥
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.
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If 𝑓 is 𝐶∞ differentiable, 𝑓 can be even Taylor-expanded
in the neighbourhood of 𝑥. In fact, for all 𝑥 ∈ 𝑋

𝑥
,
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+ ⋅ ⋅ ⋅
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+ ⋅ ⋅ ⋅ ,

(6)

where 𝜃 = 𝜑
𝑥
(𝑥

) ∈ Θ
𝑥
. The differentiation of local pullback

functions lays the mathematical foundation of alignment.

4. Nonlinear Alignment

In manifold learning, it is always assumed that an 𝑑-dimen-
sional manifold𝑀 can be mapped to an open set Π of the 𝑑-
dimensional Euclidean space 𝑅𝑑. The open setΠ is called the
global coordinate of𝑀. The global coordinate of a manifold
is the target of manifold learning. The aim of alignment is to
derive the manifold’s global coordinate from its local coordi-
nates.

Now let 𝜑 : 𝑀 → Π be the mapping between the
manifold𝑀 and its global coordinate Π. For all 𝑥 ∈ 𝑀, 𝑦 =

𝜑(𝑥) = [𝜑
1
(𝑥) ⋅ ⋅ ⋅ 𝜑

𝑑
(𝑥)]
𝑇

∈ Π ⊆ 𝑅
𝑑 is also called the global

coordinate of 𝑥, where 𝜑𝑖 : 𝑀 → 𝑅 is the ith component
function of 𝜑, 𝑖 = 1, . . . , 𝑑.

Obviously, the component functions of 𝜑 can be regarded
as the functions defined on the manifold 𝑀 and can be
locally pulled back to the 𝑑-dimensional Euclidean space
𝑅
𝑑 (see Figure 4). According to (6), deduced in Section 3.2,

the component functions can be Taylor-expanded in the
neighbourhood𝑋

𝑥
of 𝑥: for all 𝑥 ∈ 𝑋

𝑥
,

𝜑
𝑖
(𝑥

) = 𝜑
𝑖
(𝜑
−1

𝑥
∘ 𝜑
𝑥
(𝑥

)) = (𝜑

𝑖
∘ 𝜑
−1

𝑥
) (𝜑
𝑥
(𝑥

))

= 𝜑
𝑖

𝑥
(𝜑
𝑥
(𝑥

))

= 𝜑
𝑖
(𝑥) + (∇𝜑

𝑖

𝑥
(0))
𝑇

𝜑
𝑥
(𝑥

)

+
1

2
(𝜑
𝑥
(𝑥

))
𝑇

𝐻𝜑
𝑖

𝑥
(0) 𝜑
𝑥
(𝑥

) ,

(7)
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𝜑x(x)
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Figure 3: The Local Pullback of functions defined on manifolds; 𝑓 is defined on 𝑋
𝑥
and 𝑓 ∘ 𝜑

−1

𝑥
is defined on Θ

𝑥
. Since 𝑋

𝑥
and Θ

𝑥
are

homeomorphic, the differentiation of 𝑓 on𝑋
𝑥
can be defined by using the differentiation of its pullback function 𝑓 ∘ 𝜑

−1

𝑥
on Θ
𝑥
.

where 𝜑𝑖
𝑥
= 𝜑
𝑖
∘ 𝜑
−1

𝑥
is the local pullback function of 𝜑𝑖 from

𝑋
𝑥
into Θ

𝑥
, 𝑖 = 1, . . . , 𝑑. Equation (7) can be rewritten into a

matrix form:

𝑦

= 𝜑 (𝑥


) =

[
[
[
[

[

𝜑
1
(𝑥

)

.

.

.

𝜑
𝑑
(𝑥

)

]
]
]
]

]

=

[
[
[
[

[

𝜑
1

𝑥
(𝜑
𝑥
(𝑥

))

.

.

.

𝜑
𝑑

𝑥
(𝜑
𝑥
(𝑥

))

]
]
]
]

]

=

[
[
[
[

[

𝜑
1

𝑥
(𝜃

)

.

.

.

𝜑
𝑑

𝑥
(𝜃

)

]
]
]
]

]

=

[
[
[
[

[

𝜑
1
(𝑥)

.

.

.

𝜑
𝑑
(𝑥)

]
]
]
]

]

+

[
[
[
[
[

[

(∇𝜑
1

𝑥
(0))
𝑇

.

.

.

(∇𝜑
𝑑

𝑥
(0))
𝑇

]
]
]
]
]

]

𝜑
𝑥
(𝑥

)

+
1

2

[
[
[
[
[

[

(𝜑
𝑥
(𝑥

))
𝑇

𝐻𝜑
1

𝑥
(0) 𝜑
𝑥
(𝑥

)

.

.

.

(𝜑
𝑥
(𝑥

))
𝑇

𝐻𝜑
𝑑

𝑥
(0) 𝜑
𝑥
(𝑥

)

]
]
]
]
]

]

+ ⋅ ⋅ ⋅

= 𝜑 (𝑥) + 𝐴
𝑥
𝜑
𝑥
(𝑥

)

+
1

2

[
[
[
[
[

[

(𝜑
𝑥
(𝑥

))
𝑇

𝐻𝜑
1

𝑥
(0) 𝜑
𝑥
(𝑥

)

.

.

.

(𝜑
𝑥
(𝑥

))
𝑇

𝐻𝜑
𝑑

𝑥
(0) 𝜑
𝑥
(𝑥

)

]
]
]
]
]

]

+ ⋅ ⋅ ⋅

= 𝑦 + 𝐴
𝑥
𝜃

+
1

2

[
[
[
[
[

[

(𝜃

)
𝑇

𝐻𝜑
1

𝑥
(0) 𝜃


.

.

.

(𝜃

)
𝑇

𝐻𝜑
𝑑

𝑥
(0) 𝜃


]
]
]
]
]

]

+ ⋅ ⋅ ⋅ ,

(8)

where 𝐴
𝑥

= [

(∇𝜑
1

𝑥
(0))
𝑇

.

.

.

(∇𝜑
𝑑

𝑥
(0))
𝑇

] ∈ 𝑅
𝑑×𝑑. In (8), 𝑦 = 𝜑(𝑥


) is

the global coordinate of 𝑥, while 𝜃 = 𝜑
𝑥
(𝑥

) is the local

coordinate of 𝑥. Equation (8) establishes the local relation-
ship between 𝑦 and 𝜃. Generally speaking, this relationship
is nonlinear.

5. The Local Linear Iterative Solution to
Nonlinear Alignment

In algorithm, a matrix 𝑋 = [𝑥1 ⋅ ⋅ ⋅ 𝑥
𝑁] ∈ 𝑅

𝐷×𝑁 is given,
where the column vectors of𝑋 are assumed to be taken from
a𝑑-dimensional, compact, and𝐶∞ differentialmanifold𝑀 ⊆

𝑅
𝐷 which is embedded into the 𝐷-dimensional Euclidean

space 𝑅𝐷, where 𝑑 ≪ 𝐷; the manifold learning algorithms
want to find a matrix 𝑌 = [𝑦1 ⋅ ⋅ ⋅ 𝑦

𝑁] ∈ 𝑅
𝑑×𝑁 such that

𝑦
𝑖
= 𝜑(𝑥

𝑖
) is the global coordinate of 𝑥

𝑖
, 𝑖 = 1, . . . , 𝑁.

Under such circumstances, we construct our algorithm of
local linear iterative alignment.

5.1. Linearization of Nonlinear Alignment. We first locally
linearize the nonlinear relation of alignment deduced in
Section 4. For each data point 𝑥

𝑛
, let 𝑋

𝑛
= [𝑥𝑛

1

⋅ ⋅ ⋅ 𝑥
𝑛
𝐾
] =

𝑋𝑆
𝑛
be the neighbourhood of 𝑥

𝑛
, where 𝑆

𝑛
∈ 𝑅
𝑁×𝐾 is the

selection matrix in which the 𝑛
𝑘
th element of the 𝑘th column

is 1; other elements are 0, 𝑘 = 1, . . . , 𝐾. It is noted that
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Figure 4: The Local Pullback of component functions of global mapping; 𝜑𝑖 is the 𝑖th component function of 𝜑 and 𝜑𝑖 ∘ 𝜑−1
𝑥

is the pullback
function of 𝜑𝑖 defined onΘ

𝑥
. Generally speaking, 𝜑 is nonlinear, so is 𝜑𝑖 ∘𝜑−1

𝑥
. If 𝜑𝑖 ∘𝜑−1

𝑥
is differentiable, then 𝜑𝑖 ∘𝜑−1

𝑥
can be Taylor-expanded

in Θ
𝑥
.

the neighbourhood 𝑋
𝑛

includes 𝑥
𝑛

itself. Let 𝑥
𝑛

=

(1/𝐾)∑
𝐾

𝑘=1
𝑥
𝑛
𝑘

be the centre of 𝑋
𝑛
. From now on, 𝑋

𝑛
is

regarded as the neighbourhood of 𝑥
𝑛
, no longer the neigh-

bourhood of 𝑥
𝑛
.

Let 𝑌
𝑛
= [𝑦𝑛

1

⋅ ⋅ ⋅ 𝑦
𝑛
𝐾
] = 𝑌𝑆

𝑛
be the global coordinate

of 𝑋
𝑛
, that is, 𝑦

𝑛
𝑘

= 𝜑(𝑥
𝑛
𝑘

), where 𝑘 = 1, . . . , 𝐾, and Θ
𝑛
=

[𝜃𝑛,1 ⋅ ⋅ ⋅ 𝜃
𝑛,𝐾] the local coordinate of 𝑋

𝑛
, that is, 𝜃

𝑛,𝑘
=

𝜑
𝑛
(𝑥
𝑛
𝑘

), where 𝑘 = 1, . . . , 𝐾 and 𝜑
𝑛
is the local homeomor-

phic mapping between 𝑋
𝑛
and Θ

𝑛
. According to (8) derived

in Section 4, one has

𝑦
𝑛
𝑘

= 𝜑 (𝑥
𝑛
𝑘

)

= 𝜑 (𝑥
𝑛
) +

[
[
[
[
[

[

(∇𝜑
1

𝑛
(0))
𝑇

.

.

.

(∇𝜑
𝑑

𝑛
(0))
𝑇

]
]
]
]
]

]

𝜑
𝑛
(𝑥
𝑛
𝑘

)

+
1

2

[
[
[
[
[

[

(𝜑
𝑛
(𝑥
𝑛
𝑘

))
𝑇

𝐻𝜑
1

𝑛
(0) 𝜑
𝑛
(𝑥
𝑛
𝑘

)

.

.

.

(𝜑
𝑛
(𝑥
𝑛
𝑘

))
𝑇

𝐻𝜑
𝑑

𝑛
(0) 𝜑
𝑛
(𝑥
𝑛
𝑘

)

]
]
]
]
]

]

+ ⋅ ⋅ ⋅

= 𝜑 (𝑥
𝑛
) + 𝐴
𝑛
𝜃
𝑛,𝑘

+
1

2

[
[
[
[

[

𝜃
𝑇

𝑛,𝑘
𝐻𝜑
1

𝑛
(0) 𝜃
𝑛,𝑘

.

.

.

𝜃
𝑇

𝑛,𝑘
𝐻𝜑
𝑑

𝑛
(0) 𝜃
𝑛,𝑘

]
]
]
]

]

+ ⋅ ⋅ ⋅ ,

𝑘 = 1, . . . , 𝐾,

(9)

where 𝜑𝑖
𝑛
= 𝜑
𝑖
∘ 𝜑
−1

𝑛
is the local pullback function of 𝜑𝑖 from

𝑋
𝑛
to Θ
𝑛
, 𝑖 = 1, . . . , 𝑑.

Equation (9) is a nonlinear equation. From the perspec-
tive of computational mathematics, a nonlinear equation can
be solved by linear iteration. Therefore (9) has to be first
linearized:

𝑦
𝑛
𝑘

≈ 𝑦
𝑛
+ 𝐴
𝑛
𝜃
𝑛,𝑘
, 𝑘 = 1, . . . , 𝐾, (10)

where 𝑦
𝑛
= (1/𝐾)∑

𝐾

𝑘=1
𝑦
𝑛
𝑘

is the linear part of 𝜑(𝑥
𝑛
). The

error incurred from the linearization will be reduced again
and again during the linear iteration.

Equation (10) can be rewritten in matrix form:

�̂�
𝑛
= [𝑦𝑛

1

⋅ ⋅ ⋅ 𝑦
𝑛
𝐾
] − [𝑦

𝑛
⋅ ⋅ ⋅ 𝑦
𝑛
] = 𝑌
𝑛
𝐶
𝐾

≈ [𝐴𝑛𝜃𝑛,1 ⋅ ⋅ ⋅ 𝐴
𝑛
𝜃
𝑛,𝐾] = 𝐴

𝑛
[𝜃𝑛,1 ⋅ ⋅ ⋅ 𝜃

𝑛,𝐾]

= 𝐴
𝑛
Θ
𝑛
,

(11)

where 𝐶
𝐾
= 𝐼
𝐾
− (1/𝐾)Γ

𝐾
Γ
𝑇

𝐾
is the centralizing matrix, Γ

𝐾
=

[1 ⋅ ⋅ ⋅ 1]
𝑇

∈ 𝑅
𝐾. In geometry, (11) means that 𝑌

𝑛
, the global

coordinate of the patch 𝑋
𝑛
, can be locally approximated by

translation, rotation, and scaling of Θ
𝑛
, the local coordinate

of the patch𝑋
𝑛
.

5.2. Local Linear Iterative Alignment (LLIA) Algorithm. In
the proposed LLIA algorithm, the global coordinate 𝑌 is
approximated iteratively:

𝑌
(0)

→ 𝑌
(1)

→ ⋅ ⋅ ⋅ → 𝑌
(𝑝)

→ 𝑌
(𝑝+1)

→ ⋅ ⋅ ⋅

→ 𝑌.

(12)

In the above iteration the initial iterative value 𝑌(0) is locally
set to be the local coordinates 𝑌(0)

𝑛
= Θ
𝑛
, while the other

iterative values𝑌(𝑝+1) are derived from the last iterative values
𝑌
(𝑝) based on the following local linear relation of alignment:

�̂�
(𝑝+1)

𝑛
= 𝐴
(𝑝)

𝑛
�̂�
(𝑝)

𝑛
, 𝑝 = 0, 1, 2, . . . , (13)
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where �̂�(𝑝)
𝑛

= 𝑌
(𝑝)
𝑆
𝑛
𝐶
𝐾
, �̂�(𝑝+1)
𝑛

= 𝑌
(𝑝+1)

𝑆
𝑛
𝐶
𝐾
. The deduction

of 𝑌(𝑝+1)
𝑛

from 𝑌
(𝑝) is as follows:

𝑁

∑

𝑛=1


�̂�
(𝑝+1)

𝑛
− 𝐴
(𝑝)

𝑛
�̂�
(𝑝)

𝑛



2

=

𝑁

∑

𝑛=1


�̂�
(𝑝+1)

𝑛
(𝐼
𝐾
− (�̂�
(𝑝)

𝑛
)

+

�̂�
(𝑝)

𝑛
)



2

=

𝑁

∑

𝑛=1


𝑌
(𝑝+1)

𝑆
𝑛
𝐶
𝐾
(𝐼
𝐾
− (�̂�
(𝑝)

𝑛
)

+

�̂�
(𝑝)

𝑛
)



2

=

𝑁

∑

𝑛=1


𝑌
(𝑝+1)

𝐿
(𝑝)

𝑛



2

=

𝑁

∑

𝑛=1

tr(𝑌(𝑝+1)𝐿(𝑝)
𝑛
(𝐿
(𝑝)

𝑛
)
𝑇

(𝑌
(𝑝+1)

)
𝑇

)

= tr(𝑌(𝑝+1)
𝑁

∑

𝑛=1

𝐿
(𝑝)

𝑛
(𝐿
(𝑝)

𝑛
)
𝑇

(𝑌
(𝑝+1)

)
𝑇

)

= tr(𝑌(𝑝+1)𝐿(𝑝) (𝑌(𝑝+1))
𝑇

) =
𝑌
(𝑝+1)
(𝑌
(𝑝+1)
)
𝑇
=𝐼
𝑑

min,

(14)

where (�̂�(𝑝)
𝑛
)
+ is the solution to the following problem:


𝐼
𝑑
− �̂�
(𝑝)

𝑛
(�̂�
(𝑝)

𝑛
)

+

2

=

(�̂�
(𝑝)

𝑛
)
+

min. (15)

The algorithm framework of iterative alignment is as
follows.

The Beginning of Iteration

𝑝 = 0

Calculate �̂�(𝑝)
𝑛
:

�̂�
(𝑝)

𝑛
=

{

{

{

Θ
𝑛

𝑝 = 0

𝑌
(𝑝)
𝑆
𝑛
𝐶
𝐾

𝑝 ≥ 1,

𝑛 = 1, . . . , 𝑁 (16)

Calculate (�̂�(𝑝)
𝑛
)
+:


𝐼
𝑑
− �̂�
(𝑝)

𝑛
(�̂�
(𝑝)

𝑛
)

+

2

=

(�̂�
(𝑝)

𝑛
)
+

min, 𝑛 = 1, . . . , 𝑁 (17)

Calculate 𝐿(𝑝)
𝑛
:

𝐿
(𝑝)

𝑛
= 𝑆
𝑛
𝐶
𝐾
(𝐼
𝐾
− (�̂�
(𝑝)

𝑛
)

+

�̂�
(𝑝)

𝑛
) , 𝑛 = 1, . . . , 𝑁 (18)

Calculate 𝐿(𝑝):

𝐿
(𝑝)

=

𝑁

∑

𝑛=1

𝐿
(𝑝)

𝑛
(𝐿
(𝑝)

𝑛
)
𝑇

(19)

Calculate 𝑌(𝑝+1):

tr(𝑌(𝑝+1)𝐿(𝑝) (𝑌(𝑝+1))
𝑇

) =
𝑌
(𝑝+1)
(𝑌
(𝑝+1)
)
𝑇
=𝐼
𝑑

min (20)

Calculate 𝜀(𝑝+1):

𝜀
(𝑝+1)

= tr(𝑌(𝑝+1)𝐿(𝑝) (𝑌(𝑝+1))
𝑇

) (21)

If 𝜀(𝑝+1) > 𝜀, then 𝑝 = 𝑝 + 1 and go back to calculate
�̂�
(𝑝)

𝑛

The End of Iteration.

6. Experimental Results

Here the experimental results of 8 manifold learning algo-
rithms on the toy and real-world data are presented. The 8
manifold learning algorithms are the proposed local linear
iterative alignment (LLIA) algorithm, LLE, HLLE, LTSA,
Diffusion Map, MVU, ISOMAP, and LE. The last 7 manifold
learning algorithms are implemented by using MANI, a
widely used platform of manifold learning which can be
downloaded from internet [30].

6.1. Toy Data. The toy data used in the experiments are
Trefoil, Punctured Sphere, and Toroidal Helix.These toy data
are also produced by using MANI. Figures 5, 6, and 7 show
the experimental results of 8manifold learning algorithms on
three toy datasets. At present there are no widely accepted
quantitative evaluation criteria in manifold learning [31].The
evaluations of manifold learning algorithms are commonly
based on visual perception.

At the top of Figure 5, an image of Trefoil and some
coloured data taken from Trefoil are presented. Since Trefoil
is constructed by twisting a planar coil into a cubic body, a
good manifold learning algorithm should be able to recover
the planar coil from the given coloured data and keep the
order of colours unchanged. It can be seen from Figure 5 that
the proposed LLIA algorithm does a good job in this respect.

The so-called Punctured Sphere is a spherical surface
whose top has been cut off.The colour of the given data shown
in Figure 6 indicates the position relationship between the
given data. The aim of manifold learning is to produce an
overhead view of Punctured Sphere on a plane. It can be seen
from Figure 6 that the proposed algorithm achieves much
better results than other manifold learning algorithms.

Toroidal Helix is something like that shown at the top of
Figure 7. Although Toroidal Helix is much more complicated
thanTrefoil, it is also constructed by twisting a planar coil into
a cubic body. The aim of manifold learning is also to recover
the planar coil from the given coloured data. In doing so,
the order of data colour must be kept unchanged because the
order of data colour indicates the position relationship of data
which should not be damaged during dimension reduction.
It can be seen from Figure 7 that the performance of the
proposed LLIA algorithm is one of the best among 8manifold
learning algorithms.
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Figure 5: The experimental results on Trefoil.

−2 0 2

LLE: 0.44129s LE: 0.28249s

−2 0 2

ISOMAP: 13.6969s

−2 0 2

MVU: 8.8172s

Hessian LLE: 1.2008s LTSA: 0.75216s

−2 0 2
−2

0

2
Diffusion Map: 0.36235s LLIA: 1.9564s

−2

0

2

−2

0

2

−1

0

1

2

−0.1 0 0.1 −0.1 0 0.1

−0.1 0 0.1

−0.1 0 0.1
−0.1

0

0.1

−0.1

0

0.1

−0.1

0

0.1

−0.1

0

0.1

−0.5
0 0.5

−0.5
0

0.5

0.5

1

1.5

Figure 6: The experimental results on Punctured Sphere.
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Table 1: Average alignment errors of LLIA algorithm on Trefoil, Punctured Sphere, and Toroidal Helix during iterations.

Iterative times Average alignment errors (repeated 10 times)
Trefoil Punctured Sphere Toroidal Helix

1 2.430325527 6.187600 1.426720000

2 0.208952049 1.482000 0.343360000

3 5.53147𝐸 − 05 0.000190 2.46957𝐸 − 06

4 5.56803𝐸 − 09 4.85𝐸 − 08 2.05993𝐸 − 11

5 1.37933𝐸 − 12 1.36𝐸 − 11 3.60300𝐸 − 14

6 2.2728𝐸 − 14 3.77𝐸 − 14 3.50165𝐸 − 14

7 2.22939𝐸 − 14 3.59𝐸 − 14 3.40432𝐸 − 14

8 2.28014𝐸 − 14 3.56𝐸 − 14 3.50757𝐸 − 14

9 2.3272𝐸 − 14 3.53𝐸 − 14 3.47241𝐸 − 14

10 2.22417𝐸 − 14 3.51𝐸 − 14 3.47867𝐸 − 14
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Figure 7: The experimental results on Toroidal Helix.

Table 1 shows the average alignment errors of the pro-
posed LLIA algorithm during iterations. It can be seen from
Table 1 that the initial alignment errors are considerably
large and will be reduced sharply to almost zero during the
first 2 iterations. The fact that the initial alignment errors
are considerably large indirectly verifies the nonlinearity of
alignment and justifies the necessity of iterative alignment.
Furthermore the fact that the errors of iterative alignmentwill
be reduced sharply to almost zero during the first 2 iterations
means that the time complexity of the proposed LLIA
algorithm is quite low.

6.2. Real-World Data. Figure 8 shows the experimental
results of 8 manifold learning algorithms on the dataset of
Frey Face. Frey Face is oftenused to test the effects ofmanifold
learning algorithms inmany academic literatures [1, 3, 32, 33].
The photos in Frey Face are all taken from the same person
with different head poses and facial expressions. Therefore,
although the dimension of photos is 560, the intrinsic
dimension of photos is two: head pose and facial expression.
In Figure 8, the photos are dimensionally reduced from560 to
2 by using 8 differentmanifold learning algorithms, including
the proposed LLIA algorithm. In the images of Figure 8,
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Figure 8: The experimental results on Frey Face.
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Figure 9: The experimental results on plaster.

the facial expression changes along the vertical direction,
while the head pose changes along the horizontal direction.
It can be seen that the proposed LLIA algorithm achieves the
best visual effect among the 8 manifold learning algorithms.

Figure 9 shows the experimental results on the dataset of
plaster. Plaster is also a dataset often used to test the effects of
manifold learning algorithms in many academic literatures
[2, 33]. The photos of plaster are all taken from the same
plaster from different shooting angle and under different
shooting illumination. Therefore, although the dimension of
photos is 4096 = 20×28, the intrinsic dimension of photos is
two: shooting angle and illumination. In Figure 9, the photos
are dimensionally reduced from 4096 to 2 by using manifold
learning algorithms. In the images of Figure 9, the shooting
angle changes along the vertical direction, while the shooting
illumination changes along the horizontal direction. Again,
it can be seen that the proposed LLIA algorithm achieves the
best visual effect among the 8 manifold learning algorithms.

As shown in Figures 5, 6, 7, 8, and 9, the effects of mani-
fold learning algorithms are evaluated qualitatively, not quan-
titatively. At present, there are nowidely accepted quantitative
evaluation criteria in manifold learning [31]. However, the
evaluations ofmanifold learning algorithms can be quantized

indirectly by applyingmanifold learning algorithms to practi-
cal applications. In Table 2, the manifold learning algorithms
are applied to the clustering application. USPS is an image
dataset of handwritten numerals and has been used in many
academic literatures of manifold learning [3, 34]. In Table 2,
the images are first dimensionally reduced by using manifold
learning algorithms and then clustered by using theK-means
algorithm.The clustering precisions shown inTable 2 are then
used to evaluate the effects of manifold learning algorithms
indirectly. It can be seen from Figure 11 that the proposed
LLIA algorithm is superior to LLE, HLLE, LTSA, and Dif-
fusion Map but inferior to ISOMAP and LE. Note that both
ISOMAP and LE belong to the so-called global preserving
algorithms, while the proposed LLIA, LLE, HLLE, LTSA,
and Diffusion Map belong to the so-called local preserving
algorithms. Table 2 shows that, in the clustering of hand-
written numerals, although the local preserving algorithms
are inferior to the global preserving algorithms, the proposed
LLIA achieves the best result among the local preserving
algorithms.

6.3. Robustness Experiments. Figures 10 and 11 show the
robustness experiments against the change of neighbourhood
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Figure 10: The robustness experiments against the change of neighbourhood sizes on Toroidal Helix.
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Figure 11: The robustness experiments against the change of neighbourhood sizes on Punctured Sphere.

size on Toroidal Helix and Punctured Sphere. The experi-
mental data as well as the experimental results of manifold
learning algorithms (except LLIA) are provided by using the
manifold learning platform MANI.

It can be seen in Figure 10 that, on Toroidal Helix, the
proposed algorithm LLIA performs best among the listed
manifold learning algorithms. The experimental results of
other manifold learning algorithms deform very much along

with the change of K. However, as shown in Figure 11, most
of the listed manifold learning algorithms (including LLIA)
perform stably on Punctured Sphere. Anyway, the proposed
LLIA algorithm shows some robustness against the different
neighbourhood sizes as well as the different manifolds.

Figures 12 and 13 show the robustness experiments against
noises on Toroidal Helix and Punctured Sphere. The noises
are added by using the manifold learning platform MANI.
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Figure 12: The robustness experiments against noises on Toroidal Helix.
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Figure 13: The robustness experiments against noises on Punctured Sphere.

Table 2: Clustering accuracy of USPS by using the 2D embedding.

2 clusters 3 clusters 4 clusters Average
ISOMAP 0.948000000 0.792888889 0.665888889 0.802259259
LE 0.793222222 0.705666667 0.641000000 0.713296296
LLIA 0.934333333 0.693111111 0.493333333 0.706925926
LTSA 0.879888889 0.643000000 0.505222222 0.676037037
LLE 0.821222222 0.666888889 0.508000000 0.66537037
HLLE 0.587888889 0.396777778 0.293222222 0.425962963
Diff. map 0.501333333 0.336333333 0.254111111 0.363925926

There are two Matlab sentences in MANI which can be used
to add noises to the manifold data:

noiseSigma = handles.noise;
handles.X = handles.X + noiseSigma ∗ randn(N,3).

In the above Matlab sentences, the variable noiseSigma
controls the noise strength. In Figures 12 and 13, the noise
strength has been changed from 0 to 18%.

It can be seen in Figure 12 that, on Toroidal Helix, the per-
formance of proposed algorithm LLIA is quite robust against
noises, while other manifold learning algorithms deteriorate
quickly when the noises are strengthened steadily. On the
other hand, on Punctured Sphere, ISOMAP, Diffusion Map,
and the proposed LLIA perform stably against the change of
noises. Anyway, it can be concluded from both Figure 12 and
Figure 13 that the proposed LLIA algorithm is robust against
noises on different manifolds and different noise strength.

7. Conclusions

(1) At present, many machine learning algorithms,
including the famous LLE algorithm [1, 35], claim
to be manifold learning algorithms. However, the
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manifolds mentioned in these algorithms seem to
have nothing to do with the manifolds defined in
mathematics. In contrast, the LLIA algorithm pro-
posed on this paper is constructed based on themath-
ematical characteristics (local homeomorphism, local
pullback, etc.) of differential manifolds.

(2) Themanifold learning can be divided into two stages:
local homeomorphism and alignment. In local home-
omorphism, a Taylor expansion between a patch and
its local coordinate can be deduced by using one-
parameter transformation group acting on manifolds
[5, 36]. In this paper, a Taylor expansion between the
global and local coordinates of a patch is also deduced
by using the local pullback of functions defined on
differential manifold. It should be pointed out that
these two Taylor expansions are completely different.
The former reveals the relation between the high-
dimensional data and low-dimensional date, while
the latter reveals the relation between two low-dimen-
sional data.

(3) In the proposed LLIA algorithm, the nonlinear prob-
lem is solved by using a linear iteration method.
There are two problems to be addressed here: the
convergence of iteration and the time complexity of
algorithm. In computational mathematics, the linear
iterative methods are often used to solve nonlinear
problems and the convergences of iteration have been
thoroughly discussed [37]. In practice, the experi-
mental results presented in this paper show that the
alignment errors would be considerably large if with-
out iteration and will be reduced sharply during the
first two iterations.This fact also implies that the time
complexity of the proposed LLIA algorithm will be
quite low because only few iterations are needed.

(4) At present, the algorithms of local coordinate align-
ment can be divided into two categories: the one-time
alignment and the gradual alignment. In the one-
time alignment, the manifold’s global coordinate is
obtained at one time by solving an eigenvalue prob-
lem [3, 5, 12–14], while in the gradual alignment, the
manifold’s global coordinate grows up gradually from
a patch’s local coordinate [9–11]. No matter which
alignment is used, they are all based on the local linear
model of alignment. The proposed LLIA algorithm
is based on the nonlinear model of alignment and
therefore belongs to neither one-time alignment nor
gradual alignment.
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