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Introduction. Ischemia/reperfusion (IR) injury, often associated with liver surgery, is an unresolved problem in the clinical practice.
Spironolactone is an antagonist of aldosterone that has shown benefits over IR injury in several tissues, but its effects in hepatic
IR are unknown. Objective. To evaluate the effect of spironolactone on IR-induced damage in liver. Materials and Methods. Total
hepatic ischemia was induced in rats for 20min followed by 60min of reperfusion. Spironolactone was administered and hepatic
injury, cytokine production, and oxidative stress were assessed. Results. After IR, increased transaminases levels and widespread
acute inflammatory infiltrate, disorganization of hepatic hemorrhage trabeculae, and presence of apoptotic bodies were observed.
Administration of SPI reduced biochemical and histological parameters of liver injury. SPI treatment increased IL-6 levels when
compared with IR group but did not modify either IL-1𝛽 or TNF-𝛼 with respect to IR group. Regarding oxidative stress, increased
levels of catalase activity were recorded in IR + SPI group in comparison with group without treatment, whereas MDA levels were
similar in IR + SPI and IR groups. Conclusions. Spironolactone reduced the liver damage induced by IR, and this was associated
with an increase in IL-6 production and catalase activity.

1. Introduction

Clamping of the hepatic pedicle during resection of liver
tumors or liver transplantation is often unavoidable, and
during these conditions hepatic ischemia/reperfusion (IR)
injury may occur. IR injury is the main cause of primary graft
dysfunction or nonfunction after liver transplantation. In
addition, the liver suffers from warm IR injury during tissue

resections (Pringle Maneuver), hemorrhagic or endotoxin
shock, and thermal injury [1]. Hepatic IR involves a complex
series of processes that comprises microcirculatory failure,
followed by necrosis and cell death [2].The destructive effects
of IR are in part triggered by the acute generation of reactive
oxygen species following reoxygenation, which causes direct
tissue injury and initiates a chain of deleterious cellular
responses leading to inflammation and cell death, which
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eventually culminate in target organ failure [3]. Current
strategies for the treatment of liver IR injury are either
preventive [4] or pharmacological [5]. Pharmacologicalmod-
ulation may have a more universal application; however,
several therapeutic formulations have been studied and none
has been fully successful in preventing mortality associated
with liver IR [6, 7]. Thus, the development of new strategies
for prevention and treatment of liver damage due to IR
is critical to improving outcomes for patients under such
conditions.

Recent studies in humans and experimental models
have shown that aldosterone plays a pivotal role in the
pathophysiology of cardiovascular and renal injury. In this
regard, clinical trials have evidenced that mineralocorticoid
receptor (MR) blockade improves the survival of patients
with chronic heart disease and chronic renal failure [8–
11]. The protective effect of MR blockade is associated with
decreased fibrosis and vascular inflammation, suggesting that
aldosterone is a profibrotic hormone [12, 13]. Spironolactone
(SPI) is a synthetic 17-lactone steroid, which is a competitive
aldosterone antagonist in a class of pharmaceuticals called
potassium-sparing diuretics. SPI is considered fourth line
therapy for hypertension in patients already treated with
multiplemedications [14, 15]. Antagonists of aldosterone have
shown beneficial effects in IR experimental models in retina
[16], intestine [17], heart [18], kidney [19], and brain [20], but
nothing has been reported yet in the setting of hepatic IR
injury.

In this study, we sought to evaluate the effect of SPI in
livers undergoing normothermic IR injury and to investigate
if the protective effects of SPI could be associated with a
reduction in oxidative stress and the inflammatory response.

2. Materials and Methods

2.1. Animals. Animal procedures were performed in accor-
dance with the proper use and care of laboratory animals,
approved by the ethics committee of our institution. Exper-
iments were performed using 15 male Wistar rats weighing
200–250 g. Animals were maintained under standard condi-
tions such as stable room temperature (24 ± 3∘C) and a 12-
hour light-dark cycle and were allowed access to commercial
rat pellets and water ad libitum.

2.2. ExperimentalModel. Briefly, after 24 hours of fasting, the
animals were anesthetized with pentobarbital sodium anes-
thesia (60mg/kg i.p.) and were placed below a heating lamp
to maintain constant temperature (37∘C), and an identical
midline abdominal incision was performed.

2.2.1. Total Hepatic Ischemia. The hepatic hilum was iden-
tified and complete warm hepatic ischemia was induced
by Pringle Maneuver [21, 22] with microvascular bulldog
clamps; ischemia was noticed by color changes in the liver
and intestinal tissue. Hepatic ischemia was maintained for
20 minutes, and then clamps were removed to allow 60-
minute reperfusion, after which blood and liver samples were
collected, and rats were humanely sacrificed.

2.2.2. Partial Hepatic Ischemia. A model of 70% hepatic
ischemia was also used, following procedures described in
the literature [23]. Briefly, after midline laparotomy, the liver
was freed from its ligaments and subsequently all structures
of the portal triad of the left and median hepatic lobes
were occluded for 60 minutes with a microvascular clamp
(Aesculap, San Francisco, CA). In this model, mesenteric
congestion is prevented by allowing intestinal blood flow
through the right and caudate lobes. The clamps were then
removed to allow 6-hour reperfusion, after which blood
and liver samples were collected, and rats were humanely
sacrificed.

2.3. Experimental Protocol

Protocol 1 (dose-response study to assess the effect of SPI on
hepatic injury). To determine the most effective dose of SPI
in reducing hepatic injury in conditions of complete warm
ischemia, a dose-response study was carried out to evaluate
the effect of several doses of SPI as follows:

(1.A) IR group (𝑛 = 5 rats): animals were subject to total
hepatic ischemia as described above and received
vehicle only (saline).

(1.B) IR + SPI group (𝑛 = 5 rats): it is as in group B, but
animals received SPI at dose of 1000 𝜇g/kg orally 20
hours before induction of IR.

(1.C) IR + SPI group (𝑛 = 5 rats): it is as in group B, but
animals received SPI at dose of 2600𝜇g/kg orally 20
hours before induction of IR.

(1.D) IR + SPI group (𝑛 = 5 rats): it is as in group B, but
animals received SPI at dose of 5000𝜇g/kg orally 20
hours before induction of IR.

(1.E) IR + SPI group (𝑛 = 5 rats): it is as in group B, but
animals received SPI at dose of 10,000 𝜇g/kg orally 20
hours before induction of IR.

(1.F) IR + SPI group (𝑛 = 5 rats): it is as in group B, but
animals received SPI at dose of 20,000𝜇g/kg orally 20
hours before induction of IR.

Protocol 2 (effect of SPI on hepatic injury associated with nor-
mothermic IR). To evaluatewhether spironolactone treatment
at the most effective dose could reduce hepatic injury in
conditions of either total or partial normothermic IR, the
following experimental groups were performed:

(2.A) Sham group (𝑛 = 5 rats): animals received only Sham
surgery, where laparotomy was performed but liver
was onlymanipulated andwarmhepatic ischemiawas
not induced.

(2.B) IR group (𝑛 = 5 rats): animals were subject to total
hepatic ischemia as described above and received
vehicle only (saline).

(2.C) IR + SPI group (𝑛 = 5 rats): it is as in group B,
but animals received SPI (2.6mg/kg) orally 20 hours
before induction of IR.
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(2.D) PIR group (𝑛 = 5 rats): animals were subject to partial
hepatic ischemia as described above and received
vehicle only (saline).

(2.E) PIR + SPI group (𝑛 = 5 rats): it is as in group D,
but animals received SPI (2.6mg/kg) orally 20 hours
before induction of IR.

2.4. Histological Examination. Immediately after obtaining
the liver, the sample was fixed in 10% neutral buffered
formalin. Samples were then embedded in paraffin, and 4 𝜇m
thick sections were stained with hematoxylin and eosin and
examined under light microscope by a blinded pathologist.
The hepatic histological damage and hepatocellular necrosis
were evaluated according to the Shen [24] and Chen [25]
scales, respectively.

The hepatic histological damage scale consists in 4
degrees (G0–G3): grade 0 indicates minimal or no evidence
of injury; grade 1 indicates mild injury with cytoplasm
vacuolization and focal nuclear pyknosis; grade 2 indicates
moderate-to-severe injury with extensive nuclear pyknosis,
loss of intercellular borders, and mild-to-moderate neu-
trophil infiltration; grade 3 indicates severe injury with
disintegration of hepatic cords, hemorrhage, and severe PMN
infiltration. The hepatocellular necrosis scale consists in 4
degrees (G0–G3): none is grade 0, single cell is grade 1, −30%
is grade 2, and >30% is grade 3.

2.5. Biochemical Analysis

2.5.1. Measurements of Transaminases. Blood samples were
used to determine serum levels of ALT and AST by standard
commercial biochemical assay kits, using DT6011 analyzer
(Vitros DTII Systems Chemistry, module DTSCII; Johnson
& Johnson Ortho-Clinical Diagnostics, New Brunswick, NJ,
USA).

2.5.2. Cytokine Determination. Serum levels of tumour
necrosis factor-alpha (TNF-𝛼), Interleukin-1 (IL-1), and
Interleukin-6 (IL-6) were determined using a rat TNF-alpha,
IL-1, and IL-6 enzyme, linked immunosorbent assay (ELISA)
kit (Peprotech, México).

2.5.3. Oxidative Stress Parameters. In serum samples, total
antioxidant capacity was determined using an Antioxidant
Assay Kit, which assesses the combination of both small
molecule and protein antioxidants (Cayman Chemical Com-
pany,Michigan,USA); catalase activity using aCatalaseAssay
Kit (Cayman Chemical Company, Michigan, USA); and
malondialdehyde (MDA) using a MDA Assay Kit (Cayman
Chemical Company, Michigan, USA).

2.6. Statistical Analysis. The SPSS 22.0 statistical software
package (SPSS Inc. Software, Chicago, Illinois, USA) was
used to analyze data using one-way analysis of variance
(ANOVA) andTukey’s post hoc test to determine comparison
between groups and differences between groups, respectively.
All values are expressed as mean ± standard deviation (SD)
and𝑃 < 0.05was considered statistically significant. Pearson’s
chi-square test was applied for histological examination; 𝑃
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Figure 1: Dose-response study of spironolactone on hepatic injury
in total normothermic IR. The effects of SPI treatment on ALT
and AST levels were assessed. Rats were treated with SPI (0, 1,000,
2,600, 5,000, 10,000, and 20,000 𝜇g/kg). Transaminase levels were
measured after 1 h of reperfusion. Means without a common letter
are different; 𝑃 < 0.05.

value< 0.05 was considered statistically significant.The dose-
response study results were analyzed using Prism version
6 (GraphPad Software Inc., San Diego, CA). Data were
evaluated by one-way analysis of variance and Bonferroni’s
post-test.

3. Results

3.1. Dose-Response Effect of SPI on Hepatic Injury in Total
Warm Ischemia. We administered SPI at doses of 1,000,
2,600, 5,000, 10,000, and 20,000 𝜇g/kg in rats 20 hours before
the surgical procedure, and the effects on hepatic injury were
determined 1 h after reperfusion. Our results indicated that
SPI protected livers against damage in a dose-dependent
manner. The ED50 values for ALT and AST were 1,056 𝜇g/kg
and 1,030 𝜇g/kg, respectively. The most effective dose of
SPI in reducing the parameters of hepatic injury in liver
undergoing warm ischemia was 2,600 𝜇g/kg (2.6mg/kg).
This dose was then used in the rest of the experimental
procedures. Higher doses were not associated with lower
hepatic damage (Figure 1).
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Figure 2: Effect of spironolactone on biochemical parameters of
liver injury in total normothermic IR. ALT and AST levels were
measured in plasma. ∗𝑃 < 0.05 versus Sham; +𝑃 < 0.05 versus IR.

3.2. Spironolactone as Pharmaceutical Strategy to Reduce He-
patic IR Injury. In the total liver normothermic IR model,
the administration of spironolactone at the selected dose of
2.6mg/kg (IR + SPI group) reduced ALT and AST levels
compared with the results obtained in IR group (ALT values:
494 ± 83.9 and 226 ± 103 IU/L for the IR and IR + SPI,
resp.; AST values: 1072 ± 198 and 559 ± 176 IU/L, for the
IR and IR + SPI, resp.) (Figure 2). Biochemical parameters of
hepatic injury were consistent with histological study of the
liver. The IR group showed extensive inflammatory infiltrate
with presence of apoptotic bodies.The IR+ SPI group showed
conserved cellular architecture, isolated pockets of acute
inflammation, and apoptotic bodies (Figure 3). Significantly
lower histological damage and hepatocellular necrosis scores
were found in the IR + SPI group when compared with IR
group at the end of reperfusion (Table 1).

(a)

(b)

(c)

Figure 3: Hematoxylin and eosin staining of hepatic tissue. The
Sham group (a) showed conserved cellular architecture. IR group
(b) showed numerous inflammatory cell groups predominantly
perivenular and presence of apoptotic bodies isolated surrounded
by inflammation. The IR + SPI group (c) showed conserved cellular
architecture, isolated pockets of acute inflammation, and apoptotic
bodies.

Table 1: Evaluation of hepatic tissue according to histological
damage.

Hepatic histological
damage scale

Hepatocellular
necrosis scale

Sham 1 0
IR 2∗ 3∗

IR + SPI 1# 1#

∗ indicates 𝑃 < 0.05 versus Sham.
# indicates 𝑃 < 0.05 versus IR.
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Figure 4: Effect of spironolactone on biochemical parameters
of liver injury in normothermic PIR. ALT and AST levels were
measured in plasma. ∗𝑃 < 0.05 versus Sham; +𝑃 < 0.05 versus PIR.

Similar results were obtained in the partial liver IRmodel,
where the administration of spironolactone at the selected
dose of 2.6mg/kg (PIR + SPI group) reduced ALT and AST
levels compared with the results obtained in PIR group (ALT
values: 855± 55 and 431± 41 IU/L for the PIR and PIR + SPI,
resp.; AST values: 1085 ± 75 and 708 ± 80 IU/L, for the PIR
and PIR + SPI, resp.) (Figure 4).

3.3. Effect of SPI on Cytokine Production and Oxidative Stress
inHepatic Normothermic IR Injury. As shown in Figure 5, IL-
1𝛽, TNF-𝛼, and IL-6 levels of the IR group were of the same
order as those of the Sham group (IL-1𝛽 values: 1.38 ± 0.25
and 1.32 ± 0.28 ng/mL, in IR and Sham groups, resp.; TNF-𝛼
values: 1.01 ± 0.61 ng/mL and 1.06 ± 0.46 ng/mL, in IR and
Sham groups,; IL-6 values: 0.48±0.23 and 0.32±0.29 ng/mL,
in IR and Shamgroups, resp.). Treatmentwith spironolactone
did not result in changes in plasma IL-1𝛽 and TNF-𝛼 levels
with regard to those found in the IR group (IL-1𝛽 values:
1.55 ± 0.24 and 1.38 ± 0.25 ng/mL, in IR + SPI and IR groups,
resp.; TNF-𝛼 values: 1.42 ± 0.47 and 1.01 ± 0.61 ng/mL, in IR
+ SPI and IR groups, resp.). However, IR + SPI group showed
increased IL-6 levels when compared with the IR group (IL-6
values: 2.15 ± 0.53 and 0.48 ± 0.23 ng/mL, in IR + SPI and IR
groups, resp.) (Figure 5).

Regarding oxidative stress parameters, total antioxidant
capacity of the IR and Sham groups was similar (total
antioxidant capacity values: 3.07±0.52 and 2.96±0.52mM, in

IR and Sham groups, resp.). IR increased catalase activity and
MDA levels when compared with the Sham group (catalase
activity values: 214.22±61.1 and 18.9±8.50 nmol/min/mL, in
IR and Sham groups, resp.;MDAvalues: 18.0±2.75 and 11.1±
0.96 𝜇M, in IR and Sham groups, resp.). Spironolactone did
not have a significant effect over total antioxidant capacity,
since this parameter in the IR + SPI group was similar to
that recorded in IR group (total antioxidant capacity values:
3.07 ± 0.52 and 2.89 ± 0.41mM, in IR + SPI and IR groups,
resp.). Results showed an increase in catalase activity in the
IR + SPI group in comparison with the IR group (catalase
activity values: 651.55 ± 57 and 214 ± 61.1 nmol/min/mL, in
IR + SPI and IR groups, resp.). Treatmentwith spironolactone
did not modify MDA levels with respect to the IR group
(MDA values: 19.1 ± 3.61 and 18.0 ± 2.75 𝜇M, in IR + SPI
and IR groups, resp.) (Figure 6).

4. Discussion

We found that SPI was able to reduce liver IR injury in
total liver IR models, as evidenced by attenuation of the
histopathological alterations associated with IR injury as well
as by reduction of serum levels of AST and ALT. Spironolac-
tone is widely used in clinical practice [25–27]. In fact, several
studies have evaluated the usefulness of spironolactone in the
treatment of ischemia reperfusion in organs such as kidney
and heart in clinical studies, and the results obtained have
shown beneficial effects of this drug [28–30]. Our results
reveal that pretreatment with spironolactone could open new
pathways for protecting liver against IR injury, a strategy that
could turn out to be clinically relevant.

As the experimental model of total hepatic IR involves
the fact that both gut and liver are subjected to ischemic
conditions, it is possible to consider that the observed effects
on the liver might thus represent gut-originating responses
to ischemia and their modification by SPI. To assess this
possibility, an experimental model of partial hepatic IR was
carried out to evaluate the effect of SPI on hepatic injury,
since in this model intestinal congestion is prevented. Our
results indicated that the same dose of SPI was able to reduce
biochemical parameters of hepatic injury, thus indicating
a liver-specific protective effect for SPI in normothermic
hepatic IR.

It is well known that, during hepatic IR, cytokines
are released through the induction of adhesion molecules
(ICAM and vascular cell adhesion molecule [VCAM]) and
CXC chemokine which leads to neutrophil activation and
accumulation. These neutrophils then extravasate, causing
parenchymal injury by ROS production [31]. Several exper-
imental studies in IR models in tissues different to liver have
demonstrated that SPI has anti-inflammatory activity, which
may rely on its ability tomodulate the production of cytokines
including IL-1𝛽, TNF-𝛼, and IL-6 [17, 32, 33]. By analyzing
these parameters in our study, the benefits of spironolactone
could be associated only with increased IL-6 production. IL-
6 treatment has been found to have protective effects against
warm IR injury in rodents [34]. One study showed worse
IR injury in livers of IL-6 knockout mice than wild type
mice, which was restored to the wild type injury patterns
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Figure 5: Effect of spironolactone on cytokine production in normothermic IR injury. IL-1𝛽, IL-6, andTNF-𝛼 levels weremeasured in plasma.
∗

𝑃 < 0.05 versus Sham; +𝑃 < 0.05 versus IR.

by administration of recombinant IL-6 to the knockout mice
before ischemia [35]. These results suggest that SPI-induced
protection against IR injury could be partly explained by
modulation of IL-6 levels but not by any effects over IL-1𝛽
or TNF-𝛼.

Spironolactone had a protective effect in several models
of IR injury model through amelioration of oxidative stress.
[16, 17]. In this study, three oxidative stress mediators were
analyzed: total antioxidants, catalase activity, and MDA.
Unlike other studies that have reported reduction in oxidative
stress parameters after SPI administration [17, 19, 28], we
found no relevant changes in MDA. This could be due to
differences in the experimental conditions in the models
used. Our results suggest that, in the conditions evaluated
herein, SPI did not reduce markers of oxidative stress. We
evaluated total antioxidant capacity but results indicated that
SPI treatment did not induce any change in this parameter.

Then, we decided to assess catalase activity, since this enzyme
is one of the most important antioxidants in the context
of hepatic IR. [25, 36]. The effect of SPI on catalase was
evaluated, and we found that SPI increased catalase activity
at the systemic level. Thus, in addition to inducing IL-6
production, SPI increased antioxidant enzymes, resulting
in the preservation of hepatic structure and reduction of
liver injury, as was shown by the light microscopic findings
and the biochemical liver injury markers. This may indicate
that SPI is inducing endogenous protective mechanisms in
hepatic tissue as a way to counteract the injurious effects of
normothermic IR.

Studies on myocardial infarction models have also
shown that mineralocorticoid receptor blockers can mod-
ulate macrophage function, thus diminishing the cellular
inflammatory response [37]. The proteolytic enzyme cathep-
sin was also shown to be modulated by MR blockade in an
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intestinal IR injury model [38]. Whether these mechanisms
are implicated in SPI-induced hepatoprotection in liver IR
injury remains unknown and deserves further studies.

There are some limitations in this study. The sample size
is small, and molecular mediators were assessed on serum
and not on tissue.This could reflect more a systemic response
to IR, irrespective of the beneficial effects we observed
over histopathological scores. Finally, further studies would
be necessary to conclude that these results are clinically
relevant.

5. Conclusions

In conclusion, the present study demonstrated for the first
time that SPI has hepatoprotective properties in IR liver
injury model. This effect was associated with the induction

of protective mechanisms in hepatic tissue such as IL-6
production and increased catalase activity.

Abbreviations

IR: Ischemia reperfusion
MDA: Malondialdehyde
ROS: Reactive oxygen species
SD: Standard deviation
SPI: Spironolactone.
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