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We study internal structure of theDuffin-Kemmer-Petiau equations for spin 0 and spin 1mesons.We show that in the noninteracting
case full covariant solutions of the 𝑠 = 0 and 𝑠 = 1 DKP equations are generalized solutions of the Dirac equation.

1. Introduction

The Duffin-Kemmer-Petiau (DKP) equations [1–3], describ-
ing spin 0 and spin 1 mesons, are becoming increasingly
useful due to their applications to problems in particle
and nuclear physics [4–13]. It is well known that the DKP
equations contain redundant components since only 2(2𝑠 +
1) components are needed to describe free spin 𝑠 particles
with nonzero rest masses [14, 15] while 𝑠 = 0 and 𝑠 = 1

DKP equations contain 5 and 10 components, respectively.
The presence of redundant components in DKP equations
leads for some interactions to such nonphysical effects as
superluminal velocities [16, 17] (see also [18–20] for 𝑠 = 3/2, 2
cases). On the other hand, physically acceptable equations
for arbitrary spin can be obtained by removing redundant
components with use of additional covariant condition [14,
15]. It seems that presence of redundant components means
that the DKP equations have internal structure.

The motivation of this work is our recent discovery that
solutions of subequations of the 𝑠 = 0 and 𝑠 = 1 DKP
equations fulfill the Dirac equation [21, 22]. On the other
hand, these solutions do not contain all spinor components
and are thus noncovariant solutions of covariant equations.
We studied this problem in [23, 24]. In the present work,
we show that, in the free case, full covariant solutions of the
𝑠 = 0 and 𝑠 = 1 DKP equations are generalized solutions
of the Dirac equation. This finding may provide a basis for
a synthesis of covariant particle equations, alternative to the
classical Foldy programme [25].

The paper is organized as follows. In Section 2 the Dirac
equation and the Duffin-Kemmer-Petiau equations for 𝑠 = 0
and 𝑠 = 1 are described. It is shown in Section 3 that in
the noninteracting case solutions of these DKP equations
are generalized matrix solutions of the Dirac equation. We
discuss our findings in the last section.

2. Relativistic Wave Equations

In what follows we use conventions and definitions intro-
duced in [22]. The Dirac equation, describing spin 1/2

elementary particles, is

𝛾𝜇𝑝
𝜇
Ψ = 𝑚Ψ, (1)

where 𝛾𝜇 are 4 × 4matrices fulfilling [26, 27]

𝛾
𝜇
𝛾
]
+ 𝛾

]
𝛾
𝜇
= 2𝑔
𝜇]
𝐼4×4, (2)

where 𝑔𝜇] = diag(1, −1, −1, −1) and 𝐼4×4 is 4 × 4 unit matrix.
In the spinor representation of the Dirac matrices we have
Ψ = (𝜉

𝐴
, 𝜂
𝐵̇
)
𝑇 [28], where𝑇denotes transposition of amatrix.

The DKP equations for spin 0 and spin 1 mesons are
written as

𝛽𝜇𝑝
𝜇
Ψ = 𝑚Ψ, (3)

where 𝛽𝜇 are 5×5 and 10×10matrices, respectively, obeying
the following commutation relations [1–3]:

𝛽
𝜆
𝛽
𝜇
𝛽
]
+ 𝛽

]
𝛽
𝜇
𝛽
𝜆
= 𝑔
𝜆𝜇
𝛽
]
+ 𝑔

]𝜇
𝛽
𝜆
. (4)
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In the case of 𝑠 = 0 representation equation (3) can be
written as

𝑝
𝜇
𝜓 = 𝑚𝜓

𝜇
,

𝑝]𝜓
]
= 𝑚𝜓,

(5)

with Ψ in (3) defined as

Ψ = (𝜓
𝜇
, 𝜓)
𝑇
= (𝜓
0
, 𝜓
1
, 𝜓
2
, 𝜓
3
, 𝜓)

𝑇

. (6)

In the case of 𝑠 = 1 (3) reduces to

𝑝
𝜇
𝜓
]
− 𝑝

]
𝜓
𝜇
= 𝑚𝜓

𝜇]
,

𝑝𝜇𝜓
𝜇]
= 𝑚𝜓

]
,

(7)

with Ψ in (3) equalling

Ψ = (𝜓
𝜇]
, 𝜓
𝜆
)

𝑇

= (𝜓
01
, 𝜓
02
, 𝜓
03
, 𝜓
23
, 𝜓
31
, 𝜓
12
, 𝜓
0
, 𝜓
1
, 𝜓
2
, 𝜓
3
)

𝑇

,

(8)

where𝜓𝜆 are real and𝜓𝜇] are purely imaginary (alternatively,
−𝜕
𝜇
𝜓
]
+ 𝜕

]
𝜓
𝜇
= 𝑚𝜓

𝜇] and 𝜕𝜇𝜓
𝜇]
= 𝑚𝜓

], where 𝜓𝜆 and 𝜓𝜇]

are real). The 𝑠 = 1 condition, 𝑝]𝜓
]
= 0, follows from the

second equation of (7) due to antisymmetry of tensor 𝜓𝜇].
Equations for spin 1 bosons (7) were first written by Proca
[29].

3. From the DKP Equations to
Generalized Solutions of the Dirac Equation

3.1. Spin 0. Equations (5) can be written within spinor
formalism as

𝑝
𝐴𝐵̇
𝜓 = 𝑚𝜓

𝐴𝐵̇
,

𝑝
𝐴𝐵̇
𝜓
𝐴𝐵̇
= 2𝑚𝜓.

(9)

Splitting the last equation of (9), 𝑝𝐴𝐵̇𝜓
𝐴𝐵̇

= 𝑝
11̇
𝜓11̇ +

𝑝
12̇
𝜓12̇ + 𝑝

21̇
𝜓21̇ + 𝑝

22̇
𝜓22̇ = 2𝑚𝜓; we obtain two sets of

equations involving components 𝜓11̇, 𝜓12̇, 𝜓 and 𝜓21̇, 𝜓22̇, 𝜓,
respectively:

𝑝11̇𝜓 = 𝑚𝜓11̇,

𝑝12̇𝜓 = 𝑚𝜓12̇,

𝑝
11̇
𝜓11̇ + 𝑝

12̇
𝜓12̇ = 𝑚𝜓,

(10)

𝑝21̇𝜓 = 𝑚𝜓21̇,

𝑝22̇𝜓 = 𝑚𝜓22̇,

𝑝
21̇
𝜓21̇ + 𝑝

22̇
𝜓22̇ = 𝑚𝜓,

(11)

each of which describes particle with mass 𝑚 (we check this
substituting, e.g., 𝜓11̇ and 𝜓12̇ or 𝜓21̇ and 𝜓22̇, into the third
equations).The splitting preserving 𝑝𝜇𝑝

𝜇
𝜓 = 𝑚

2
𝜓 is possible

due to spinor identities, 𝑝11̇𝑝
11̇
+𝑝21̇𝑝

21̇
= 𝑝𝜇𝑝

𝜇 and 𝑝12̇𝑝
12̇
+

𝑝22̇𝑝
22̇
= 𝑝𝜇𝑝

𝜇 (cf. [22]). Thus (10) and (11) are equivalent to
DKP equations (9). We described similar equations in [21].
From each of (10) and (11) an identity follows:

𝑝12̇𝜓11̇ = 𝑝11̇𝜓12̇, (12a)

𝑝22̇𝜓21̇ = 𝑝21̇𝜓22̇. (12b)

Equation (10) and the identity (12a), as well as (11) and the
identity (12b), can be written in form of the Dirac equations:

(

0 0 𝑝11̇ 𝑝21̇

0 0 𝑝12̇ 𝑝22̇

𝑝
11̇
𝑝
12̇

0 0

𝑝
21̇
𝑝
22̇

0 0

)(

𝜓11̇

𝜓12̇

𝜓

0

) = 𝑚(

𝜓11̇

𝜓12̇

𝜓

0

), (13)

(

0 0 𝑝11̇ 𝑝21̇

0 0 𝑝12̇ 𝑝22̇

𝑝
11̇
𝑝
12̇

0 0

𝑝
21̇
𝑝
22̇

0 0

)(

𝜓21̇

𝜓22̇

0

𝜓

) = 𝑚(

𝜓21̇

𝜓22̇

0

𝜓

), (14)

respectively, with one component equalling zero. Since in
(13) and (14) there is the same differential operator we can
write these equations as a single Dirac equation. Substituting
explicit formulae for the spinors 𝑝𝐴𝐵̇ and 𝑝

𝐴𝐵̇
(see [22]), we

have

(𝑝
0
𝛾
0
− 𝑝
1
𝛾
1
− 𝑝
2
𝛾
2
− 𝑝
3
𝛾
3
)A = 𝑚A, (15)

where A = (

𝜓
11̇
𝜓
21̇

𝜓
12̇
𝜓
22̇

𝜓 0

0 𝜓

) is a generalized (matrix) wavefunction

and 𝛾𝜇 matrices read

𝛾
0
=(

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

),

𝛾
1
=(

0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

),

𝛾
2
=(

0 0 0 −𝑖

0 0 𝑖 0

0 𝑖 0 0

−𝑖 0 0 0

),

𝛾
3
=(

0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0

).

(16)
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Let us note that this is the modified spinor representation
with 𝛾𝑖 → −𝛾

𝑖
(𝑖 = 1, 2, 3) and Ψ = (𝜉

𝐴
, 𝜂
𝐵̇
)
𝑇
→ Ψ =

(𝜂
𝐵̇
, 𝜉
𝐴
)
𝑇 with respect to [28]. In what follows we will use a

shorthand A = (𝜓
𝐴𝐵̇
, 𝜓𝐼2×2)

𝑇, where 𝐼2×2 is the 2 × 2 unit
matrix.

3.2. Spin 1. We will now describe in two steps splitting of
the DKP equations. To achieve first level of splitting we write
DKP equations (7) in spinor notation as [30, 31]

𝑝
𝐵̇

𝐴
𝜁
𝐶𝐵̇
+ 𝑝
𝐵̇

𝐶
𝜁
𝐴𝐵̇
= 2𝑚𝜂𝐴𝐶,

𝑝
𝐴

𝐵̇
𝜁
𝐴𝐷̇
+ 𝑝
𝐴

𝐷̇
𝜁
𝐴𝐵̇
= 2𝑚𝜒

𝐵̇𝐷̇
,

𝑝
𝐶̇

𝐴
𝜒
𝐵̇𝐶̇
+ 𝑝
𝐶

𝐵̇
𝜂𝐴𝐶 = −2𝑚𝜁𝐴𝐵̇

.

(17)

Equations (17) are now splitted to yield two separate equa-
tions for spinors 𝜒

𝐵̇𝐷̇
and 𝜁
𝐴𝐵̇

and 𝜂𝐴𝐶 and 𝜁𝐴𝐵̇:

𝑝
𝐵̇

𝐴
𝜁
𝐶𝐵̇
= 𝑚𝜂𝐴𝐶, 𝜂𝐴𝐶 = 𝜂𝐶𝐴,

𝑝
𝐶

𝐵̇
𝜂𝐴𝐶 = −𝑚𝜁𝐴𝐵̇

,

(18)

𝑝
𝐴

𝐵̇
𝜁
𝐴𝐷̇
= 𝑚𝜒
𝐵̇𝐷̇
, 𝜒
𝐵̇𝐷̇
= 𝜒
𝐷̇𝐵̇
,

𝑝
𝐷̇

𝐴
𝜒
𝐵̇𝐷̇
= −𝑚𝜁

𝐴𝐵̇
,

(19)

respectively. The splitting was achieved due to appropriate
spinor identities; see equation (11) in [22]. Indeed, solutions
of (18) and (19) obey the DKP equations (17). This derivation
was described in [22] and is included here for the sake of
completeness.

Equations (18) and (19), first written by Dirac [32, 33],
are known to describe spin 1 bosons where spinors 𝜂𝐶𝐴
and 𝜒

𝐷̇𝐵̇
correspond to self-dual or anti-self-dual antisym-

metric tensors 𝜓𝜇], respectively [34]. Each of the above
equations is covariant except from space reflection but
(18) and (19) considered together are fully covariant. These
equations written in tensor form, 𝛽𝜇𝑝𝜇Ψ = 𝑚Ψ, Ψ =

[𝜓01, 𝜓02, 𝜓03, 𝜓0, 𝜓1, 𝜓2, 𝜓3]
𝑇, where𝜓𝜇] are self-dual or anti-

self-dual antisymmetric tensors, with 7 × 7 matrices 𝛽𝜇 ful-
filling the DKP algebra (4), are the Hagen-Hurley equations
[35–38]. Explicit formulae for these 𝛽𝜇 matrices are given in
[38].

We will now split the 𝑠 = 1 Dirac equations (18). Substi-
tuting expressions for𝑝𝐵̇

𝐴
and𝑝𝐶

𝐵̇
(cf. [22]), we obtain a system

of eight equations:

− (𝑝
1
+ 𝑖𝑝
2
) 𝜁11̇ − (𝑝

0
− 𝑝
3
) 𝜁12̇ = 𝑚𝜂11,

(𝑝
0
+ 𝑝
3
) 𝜁11̇ + (𝑝

1
− 𝑖𝑝
2
) 𝜁12̇ = 𝑚𝜂21,

− (𝑝
1
− 𝑖𝑝
2
) 𝜂11 − (𝑝

0
− 𝑝
3
) 𝜂12 = −𝑚𝜁11̇,

(𝑝
0
+ 𝑝
3
) 𝜂11 + (𝑝

1
+ 𝑖𝑝
2
) 𝜂12 = −𝑚𝜁12̇,

(20a)

− (𝑝
1
+ 𝑖𝑝
2
) 𝜁21̇ − (𝑝

0
− 𝑝
3
) 𝜁22̇ = 𝑚𝜂12,

(𝑝
0
+ 𝑝
3
) 𝜁21̇ + (𝑝

1
− 𝑖𝑝
2
) 𝜁22̇ = 𝑚𝜂22,

− (𝑝
1
− 𝑖𝑝
2
) 𝜂21 − (𝑝

0
− 𝑝
3
) 𝜂22 = −𝑚𝜁21̇,

(𝑝
0
+ 𝑝
3
) 𝜂21 + (𝑝

1
+ 𝑖𝑝
2
) 𝜂22 = −𝑚𝜁22̇,

(20b)

where all equations are arranged into two subsets (20a) and
(20b) and we have not assumed yet that 𝜂12 = 𝜂21.

Demanding now 𝜂12 = 𝜂21 ≡ 𝜂 we achieve splitting of
(20a) and (20b) obtaining two Dirac-like equations:

(𝑝
0
𝛾
0
− 𝑝
1
𝛾
1
− 𝑝
2
𝛾
2
− 𝑝
3
𝛾
3
)Ψ = 𝑚Ψ, (21a)

with Ψ = (𝜁11̇, 𝜁12̇, 𝜂11, 𝜂)
𝑇 and

(𝑝
0
𝛾
0
− 𝑝
1
𝛾
1
− 𝑝
2
𝛾
2
− 𝑝
3
𝛾
3
) Ψ̃ = 𝑚Ψ̃, (21b)

with Ψ̃ = (𝜁21̇, 𝜁22̇, 𝜂, 𝜂22)
𝑇, where 𝛾𝜇 matrices are expressed

by 𝛾𝜇 matrices (16):

𝛾
0
= 𝑖𝛾
2
,

𝛾
1
= −𝛾
3
,

𝛾
2
= 𝑖𝛾
0
,

𝛾
3
= 𝛾
1
.

(22)

The Dirac-like equations (21a) and (21b) are highly
nonstandard because of several reasons: they contain higher-
order spinors 𝜂𝐴𝐵 and 𝜁

𝐴𝐵̇
and one common component

(𝜂12 = 𝜂21 ≡ 𝜂) and their solutions, Ψ and Ψ̃, are not fully
covariant since, considered separately, they do not involve
all components of the spinors 𝜂𝐴𝐵 and 𝜁𝐴𝐵̇. On the other
hand, these equations are fully covariant when considered as
a whole.

Since in (21a) and (21b) there is the same differential
operator we can write these equations as a single Dirac
equation. We note, however, that the Dirac matrices in (16)
and (22) are different. We thus first transform 𝛾

𝜇 matrices
unitarily to get 𝛾𝜇 defined in (16):

𝛾
𝜇
= 𝑉𝛾
𝜇
𝑉
†
,

𝑉 = (

1 0 0 0

0 1 0 0

0 0 0 1

0 0 −1 0

).

(23)

Now, we can write (21a) and (21b) as a single Dirac
equation and with the same representation of 𝛾𝜇 matrices as
in (15):

(𝑝
0
𝛾
0
− 𝑝
1
𝛾
1
− 𝑝
2
𝛾
2
− 𝑝
3
𝛾
3
)B = 𝑚B, (24)
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where B = 𝑉(
𝜁
11̇
𝜁
21̇

𝜁
12̇
𝜁
22̇

𝜂
11
𝜂

𝜂 𝜂
22

) = (

𝜁
11̇
𝜁
21̇

𝜁
12̇
𝜁
22̇

−𝜂
1

1
−𝜂
1

2

−𝜂
2

1
−𝜂
2

2

) is a generalized matrix

wavefunction. In what follows we will write B = (𝜁
𝐴𝐵̇
, −𝜂
𝐷

𝐶
)
𝑇.

4. Discussion

We have demonstrated that, in the noninteracting case, full
covariant solutions of the 𝑠 = 0 and 𝑠 = 1 DKP equations
are generalized solutions of the same Dirac equation; see (1),
(15), and (24). More exactly, if we choose the modified spinor
representation of the Dirac matrices defined in (16) then the
following functions Ψ = (𝜂

𝐵̇
, 𝜉
𝐴
)
𝑇, A = (𝜓

𝐴𝐵̇
, 𝜓𝐼2×2)

𝑇, and
B = (𝜁

𝐴𝐵̇
, −𝜂
𝐷

𝐶
)
𝑇 with 𝜂𝐶𝐷 = 𝜂𝐷𝐶 are solutions of the same

Dirac equation and correspond to 𝑠 = 1/2, 𝑠 = 0, and 𝑠 =
1 cases, respectively. We note that A and B are generalized
(matrix) solutions. It follows that these solutions of the Dirac
equation provide synthesis of relativistic equations for 𝑠 = 1/2
and 𝑠 = 0, 1.

Similar generalized solutions exist also in the interacting
case. Indeed, although, in the 𝑠 = 0 case, (3) and (15) are
not equivalent in general fields, they are equivalent in crossed
fields [39]. Similarly, the Dirac equations (18) or (19) are not
equivalent to the 𝑠 = 1 DKP equations (17) in general fields.
It remains to determine if the 𝑠 = 1 Dirac equations are
equivalent to the 𝑠 = 1 DKP equations in some special fields.
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