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Biological heterogeneity is common in many diseases and it is often the reason for therapeutic failures. Thus, there is great interest
in classifying a disease into subtypes that have clinical significance in terms of prognosis or therapy response. One of the most
popular methods to uncover unrecognized subtypes is cluster analysis. However, classical clustering methods such as k-means
clustering or hierarchical clustering are not guaranteed to produce clinically interesting subtypes. This could be because the main
statistical variability—the basis of cluster generation—is dominated by genes not associated with the clinical phenotype of interest.
Furthermore, a strong prognostic factor might be relevant for a certain subgroup but not for the whole population; thus an analysis
of the whole sample may not reveal this prognostic factor. To address these problems we investigate methods to identify and assess
clinically interesting subgroups in a heterogeneous population. The identification step uses a clustering algorithm and to assess
significance we use a false discovery rate- (FDR-) based measure. Under the heterogeneity condition the standard FDR estimate is
shown to overestimate the true FDR value, but this is remedied by an improved FDR estimation procedure. As illustrations, two
real data examples from gene expression studies of lung cancer are provided.

1. Introduction

Biological heterogeneity is common in many diseases; het-
erogeneity complicates clinical management, as it is often the
reason for prognostic and therapeutic failures. Thus, there
have been many attempts to classify a disease into subtypes
with anticipation that different subgroups are associated with
different clinical significance in terms of prognosis or therapy
response (e.g., [1, 2]). A significant progress in designing
efficient specific treatments can be achieved if novel clinically
relevant subtypes are found.

One of the most popular methods for finding unrecog-
nized subtypes is cluster analysis. However, classical clus-
tering methods such as 𝑘-means clustering or hierarchical

clustering are not guaranteed to produce clinically interesting
subtypes because the main statistical variability could be
dominated by genes not associated with interesting clinical
phenotypes. Furthermore, it could be that prognostic factors
shared within a subgroup do not have any important role
in other subgroups. Thus, the association between prog-
nostic factors and a clinical phenotype is attenuated and
not detectable in the whole population. To address these
problems, we extend the standard clustering algorithm to
find interesting subgroups in the sense that within the
subgroup we can find factors (in this paper: genes) strongly
associated with the clinical phenotype. This idea can perhaps
be illustrated more clearly as follows: suppose that 𝑌 is an
outcome (e.g., relapse) and 𝑋 is a randomized treatment;
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it is common to search for a subgroup for which the treatment
effect is largest. In effect we are searching for factors 𝑍 that
have significant interactions with 𝑋, such that a subgroup
defined by 𝑍 will have a large treatment effect on 𝑌. A
unique point in our current application is that both 𝑋 and
𝑍 are given by the same set of gene expression data. Also,
we allow complex subgroups to be discovered by a clustering
method, which makes the process distinct from the standard
interaction analysis.

Given a set of gene expression matrix, our goal of cluster
analysis is to group patients and genes into subgroups that
convey biological or clinical significance. This task can be
translated to the biclustering problem. Biclustering methods
attempt to simultaneously cluster both patients and genes
with the goal of finding subsets of rows and columns in
the expression matrix. Cheng and Church [3] firstly intro-
duced biclustering to gene expression analysis. For reviewing
the details of biclustering algorithms, see [4]. As Nowak
and Tibshirani [5] noticed, however, most of biclustering
algorithms tend to be dominated by groups of highly dif-
ferentially expressed (DE) genes that may not be relevant
to the biological process in question. In other words, irrel-
evant genes with strong signal can mask genes of high-
est biological relevance. Furthermore, iterative optimization
methods adopted in biclustering algorithms depend on initial
conditions. To overcome these limitations, we develop an
extensive clustering search algorithm to find molecular sub-
types (CAMS) based on clustering of patients with partially
similarmRNAprofile. CAMS is able to uncover the structures
arising from relevant genes that may not be highly expressed
but moderately expressed within each subtype.

CAMS produces many subtypes. For each subtype, 𝑡-
statistics comparing two distinct phenotype groups (e.g.,
relapsed/not relapsed) are computed for whole genes and
false discovery rate (FDR) estimate is used to correct for
multiple comparisons. The number of genes having small
FDR estimates (say, less than 0.1) is the basis for assessing the
importance of the subtypes. In real data analysis, however,
it is a common occurrence in heterogeneous populations
that 𝑃 value distributions of the two-sample 𝑡-statistics show
substantial shortage of small values compared to the uniform
distribution [6]. If we ignore this effect we would miss
potential discoveries by overestimating FDR. Since subtypes
produced by CAMS still can be heterogeneous, it is crucial to
study how the molecular heterogeneity of distinct subtypes
affects the FDR estimate. In this paper, we introduce unob-
served group (or latent group) variables into a simple model
for gene expression and see how the heterogeneity induced
by the unobserved group leads to the depletion of small
𝑃 values even when there are many significant signatures.
Thus, without considering this underlying heterogeneity,
the use of standard FDR estimate might hide promising
discoveries. To resolve this problem, we develop an improved
FDR estimation procedure to address the heterogeneity in a
dataset.

In estimating FDR, the use of correct null density
function is critical. Efron [7] considered three issues that
substantially affect the null density estimate in computing
FDR: (1) a large proportion of genuine but uninterestingly

small effects, (2) hidden correlations, and (3) unobserved
covariates. Many researchers have studied how they affect
the standard FDR estimate [7–9]. In particular, possible con-
nections between unobserved covariates and FDR have been
explored in [6, 10]. Leek and Storey [6] showed numerically
that the small 𝑃 values range from being inflated to depleted
depending on the configuration of the unobserved covariates.
They developed the so-called surrogate variable analysis
(SVA) for capturing heterogeneity induced by the unobserved
covariates and studied how SVA affects FDR estimate. Stegle
et al. [10] considered a Bayesian method to account for
hidden confounding variation in expression quantitative trait
loci (QTLs) and showed that the method found additional
expression QTLs in real datasets. However, their approaches
were suggested to study the attenuated relationship by hetero-
geneity between a measured variable of interest and clinical
outcomes, while we focus on finding submerged subtypes
by heterogeneity. The novel contributions of this paper are
(1) to explain how the heterogeneity induced by unobserved
group leads to the depletion of small 𝑃 values analytically,
(2) to analyze the bias of standard FDR estimates under
the heterogeneity, and (3) to develop an improved FDR
estimation procedure.With these in mind a FDR-based mea-
sure is considered to assess findings from a novel clustering
procedure. This is illustrated using two datasets on lung
cancer patients.

The rest of this paper is organized as follows. In Section 2,
we describe the implementation details of CAMS. A brief
review of notations and a standard FDR estimation method
are given in Section 3, and it is analytically shown that the
hidden subgroup in the population can induce a bias of
standard FDR estimate in Section 4. We propose a FDR
estimation procedure resolving the bias problem and show
how to assess clustering results from CAMS with it in
Sections 5 and 6. Section 7 includes two real data applications
and is followed by concluding remarks.

2. Clustering Algorithm for
Finding Molecular Subtypes

Consider a set of gene expression profiles from a group of
cancer patients. The premise behind CAMS is that the novel
molecular information on cancer heterogeneity is hidden in
the gene expression profiles. To uncover the heterogeneity,
CAMS implements a two-dimensional clustering “patients
versus genes” extensively. The full algorithm is given in
Algorithm 1.

We first explain the clustering steps of CAMS graphically
in Figures 1(a) and 1(b). In the two figures, a set of gene
expression profiles as a matrix with rows corresponding to
genes and columns corresponding to patients is graphically
represented. For illustrative purposes, we designed the fol-
lowing simple model.

(i) It has two observed groups: for example, relapse yes
(RY) and relapse no (RN) groups.

(ii) It has two unobserved groups: the first two columns
correspond to molecular subtype 1 (MS1) and the
remaining two columns correspond to molecular
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while 𝑟 ∈ {1, 2, . . . , 𝑛perm} do
Shuffle the genes
Partition the genes into 𝑆 disjoint subsets
for 𝑖 = 1 to 𝑆 do
Perform hierarchical clustering on the 𝑖th subset of the genes
for the number of clusters (𝑐) ∈ 𝐶 do
Cut the dendrogram from the hierarchical clustering to yield 𝑐 clusters.
for 𝑗 = 1 to 𝑐 do
Take 𝑗th cluster (a subtype identifier)
Run hierarchical clustering on patients using only the genes
in 𝑗th cluster (Assume that this step yields 𝐾 clusters).
for 𝑘 = 1 to 𝐾 do

Perform two-sample 𝑡-tests (e.g. relapse yes vs. no)
with the individuals in 𝑘th cluster and the whole genes.
Fit the null distribution of the two sample 𝑡-statistics
with known functional forms.
if

(Normal approximation for the null distribution is acceptable) then
Compute the FDR estimate based on the normal approximation.

end if
if

(Normal approximation for the null distribution is not acceptable) then
Compute the FDR estimate based on 𝐾 permutations.

end if
Compute our proposed FDR-based measure (𝑁01)
to assess the resulting cluster.
For a given subtype, compute the 𝑃-value of𝑁01 by permuting group labels.

end for
end for

end for
end for
𝑟 ← 𝑟 + 1

end while

Algorithm 1: CAMS.

subtype 2 (MS2).This information is unknown to the
researchers.

(iii) Some genes (marked in black) affect relapse within a
MS.

The two key clustering steps of CAMS are as follows. Step
I is clustering of genes.This step identifies several sets of genes
having similar profiles across the patients. For example, in
Figure 1(a), gene-set A (shaded region) is grouped and this
will be used as a subtype identifier in next step. Step II is clus-
tering of patients using gene-set A only. This step produces
a subgroup of patients (individuals belonging to the shaded
region of Figure 1(b)) with a common expression profile for
gene-set A. Note that this subgroup is homogeneous in terms
of the identified set of genes from the first step but can show
distinct expression profiles between RY and RN on the other
set of genes (e.g., genes marked in black).Thus, we hope that,
within the subgroup of patients, good prognostic models can
be constructed.

Technical description for CAMS is given as follows. In
Step I, the set of gene probes on the microarray chip is
grouped via hierarchical clustering. This is implemented
using hclust in 𝑅. All the hierarchical clustering in this paper

uses complete linkage method and Euclidean metric. This
hierarchical clustering procedure is applied to disjoint subsets
(𝑆) of 𝑚 all available gene probes due to computational limit
(e.g., 𝑚 = 41000 gene probes in the lung cancer dataset).
For example, if 𝑆 = 10, our procedure makes 10 disjoint
subsets of gene probes and each subset has 𝑚/10 gene
probes sampled from the whole list. Then the whole list is
systematically covered by applying the clustering to 𝑆 subsets
sequentially. To allow various groupings of gene probes under
different environments, we shuffle the whole list of gene
probes several times. The number of clusters (𝐶) from each
subset 𝑆 varies on a vector of fixed numbers. For example, if
𝐶 = (2, 3, 4, 5, 6, 7, 8, 9, 10), then 9 different cluster analysis
results are considered in the downstream analysis. Thus each
gene probe could participate in different clustering solutions,
from very large (>500 probes) to small sets. These clustering
results can be used as subtype identifiers in next step.

In Step II, the same hierarchical clustering method is
applied to cluster the patients by using each subtype identifier
separately. Then the dendrogram is cut at the highest level
where the clusters contain more patients than the threshold.
Each subset of patients is treated as a candidate subtype.
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Figure 1: (a) Step I is clustering of genes. Genes (A) (shaded region) are grouped and will be used as a subtype identifier in the downstream
analysis. (b) Step II is clustering of patients using Genes (A) (i.e., a gene-set obtained from Step I). Here, MS1 (a set of patients, shaded
regions) is obtained as a subtype. (c) Step III shows how 𝑁01 is obtained from the FDR curve. We count the number of genes having FDR
< 0.1. We repeat implementing (a), (b), and (c) across different clustering results extensively. Thus, no shaded columns in (b) will be covered
subsequently.

When the clustering steps of CAMS are performed, only
some of found cancer subtypes would be true discoveries.
To assess whether subtypes are promising or not, 𝑡-statistics
comparing two distinct phenotype groups (e.g., relapsed/not
relapsed) within each subtype are computed for whole genes
and the number of genes having small FDR estimates (say,
less than 0.1) is calculated based on the 𝑃 values of the 𝑡-
statistics. However, the effect of the molecular heterogeneity
on this assessment has not been explored in detail. To deal
with this issue, we first review a standard FDR estimation
method below.

3. Notation and Standard FDR Estimation

In this section some basic notations are introduced to give a
formal definition of FDR. For clarity and simplicity, we will
limit our discussion to the most common problem of finding
differentially expressed (DE) genes between two biological
conditions. Let 𝑧 be a certain statistic to compare the mean
log-expression level. The distribution of observed statistics 𝑧
follows a mixture model

𝑓 (𝑧) = 𝜋
0
𝑓
0
(𝑧) + (1 − 𝜋

0
) 𝑓
1
(𝑧) , (1)

where 𝜋
0

is the proportion of truly nondifferentially
expressed (non-DE) genes and𝑓

0
(𝑧) and𝑓

1
(𝑧) are the density

functions of 𝑧 for non-DE and DE genes, respectively.
Suppose we test 𝑚 genes with corresponding statistics

𝑧
1
, . . . , 𝑧

𝑚
. Let 𝑃

1
, . . . , 𝑃

𝑚
be the ordered 𝑃 values from𝑚 test

statistics. For a fixed critical value 𝑐, we define the number of

non-DE genes declared DE and the number of genes declared
DE as

𝑉 (𝑐) = ∑

𝑖

𝐼
(𝑃𝑖≤𝑐,𝑖∈Null),

𝑅 (𝑐) = ∑

𝑖

𝐼
(𝑃𝑖≤𝑐)

,

(2)

where 𝐼(⋅) is the indicator function. Then, the false discovery
proportion (FDP) is defined as

FDP (𝑐) =
𝑉 (𝑐)

𝑅 (𝑐)
, (3)

except in the case of 𝑅(𝑐) = 0, in which case we just
set FDP(𝑐) = 0. The FDP is random proportion of false
discoveries among the genes declared to be DE.The standard
FDR is the marginal average of the FDP; namely, FDR(𝑐) =

𝐸(FDP(𝑐)).
The standard estimate of FDR [8, 11] as a function of the

ordered 𝑃 values is given by

F̂DR (𝑃
𝑘
) =

𝑚𝜋̂
0
𝑃
𝑘

𝑘
. (4)

Monotonicity is imposed by taking the cumulative minimum
over F̂DR(𝑃

𝑖
) (𝑖 = 𝑘, . . . , 𝑚). A common used formula for 𝜋̂

0

is

𝜋̂
0
=

(Number of 𝑃 values > 𝜆)

(𝑚 (1 − 𝜆))
(5)
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Figure 2: (a) 𝑃 value = 𝑃(|𝑇| ≥ |𝑡obs|), where 𝑇 is a generic two-sample 𝑡-statistic and 𝑡obs is an observed 𝑡-statistic and (b) average from
50 simulations: true false discovery proportion (FDP) (solid), standard estimate (dashed), and proposed procedure (dotted). The dotted line
coincides with the solid, so it is additionally marked with triangles.

for a certain choice of 𝜆 [11]. Simple choices of 𝜆 such as
0.5 or 0.75 are often used. Note that this standard estimation
procedure does not consider the heterogeneity in population.

4. A Bias of the Standard FDR Estimate

Latent variables have been introduced for various purposes in
multiple testing framework. Friguet et al. [12] and Leek and
Storey [13] considered them as a source of dependence among
genes. In this paper we introduce latent variables as a source
of heterogeneity and design a latent group model leading
to a depleted 𝑃 value distribution near 0. With practical
applications in mind, we will adopt terminologies from two-
sample microarray studies for cancer. Our toy model is
already graphically represented in Section 2. There are two
unobserved groups (molecular subtypes 1 (MS1) and 2 (MS2))
and two observed groups (relapse yes (RY) and relapse no
(RN)). Genes affecting relapse within a MS are marked black
and genes identifying MS are marked dark gray. More details
to generate Figure 1 are as follows.

(i) For most genes, we choose one MS randomly with
probability 0.5 and generate background effects from
𝑁(𝜇/2, 1). For other MS, we generate background
effects from 𝑁(0, 1). These genes are used to define
specific molecular subtypes (MS1 and MS2) and are
undiscriminating for the two observed groups (RY
and RN).

(ii) Some genes affect relapse within aMS. After choosing
one MS with probability 0.5, we generate background
effects from 𝑁(𝜇/2, 1). Then, we add signal effects
generated from 𝑁(𝜇

0
/2, 1) for RY and 𝑁(−𝜇

0
/2, 1)

for RN, respectively. For other MS, we generate
background effects from𝑁(0, 1).

Consider genes definingMS and highly expressed inMS1.
Then, we have the following ANOVA representation:

𝑌
𝑖𝑗
= (

𝜇

2
) 𝐼
(𝑗∈MS1) + 𝜀

𝑖𝑗
, (6)

where 𝑖 is the index for gene, 𝑗 is the index for patient, and
𝜀
𝑖𝑗
∼ 𝑁(0, 1). For relapse-related genes within MS1, we have

the following ANOVA representation:

𝑌
𝑖𝑗
= (

𝜇

2
) 𝐼
(𝑗∈MS1) + (

𝜇
0

2
) 𝐼
(𝑗∈𝑅𝑌)

+ (−
𝜇
0

2
) 𝐼
(𝑗∈𝑅𝑁)

+ 𝜀
∗

𝑖𝑗
,

(7)

where 𝜀
∗

𝑖𝑗
∼ 𝑁(0, 2). In contrast to our model, Efron [7]

considered the following model:

𝑌
𝑖𝑗
= (

𝜇
0𝑖

2
) 𝐼
(𝑗∈𝑅𝑌)

− (
𝜇
0𝑖

2
) 𝐼
(𝑗∈𝑅𝑁)

+ 𝜀
𝑖𝑗
, (8)

where 𝜇
0𝑖
∼ 𝑁(0, 𝜎

2
). Note that this model does not consider

unobserved group, and as [7] pointed out, thismodel can lead
to only a dilated null distribution that explains inflation of
small 𝑃 values (i.e., false positives). In Figure 2(a), however,
our latent groupmodel shows the depletion of small𝑃 values.
Note that (6) dominates the overall shape of the 𝑃 value
distribution because it has high proportion in the model.

We now see how the unobserved group in the population
induces a bias of standard FDR estimate. As a first step, we
compute two-sample 𝑡-statistic to compare RY and RN. In
RY, there are 𝑛

𝑦
patients, where the half are from MS1 and

the other from MS2. In RN, there are 𝑛
𝑛
patients and it

has the same structure. Thus, RY and RN groups consist of
two normal distributions having different means. Consider
the genes following (6). Let 𝑅𝑌

𝑖
= ∑
𝑗
𝑌
𝑖𝑗
1
(𝑗∈𝑅𝑌)

/𝑛
𝑦
and
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𝑅𝑁
𝑖

= ∑
𝑗
𝑌
𝑖𝑗
1
(𝑗∈𝑅𝑁)

/𝑛
𝑛
. The 𝑡-statistic to test the null

hypothesis (non-DE) is

𝑧
𝑖
=

(𝑅𝑌
𝑖
− 𝑅𝑁

𝑖
)

(𝜎̂
𝑖√1/𝑛

𝑦
+ 1/𝑛
𝑛
)

, (9)

where

𝜎̂
𝑖
= √

(∑
𝑗
(𝑌
𝑖𝑗
− 𝑅𝑌
𝑖
)
2

1
(𝑗∈𝑅𝑌)

+ ∑
𝑖
(𝑌
𝑖𝑗
− 𝑅𝑁

𝑖
)
2

1
(𝑗∈𝑅𝑁)

)

(𝑛
𝑦
+ 𝑛
𝑛
− 2)

.

(10)

Note that, for large 𝑛
𝑦
and 𝑛
𝑛
, we have

𝜎̂
𝑖
󳨀→
𝑝
√1 +

𝜇
2

16
, (11)

because

∑
𝑗
(𝑌
𝑖𝑗
− 𝑅𝑌
𝑖
)
2

1
(𝑗∈𝑅𝑌)

𝑛
𝑦

=
∑
𝑗
(𝑌
𝑖𝑗
− 𝜇/4)

2

1
(𝑗∈𝑅𝑌)

𝑛
𝑦

+ 𝑜
𝑝
(1)

=
∑
(𝑗∈𝑅𝑌⋂MS1) (𝑌𝑖𝑗 − 𝜇/4)

2

𝑛
𝑦

+
∑
(𝑗∈𝑅𝑌⋂MS2) (𝑌𝑖𝑗 − 𝜇/4)

2

𝑛
𝑦

+ 𝑜
𝑝
(1)

󳨀→
𝑝
0.5 (1 +

𝜇
2

16
) + 0.5 (1 +

𝜇
2

16
)

= (1 +
𝜇
2

16
) ,

∑
𝑗
(𝑌
𝑖𝑗
− 𝑅𝑁

𝑖
)
2

1
(𝑗∈𝑅𝑁)

𝑛
𝑛

=
∑
𝑗
(𝑌
𝑖𝑗
− 𝜇/4)

2

1
(𝑗∈𝑅𝑁)

𝑛
𝑛

+ 𝑜
𝑝
(1)

󳨀→
𝑝
(1 +

𝜇
2

16
) .

(12)

Meanwhile, the numerator in (9) is

√𝑛 (𝑅𝑌
𝑖
− 𝑅𝑁

𝑖
)

= √𝑛(
∑
𝑗
𝑌
𝑖𝑗
1
(𝑗∈𝑅𝑌)

𝑛
𝑦

−
∑
𝑗
𝑌
𝑖𝑗
1
(𝑗∈𝑅𝑁)

𝑛
𝑛

)

= √𝑛(
∑
(𝑗∈𝑅𝑌⋂MS1) (𝑌𝑖𝑗 − 𝜇/2)

𝑛
𝑦

+
∑
(𝑗∈𝑅𝑌⋂MS2) 𝑌𝑖𝑗

𝑛
𝑦

−
∑
(𝑗∈𝑅𝑁⋂MS1) (𝑌𝑖𝑗 − 𝜇/2)

𝑛
𝑛

−
∑
(𝑗∈𝑅𝑁⋂MS2) 𝑌𝑖𝑗

𝑛
𝑛

)

󳨀→
𝑑
𝑁(0, 4) .

(13)

Thus, we have for large 𝑛

𝑧
𝑖
󳨀→
𝑑
𝑁(0,

1

(1 + 𝜇2/16)
) . (14)

Since 1 + 𝜇
2
/16 > 1 for any 𝜇 ̸= 0, the use of standard

Gaussian distribution for 𝑧
𝑖
leads to inflated 𝑃 values. Thus,

in (4), 𝜋̂
0
is overestimated and 𝑅(𝑐) is smaller than it should

be. Subsequently, (4) overestimates FDR. If the strength of
background signal 𝜇 becomes larger, the degree of depletion
of small 𝑃 values becomes more severe because (14) will be
more concentrated at 0 as 𝜇 increases. Consequently, the
heterogeneity induced by the unobserved group makes the
𝑡-statistics conservative and leads to upward bias of standard
FDR estimate as shown in Figure 2(b). In our simulation, we
use 10,000 genes and 60 patients, with 30 belonging to each
MS. The proportion of genes defining specific MS is 0.99.
Within each MS, the number of RY and RN is assumed to
be same for simplicity and we use 𝜇 = 2 and 𝜇

0
= 3.

5. Proposed FDR Estimation Procedure

While performing CAMS, we want to assess whether clus-
tering results are informative or not with respect to a
measure based on FDR. Thus, in computing FDR estimate,
the population heterogeneity should be addressed properly.
Furthermore, when many datasets are considered simulta-
neously, it is desirable to have a fast and stable algorithm to
compute FDR estimate. Reflecting these aspects, we propose
a new FDR estimation procedure.

Our starting point is Pawitan et al.’s FDR estimation
procedure [9] because it is computationally flexible to accom-
modate new changes. A similar permutation-based approach
to deal with the dependence in computing FDR estimates
was developed by [14]. Pawitan et al. [9] explored the
variation pattern of the null distribution of test statistics
using the singular value decomposition (SVD)when there are
correlations between genes. To check the validity of the SVD
analysis in our problem, it is needed to confirm whether the
main variation pattern of permutation distribution can rep-
resent that of sampling distribution.



BioMed Research International 7

t-statistic

H
ist

og
ra

m
 co

un
ts

0

100

300

500

−4 −2 0 2 4

(a) Total variability

Index

Si
ng

ul
ar

 v
al

ue
s

0 10 20 30 40 50

0

200

600

1000

(b) Singular values

t-statistic
−4 −2 0 2 4

−0.1

0.0

0.1

0.2

0.3

(c) First singular vector

t-statistic
−4 −2 0 2 4

−0.4

−0.2

0.0

0.2

0.4

(d) Second singular vector

Figure 3: (a) Each simulation contributes a single gray line. The solid black line is the average of 50 simulations, and dashed line is the
expected histogram-count vector from𝑁(0, 1). (b) shows singular values from the singular value decomposition (SVD) of 𝑌, and the dots in
(c) and (d) are the components of the singular vectors generated by the SVD, and the solid lines are robust smoothing curves.

5.1. The Validity of SVD Analysis. We firstly demonstrate the
variation pattern of the sampling distributions from the latent
group model through the SVD analysis. We partition the
range of the observed statistics into 𝐵 equispaced bins with
width Δ. Let the histogram-count vector y = (𝑦

1
, . . . , 𝑦

𝐵
)

be the number of statistics that fall into each bin. Each
simulation contributes a single count vector yi. Let 𝜂 be the
expected histogram-count vector from standard Gaussian
distribution and the 𝐵 × 𝐾 matrix 𝑌 the matrix of centered
count vectors yi −𝜂.𝐾 is the number of simulations and 50 is
used in our example.

Figure 3(a) shows the total variability of sampling distri-
butions; the solid line is y and the dashed line is 𝜂. The solid
line has higher peak and smaller width than the dashed line,
so this is consistent with our analytical findings. To see the
variability of yi − 𝜂, we perform the SVD of 𝑌. The variation
is dominated by one large singular value, associated with
the pattern seen in the plot of the first singular vector. A
consequence of this pattern is that the sampling distribution
tends to have a leptokurtic shape compared to the standard

Gaussian distribution. Subsequent singular vectors do not
have large contributions to the variation.

In practice, we cannot create real data as in simulation. To
circumvent this problem, we use permutation to generate the
null distribution, but we first check the variability pattern of
the distributions from permutation. Let 𝑋 be a microarray
data matrix, let g = (𝑔

1
, . . . , 𝑔

𝑛
) be the vector of group

labels, and let 𝑔∗ be a random rearrangement of 𝑔. With each
permuted dataset (𝑋, 𝑔

∗
), we compute test statistics. So each

permutation contributes a single count vector y∗i . Let y
∗ be

the mean vector of y∗i over 𝐾 permutations and the 𝐵 × 𝐾

matrix𝑌∗ the mean-corrected matrix of count vector y∗i . The
SVD results of 𝑌∗ are reported in Figure 4.

Figure 4(a) shows the total variability of the distribution
over permutations, and the solid line is the average of the
permuted null distributions. In Figure 4(b), the first singular
value is dominating others and Figure 4(c) shows that the
pattern of the first singular vector from 𝑌

∗ is very close to
that from𝑌.This implies that the main variation of permuted
distributions explains that of the sampling distributions well,
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Figure 4: (a) Each permutation contributes a single gray line. The solid black line is the average of 100 permutations. (b) shows singular
values from the singular value decomposition (SVD) of 𝑌∗, and the dots in (c) and (d) are the components of the singular vectors generated
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so the SVD analysis for permuted data is valid under our
latent group model.

Since we have the validity of the SVD analysis, Pawitan et
al.’s method [9] can be adopted to correct the overestimation
by unobserved group. We assume that the observed statistics
𝑧 follow a mixture model (1). They suggested to fit

y ∼ Poisson (𝑚Δ𝑓 (𝑧)) , (15)

where

𝑓 (𝑧) = 𝜋
0
(𝜙
0
(𝑧) + 𝑏𝜙

1
(𝑧)) + (1 − 𝜋

0
) 𝑓
1
(𝑧) , (16)

where 𝑓
0
(𝑧) = 𝜙

0
(𝑧) + 𝑏𝜙

1
(𝑧), 𝜙

0
(𝑧) is the average of null

distributions over permutations, and𝜙
1
(𝑧) is the first singular

vector of 𝑌
∗. In this paper, the parameter 𝑏 captures the

variation of the null distribution due to the heterogeneity
by unobserved group. The original computing procedure is
given as follows.

(1) Perform 𝐾 permutations of group labels. Each per-
muted dataset generates a histogram-count vector y∗.

(2) Compute the predictor 𝜙
0
from the average vector y∗

by scaling so that it integrates to 1.

(3) Construct a matrix 𝑌
∗ from the y∗s. Compute the

predictor 𝜙
1
from the smoothed first singular vector

𝑢
1
.

(4) Since 𝑓
1
is unknown, the regression is performed in

two steps. First, fit the reducedmodel y ∼Poisson(𝜇 =

𝑚Δ𝑓), where

𝑓 = 𝛽
0
𝜙
0
+ 𝛽
1
𝜙
1
, (17)

and compute the residual vector r = y− ŷ. Estimate𝑓
1

by smoothing the residual vector r/𝑚Δ as a function
of 𝑧.

(5) Fit the full model (16)

𝑓 = 𝛽
0
𝜙
0
+ 𝛽
1
𝜙
1
+ 𝛽
2
𝑓
1
, (18)

and reestimate the full set of coefficients (𝛽
0
, 𝛽
1
, 𝛽
2
).
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The coefficient of 𝜙
0
becomes the estimate for 𝜋

0
. Given

estimates of parameters, 𝑃 values inflated by the heterogene-
ity are corrected by using the following definition:

𝑃 value = ∫
|𝑧|≥|𝑧obs|

𝑓
0 (𝑧) 𝑑𝑧, (19)

where 𝑓
0
(𝑧) is the null density estimate corrected by the first

singular vector. For the FDR estimate, we have

F̂DR (𝑐) =

𝑚𝜋̂
0
∫
|𝑧|>𝑐

𝑓
0
(𝑧) 𝑑𝑧

∑
𝑖
𝐼 (

󵄨󵄨󵄨󵄨𝑧𝑖
󵄨󵄨󵄨󵄨 > 𝑐)

. (20)

(Strictly speaking, this is an FDP estimate rather than an FDR
estimate.) Simulation studies show that this estimate has a
negligible bias (Figure 2(b)). Itmay be possible to improve the
null density estimate further using the second singular vector
in some cases, but we will not attempt this here.

5.2. ImprovedAlgorithm forManyDatasets. CAMSgenerates
many subtypes. Since not all the subtypes are meaningful,
it is needed to assess each of them quickly. In particular,
for the subtypes showing the depletion of small 𝑃 values,
it is desirable to apply our FDR procedure to address such
depletions.

One measure to assess subtypes from CAMS is the
number of genes having FDR < 𝑐, where 𝑐 is a suitably
chosen small value; we use 𝑐 = 0.1 in our examples and call
this measure𝑁01. Figure 1(c) shows that𝑁01 is obtained by
counting the number of genes with FDR < 0.1. To compute
𝑁01 for many datasets, the previous procedure becomes

(1) computationally intensive: the permutation step takes
long time;

(2) unstable: some null density estimates have negative
values.

To increase computational speed, we note that𝑓
0
(𝑧) from the

SVD analysis is empirically well approximated by 𝑁(0, (1 −

𝑏/√2)
2
) for |𝑏| < 0.2, which can be checked before the

permutation step. But this approximation does not seem to
be reliable when |𝑏| > 0.2. Furthermore, the null density
estimates often have negative values when 𝑏 is large and this
leads to a numerical problem in estimating FDR. Thus, we
propose a more stable algorithm to find good approximation
to the null density. The main idea is to pick up a few vectors
y∗
𝑖
that are closest to the histogram counts of the observed

test statistics y with respect to a certain metric. To emphasize
goodness of fit at the center of the distribution, we use

Dist (y, y∗
𝑖
) = (y − y∗

𝑖
)
𝑇
𝑊y (y − y∗

𝑖
) , (21)

where 𝑊y = Diag(y) as a distance measure. This distance
measure gives larger weights to the central part of the
histogram. We find top 5 curves that minimize (21) and use
their average as 𝑓

0
(𝑧). For simplicity we estimate 𝜋

0
with (5).

The resulting procedure thus becomes as follows.

(i) Before the permutation step, approximate 𝑓
0
(𝑧) by

𝑁(0, (1 − 𝑏/√2)
2
) and obtain 𝜙

0
and 𝜙

1
using known

functional forms [15]. After fitting (16) as described in
Steps 4 and 5 in the previous section, check whether
|𝑏| < 0.2 or not. If |𝑏| < 0.2, compute FDR estimate.

(ii) In the case of |𝑏| > 0.2, perform 𝐾 permutations and
compute (21) for each permuted dataset. Find the top
5 curves thatminimize (21) and take the average as the
null density estimate. Estimate 𝜋

0
using formula (5).

6. Assessing the Clustering Results from CAMS

CAMS can generate a practically unlimited number of can-
didate subtypes by permuting the gene probes for doing
extensive search. If a subtype is depleted in small 𝑃 values,
it is desirable to assess it with 𝑁01. To see the proportion of
subtypes requiring such assessment, we define the ratio of low
𝑃 value areas as

Ratio (𝜆) =
∑
𝑚

𝑖
1
(𝑃𝑖≤𝜆)

𝑚𝜆
, (22)

where 𝜆 = 0.2 is used in practice. The denominator corre-
sponds to the expected number of 𝑃 values less than 𝜆 when
the null hypothesis holds. We regard Ratio < 1 as indicating
the targeted situation (the depletion of small𝑃 values).When
the whole set of patients shows the depletion, we often
observe high proportion of potential subtypes with Ratio < 1,
so it is safe to use𝑁01 as a default assessment measure.

We provide an implementation of the proposed method
as an𝑅 package at http://fafner.meb.ki.se/personal/yudpaw/.
Twonecessary inputs for the implementation are gene expres-
sion data matrix and corresponding group vector (a clinical
outcome such as disease outcome, e.g., relapse indicator). To
enable further analysis when there is auxiliary information
such as survival time, the software stores the following results:

(i) genes defining a cancer subtype,
(ii) patient IDs that belong to a subtype,
(iii) 𝑁01 and respective 𝑃 value.

Note that we may have high 𝑁01 by chance because
several optimization procedures (e.g., the biclustering proce-
dure) are performed before computing 𝑁01. To address this
point, we randomly permute group labels of each subtype
𝑁
𝑝
times and compute 𝑁01 based on the permuted data

(𝑁01perm).
Then, we compute a standardized statistic of 𝑁01 for 𝑖th

subtype:

𝑧
𝑖
=

𝑁01
𝑖
− 𝑁01

𝑖

𝑠
𝑖

, (23)

where N01
𝑖
and 𝑠
𝑖
are the mean and standard deviation of

𝑁01
𝑖
and𝑁01perm’s.𝑁𝑝 = 50 is used in practice. Likewise, we

standardize𝑁01perm. This standardization enables us to have
precise estimate for 𝑃 value and reasonable resolution for
estimating FDR. After stacking all the standardized statistics
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Figure 5: (a) 𝑃 value distribution of two-sample 𝑡-statistics for detecting differentially expressed genes from a lung cancer data comparing
relapse versus no relapse and (b) the corresponding false discovery rate (FDR) estimate. In (b), the dashed line is the standard FDR estimate
and the solid line is from our proposed procedure.The 𝑥-axis in (b) denotes the ranking of genes where higher ranking corresponds to higher
statistical significance.

in a vector 𝑧perm, the 𝑃 value of𝑁01 for 𝑖th subtype is defined
as

𝑃-value
𝑖
=

∑
𝑘
𝐼 (𝑧
𝑖
≤ 𝑧perm,𝑘)

𝐾
, (24)

where 𝐾 is the length of 𝑧perm and 𝑧perm,𝑘 is the 𝑘th element
in 𝑧perm. Thus, the subtype with large 𝑃 value (24) will not
be considered as an interesting cancer subtype even though it
has high𝑁01.

To find clinical implication of the subtype, we evaluate
the prognostic signature in the subgroup of patients using
the logistic regression with L1 penalty. We first classify
patients belonging to the subgroup into good and poor
prognosis groups based on cross validated probabilities of
being relapsed patients from the logistic regression. Then,
the strength of the prognostic signatures from the logistic
regression is assessed by computing the survival difference
between good and poor prognosis groups and the area under
the operating characteristic curve (AUC).

7. Real Data Analysis

7.1. Chemores Data Example. Lung cancer is one of the most
prevalent and deadliest cancers. Human lung cancers are
classified into two major subtypes, small cell lung cancer
(SCLC) and non-small cell lung cancer (NSCLC). NSCLC,
which accounts for around 80% of all primary lung cancers, is
a known heterogeneous group and its prognosis is generally
poor [16]. In the current clinical practice, it is difficult to
perform histopathological classification with small biopsies
[17]. In order to improve the selection of patients who most
likely will benefit from adjuvant chemotherapy (ACT), there
is an urgent need to establish new diagnostic tools.

In this view, a study was organized by the Chemores
initiative, which became an EU funded (FP6) Integrated

Project involving 19 academic centers, organizations for
cancer research, and research-oriented biotechnology
companies in 8 European countries. Tissue samples from
a cohort of 123 patients who underwent complete surgical
resection between 30 January 2002 and 26 June 2006 are
analyzed. All the patients belong to NSCLC and 59 patients
experienced a relapse. This group of patients represents
a heterogeneous group of lung cancers. We assayed the
samples for gene expression, performed using dual-color
human array from Agilent containing 41000 gene probes;
a dye-swap of tumor versus normal lung tissue from same
individual was employed for each sample and the log-ratio
values were combined by averaging (the dataset is available at
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-
1132). Figure 5(a) shows the depletion in small 𝑃 values of the
two-sample 𝑡-statistics for the 41000 gene probes. Figure 5(b)
shows the corresponding pessimistic standard FDR estimate
by [11] (dashed line). Thus, to take into account the
heterogeneity issue properly, CAMS is needed here. Two
inputs for implementing CAMS are a gene expression matrix
and a relapse indicator. Table 1 shows a summary of output.
The first column of this output contains unique names of
subtypes.The second and third columns tell howmany genes
are involved in defining each subtype and the number of
patients in the subtype. The 𝑃 values in the last column are
computed using (24). The full lists of genes and patients can
be identified by SubtypeID.

To reduce the computation time further, we consider
filtering out uninteresting cases in the first stage.We compute
𝑁01 through the FDR based on the normal approximation
only. We call this𝑁01

0
. If𝑁01

0
is small, we skip the remain-

ing procedure and go to search for next subtype. Figure 6(a)
shows histogram of 𝑃 values for 𝑁01 after filtering out the
uninteresting cases having 𝑁01

0
≤ 2. The standard FDR

estimate is given in Figure 6(b), showing some interesting
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Table 1: The output from 𝑅 package.

Subtype ID Genes in clusters Patients in subtype 𝑁01 𝑃 value∗
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

6 1535 69 17 0.020
7 124 28 23 0.020
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

∗The 𝑃 value of𝑁01 for 𝑖th subtype is computed by using (24).
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Figure 6: (a) Histogram of 𝑃 values for𝑁01 from a lung cancer data and (b) the corresponding false discovery rate (FDR) estimate.
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Figure 7: The proportion of subtypes showing depleted 𝑃 value
distribution from our clustering results is 0.908 (left side of vertical
dashed line).

subtypes. In this analysis, we compute the proportion of
subtypes showing depleted distributions with (22) and it is
0.908 (Figure 7). Therefore, 𝑁01 is essential in assessing the
quality of each subtype.

From the top list of subtypes, one promising subtype
is further analyzed using survival information to compute
the appropriate prognostic signature for that subtype. To
deal with large number of predictors (genes) we use logistic
regression with L1 penalty [18] where the relapse status is the
response variable. The cross validated probability of being a
relapsed patient is computed from the leave-one-out cross
validation, and the poor prognosis group is defined as the
patients having the probability ≥0.5. To assess the strength
of the prognostic signatures from the logistic regression,
we compute the survival difference between good and poor
prognosis groups. In Figure 8(a), the Kaplan-Meier curves
of relapse-free survival show big difference between those
two groups. Figure 8(b) shows operating characteristic curves
for identifying relapse during follow-up. The area under the
curve (AUC), computed under leave-one-out cross valida-
tion, is 0.806.

7.2. Bild et al.’s Data Example. As another application, we
use lung cancer data by Bild et al. [19]. Their research
purpose was to identify gene expression signatures of
human cancers that reflect the activity of a given pathway.
The gene expression dataset for lung cancer consists of 53
squamous cell carcinomas (SCC) and 58 adenocarcinomas
(AC), so we expect that the group of patients represents a
heterogeneous group. Among 58 relapsed patients, 26 and 32
patients belong to SCC and AC, respectively. The expression
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Figure 8: (a) Kaplan-Meier curves of good and poor prognosis groups for a promising subtype and (b) receiver operating characteristic
(ROC) curve.
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Figure 9: The proportion of subtypes showing depleted 𝑃 value
distribution from our clustering results is 0.798 (left side of vertical
dashed line).

dataset was obtained using Human U133 2.0 plus arrays
(Affymetrix) containing 56475 gene probes. It is available at
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3141.
For the downstream analysis, we normalized the dataset
for each patient to have zero mean after taking logarithm.
The same procedures as described in analyzing Chemores
data were applied to the normalized data. The proportion of
subtypes showing depleted distributions is 0.798, so 𝑁01 is
crucial in assessing the quality of each subtype. See Figure 9.
Likewise in the previous section, further survival analysis
can be done, but we omit the results here for brevity.

8. Discussion and Conclusions

In this paper, we proposed an extensive clustering algorithm
to find cancer subtypes and have addressed the heterogeneity

issue induced by the unobserved group to assess the result-
ing subtypes appropriately. The unobserved group creates
a serious conservative bias problem when standard FDR
estimation is used, but our proposed FDR estimationmethod
resolves it. SVD is used as a tool for discovering the effect
of heterogeneity on the null distribution of the test statistics.
In particular, when many datasets are considered simulta-
neously, we develop a much faster and more stable FDR
estimation algorithm than the method in [9].

Although we focus only on the heterogeneity issue in
this paper, Efron’s three issues [7] should be considered
simultaneously in high-throughput data analysis. It is diffi-
cult, however, to distinguish genes with small effects from
correlation effects because both can produce similarly wide
distributions of the test statistic. We also expect that there is
some confounding between the heterogeneity effect and the
above two effects. Thus, careful joint approaches for dealing
with the three issues are required. For example, Pawitan et al.
[8] showed that it is possible to get less bias by estimating 𝜋

0

and 𝑓
1
(𝑧) using a joint estimation method. This issue needs

further investigation.
Recently, several biclustering algorithms have been pro-

posed for gene expression data, and a comparative study
was performed in [20]. They pointed out that performance
on synthetic datasets did not always correlate with that on
real datasets and no algorithm is uniformly the best under
different environments. Considering this point, CAMS is also
expected to have its own weakness and strength. Thus, it is
needed to study when CAMS performs well compared to
other biclustering methods. On the one hand, it is possible
to embed existing biclustering algorithms into CAMS with
some modification. Then, we can compare performances of
various biclustering methods when subtypes are assessed by
𝑁01.

In addition to the above issues, there are still many
scientific questions to be considered here. For example,
should two similarly constructed clusters be combined or
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remained separate? How can we assign an independent test
sample to newly constructed subtypes? A practical method
for dealing with these scientific problems will require further
research.
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