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This paper presents a mixed integer linear programming model (MILP) for optimizing the hybrid hub-and-spoke network operation
for a less-than-truckload transportation service. The model aims to minimize the total operation costs (transportation cost and
transfer cost), given the determined demand matrix, truck load capacity, and uncapacitated road transportation. The model also
incorporates an incremental quantity discount function to solve the reversal of the total cost and the total demand. The model is
applied to a real case of a Chinese transportation company engaged in nationwide freight transportation. The numerical example
shows that, with uncapacitated road transportation, the total costs and the total vehicle trips of the hybrid hub-and-spoke network
operation are, respectively, 8.0% and 15.3% less than those of the pure hub-and-spoke network operation, and the assumed capacity
constraints in an extension model result in more target costs on the hybrid hub-and-spoke network. The two models can be used

to support the decision making in network operations by transportation and logistics companies.

1. Introduction

Transportation companies usually have their own physical
operation network with facilities located in different levels
of nodes. Generally there are three kinds of physical opera-
tion network: direct transportation network, pure hub-and-
spoke network, and hybrid hub-and-spoke network. It is a
great challenge for transportation companies to make daily
decisions about optimal network operations on an existing
physical network, especially on a hub-and-spoke one.

A direct transportation network is a fully connected
network which has the advantage of short transport distance
and fast speed [1]. However, in terms of LTL (less-than-
truckload) transportation, it is faced with the risk of losing
economies of scale since not every origin-destination (OD)
flow can stably satisfy the effective truck load capacity. The
fact is that some small and unstable OD flows result in
high operation cost, and even a high risk of partial loss.
Overcoming the above disadvantages, the hub-and-spoke
network makes use of economies of scale on trunk road

transport by collecting goods to pivots [2, 3]. Although it
inevitably sometimes produces bypass transportation and
transfer processing costs, in order to cover a wider marketing,
some transportation and logistics companies prefer to adopt
the hub-and-spoke network [4].

To help with daily operational decision making, a lot
of research has been done to optimize the hub-and-spoke
network operation. In these research works, mathematical
models and algorithms are used to optimize pure hub-and-
spoke network operations in three aspects: hub location
optimization, routing optimization, and both [5-12]. In a
pure hub-and-network, all OD flows in between nonhub
nodes need a transfer operation at least once. Demand
flows between different OD pairs usually increase unevenly;
however, some of the OD flows may achieve the effective
scale of direct transport or need a transfer operation only
once. This unnecessarily produces more transportation and
transfer costs and delays the arrival time. Thus, a hybrid
hub-and-spoke network is used to overcome these problems.



To optimize the hybrid hub-and-spoke network oper-
ation, different models, formulations, and algorithms have
been addressed in numerous papers in the literature.
Liu and colleagues investigated a mixed truck delivery system
that allows both hub-and-spoke and direct shipment and
used a heuristic algorithm to determine the delivery modes
and vehicle routings [13]. Zapfel and Wasner presented a
mathematical model to optimize the mixed hub-and-spoke
network by minimizing the total costs of transportation
cost and variable sorting cost based on a physical network
[14]. Barcos and colleagues designed an LTL cargo operation
network by minimizing the total transportation costs and
transfer processing costs, guaranteeing a certain service level
and allowing for vehicle routes with multiple unloading
stations [15]. The latter two papers show that hybrid hub-
and-spoke networks are more efficient and economical than
pure hub-and-spoke networks as they do not consider the
reconstruction and renovation cost of the physical network.
More specifically, Adler investigated hub-spoke network
operations in a competitive environment [16]. Elhedhli and
Hu designed a hybrid hub-and-spoke network which took
congestion into account [17]. Matsubayashi and colleagues
studied the cost allocation problem in a hybrid hub-and-
spoke network system [18]. These works showed that the
hybrid hub-and-spoke network has advantages in terms of
cost savings and equipment efficiency over the pure hub-and-
spoke network.

Another noteworthy fact is that, in order to attract
more order volumes, different price discount policies are
used by transportation companies [19]. The most commonly
used discount policy is unified discount. The larger the
order volume is, the higher the price discount is. It allows
customers to adjust their order volumes to reach a higher
price discount point. One shortcoming of this pricing policy
is that it leads to a reversal of the total cost and the total
flow near some discount points, which often causes confusion
or even conflict among transportation companies and their
customers.

This paper aims to design and optimize the operation of
a hybrid hub-and-spoke network by employing an existing
physical hub-and-spoke network. Direct transport between
different nodes is allowed if the OD flow reaches an effective
scale. Otherwise the OD flows in between nontransfer nodes
need to be transferred at hubs at least once. Vehicle routes are
optimized and an incremental quantity discount function is
embedded to make sure that the total cost is increasing strictly
by total demand.

The remainder of this paper is organized as follows.
Section 2 presents a mixed integer linear programming
model (MILP) to optimize the LTL transportation operation
of a hybrid hub-and-spoke network with uncapacitated road
segments taking into account the incremental quantity dis-
count. Section 3 shows an application of this model to the real
case of a Chinese logistic company engaged in nationwide
freight transportation. Section 4 formulates an extension
model considering capacitated road segments, namely, links,
and presents numerical results. Conclusions are drawn in
Section 5.
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2. Model Formulation

The model focuses on the optimization of an existing physical
network in which less-than-truckload freight transportation
services are provided by a transportation company. This
physical network consists of a set of transfer nodes and a set
of nontransfer nodes, namely, hubs and nonhub nodes in this
paper. Let a complete graph G(N, A) be the physical network,
where N is the set of all nodes (specifically, S is the set of hubs,
which is a subset of N) and A is the set of links. Given the
OD matrix and a discount policy, the model aims to generate
an optimal operational network based on the graph G(N, A).
Before the model is constructed, some assumptions are made
as follows.

(1) The OD flows are determined, splittable and allowed
to be directly transported, and transferred once or
twice.

(2) The load capacity of each truck is fixed. The service
frequency is determined by the goods flows and
subject to a promised service level.

(3) The total operation costs consist of transportation
cost and transfer cost. Transportation cost is related
to the flow, which is characterized by an incremental
quantity discount function f(-). Transfer cost at hubs
usually consists of two parts: fixed transfer cost and
variable transfer cost. In this paper, since we focus
on the optimization problem of an existing physical
network, the fixed transfer cost is ignored and the
transfer cost is equal to the variable transfer cost,
denoted by function g(-).

(4) The hubs and road segments are uncapacitated.
Other notations are as follows:
hyj: total flow (by weight) from node i to node j;
Gt UMt transportation cost (per kilogram per kilo-
meter) of link k-m;
Fy,,: flow of link k- that adopts discount of interval
r, namely, link flow. The domain of the whole discount
function is divided into R intervals, 7 = 1,2,..., R;
d,.,,: distance from node k to node m;
F,.: flow transferred at node k, namely, transfer flow;
Aj: unit transfer cost at node k;

YVim: sWitch function, valued as one or zero, respec-

tively, means link k-m uses discount of interval r or

not;

ijm: proportion of goods flows which take the route

i-k-m-j to all goods flows from node i to j. Thus,

i-i-i- j, i-i- j-j, and i- j-j-j are all equal to the direct

route i-j. i-i-k- j, i-k-k-j, and i-k- j-j are all equal to

the route i-k- j.

In this study, the optimization target is to minimize the

total operation costs C, which can be denoted as the following
objective function:

minC = Z Z Zf(Fl:m)"ng(Fk) €))

keNmeN T keS
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In the right side of (1), the first part is the total transporta-
tion cost, which is a function of the link flow F;,, ; the second
part is the total transfer cost at hubs, which is a function
of the transfer flow F,. In order to solve the reversal of the
total cost and the total flow, an incremental quantity discount
« is used in this paper, which is distinct from threshold-
based discounting [19]. The incremental quantity discount «
is decided by

1
a, L <F, <u

, L<F <
o= 453 2 km = U @)

R
ap, g <F,, <ug,

where [, and u, are the lower and upper bound of interval
r, respectively, and [} = 0, u; = L,...,up; = Ip; ag is
the discount rate of interval [I, ug]. Commonly, a decreasing
discount rate is used to attract more freight volumes; thus let
ap < &p_; < -++ < «;. Then we can obtain the average unit
discount « in

'ocl, L SF,imgul
o (g = 1)) + oy (Flfm - lz)
Fi

2
, L, <F,, <u,

Rl
Il

(o (= 1) + oy (u, - 1)
borag (FR -1)) x (FR) ", Iy < FR, < up.

(3)

In (3), o is the weighted average unit discount rate of one
customer’s total freight volume. When o < ap_; < --- < oy
and the discount interval is set properly, the larger the total
volume is, the smaller the weighted average unit discount
rate will be. Under this discounting policy, transportation or
logistics companies can use quantity discounting to attract
more order volume; while customers could adjust their order
volume to obtain a self-satisfied average unit discount point
to save cost, but their total cost will still rise along with the
rising total volume.

Note that transportation cost also has a relation with the
transportation distance. By incorporating the average unit
discount rate &, we can formulize the transportation cost as

S (Fin) = @i Froi (4)

For simplicity, the transfer cost is assumed to be propor-
tional to the transfer flow at hubs. The transfer cost at node k
is formulized as

9 (F) = AyF. (5)

Thus, we can rewrite objective function (1) into

minC = Z Z Z&ckmF,:mdkm

keNmeN T

+ Z/\k
3

(6)

Py [ o ) -
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TaBLE 1: Hubs and nonhub nodes.
Hubs Nonhub nodes
Tianjin (TJ), Shijiazhuang (SJZ), Jinan
Beijing (BJ) (JN), Harbin (HEB), Changchun (CC),
and Shenyang (SY)
Zhengzhou (ZZ) Taiyuan (TY) and Xian (XA)
Wuhan (WH) Changsha (CS)
Guangzhou (GZ) Chengdu (CD)
. Nanjing (NJ), Hangzhou (HZ), and
Shanghai (SH) Fuzhou (FZ)
subject to
x ) "
D Fom = DX+ Y X+ Y X, Viem,
r ij ij i#kUj#m
(7)
Fiw = Yemly =20, Vk,m,r, (8)
Fip = Yimby <0,  Vk,m,r, 9)
Zy,im =1, Vkm, (10)
~
YYXE =1, Vi
ij > > ) (11)
kK m
X" =0, Vi jkm, (12)
k
X;"=0, k¢Sum¢s, (13)
Vi = 10,1} Vk,m. (14)

Constraint (7) ensures that, if m = k, the route i-k-k-j
will be calculated just once. Constraints (8) and (9) ensure
that F;, will be located in the interval [I,,u,]. Constraint
(11) ensures the equilibrium of all flows. Constraint (12)
ensures that the goods flows are nonnegative. Constraint (13)
ensures that the transferred flows can just be transferred at
hubs. Constraints (10) and (14) ensure the consistency of the
discount rate.

3. Model Application and Solution

3.1. Sample Data. The data come from a transportation com-
pany in China which is engaged in LTL freight transportation
in 18 cities. Of those cities, five have transfer hubs and the rest
are nonhub nodes. All nodes of cities in the physical network
are shown in Table 1. We extract sample data covering all the
business in the 18 cities for 2011, comprising 128018 records.
The summed OD flows by weight are shown in Table 3. We
take an average capacity of 28 tons for each truck in the
following calculation.



TABLE 2: Comparison of total cost and computing time of different
hub sets.

Hubs Cost/Yuan Time/s
1 1.63304e7 17

2 1.19642e7 93

3 1.08919¢7 404
4 9.66232¢e6 7543
5 7.99414e6 36453

The incremental quantity discount policy is given as
follows:

o= (“1 Qy O3 Oy K5 Kg 0‘7)
=(10.97 0.94 0.91 0.88 0.85 0.8);
lr = (ll lz l3 l4 ls 16 l7)
= (0 20 40 60 80 100 120);

(15)

U, = (”1 Uy Uz Uy Us Ug ”7)
= (20 40 60 80 100 120 999999),

where u, = 999999 means a very large value for running
the calculations correctly. This incremental quantity discount
policy is characterized by an incremental quantity of 20 tons
with a decreasing discount rate of 0.03 with an exception
of 0.05 for «;, which is adjusted according to the sample
company’s marketing pricing strategy.

3.2. Calculations. The model of formulae (6) to (14) is a
mixed integer linear programming model. An exponential
algorithm in Lingo 11.0 can be used to solve this mixed integer
programming problem. The computational results are shown
in Table 4.

As regards the pure hub-and-spoke network and the
hybrid hub-and-spoke network, respectively, the total costs
are 8686950 and 7994138 Yuan, and the total trips are 145974
and 123601. Reductions of 8.0% and 15.3% in costs and trips
apply to the hybrid hub-and-spoke network compared with
the pure hub-and-spoke network. The optimized operation
network is shown in Figure 1.

Lingo 11.0 is executed by a desktop with the CPU
environment of AMD Athlon 642 Dual-Core Processor TK-
53. The computing time increases greatly as the number of
hubs increases. The results are listed in Table 2.

4. Model Extension: Capacitated
Hybrid Hub-and-Spoke Network Operation
for LTL Freight Transportation

When goods flow is increasing, the capacity constraint should
be taken into consideration. We take the road capacity,
hub capacity, and truck capacity as one unified capacity
constraint, namely, link capacity on a graph, because these
kinds of capacity in a physical network finally restrain the
flows in the link. Consequently, an extension model based

Mathematical Problems in Engineering

on the model in Section 2 is constructed. Mathematically, we
obtain the following extension model:

minC = ) Z z&ckmF,:mdkm

keNmeN T

(16)
k k kk
M Lhy | 2 (X XG) - X
k irj m
subject to
k j ik
D B = Y X Y X+ Y b, XD, Ykom,
r ij ij i#kUj#m
17)
ZF,:m <Crp  Vk,m, (18)
r
Fiw = Vel =20, Vk,m,r,
F = Vitr <0, Vk,m,r,
Zy’Cm =1, Vkm,
e
YYXE =1, Vi
ij > 5 ) (19)
k m
X" =0, Vi jkm,
X"=0, k¢Sum¢s,
Vi = 10,1} Vk,m.

In (18), Cy,, is the upper limit of the flow in link k-m. Since
the road segments are not subject to any capacity constraint
in the sample enterprise, all the segments are assumed to have
an upper limit of 3.1 million tons per month. The optimized
network is presented in Figure 2.

Compared with the uncapacitated model, when the flow
exceeds the link capacity and these kinds of links are few, the
operational network does not change very much. The goods
flows sent by each link computed by the two models are listed
in Tables 4 and 5. However, the total costs have changed. The
total costs are 8065921 Yuan, 0.90% higher than those of the
uncapacitated network. The main reason is that the goods
flow exceeding the road capacity is sent by other links because
of insufficient capacity. In the example, each link has an upper
capacity of 3.1 million tons per month, and only four links
are fully used in the optimized network (see the red links in
Figure 2).

5. Conclusions

Operation optimization is critical for reducing operation
costs for transportation companies engaged in nationwide
LTL freight transportation in an existing physical hub-and-
spoke network. In this paper, a MILP model for LTL trans-
portation operation optimization of a hybrid hub-and-spoke
network is proposed which takes into account an incremental
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FIGURE 1: Optimized uncapacitated hybrid hub-and-spoke network for LTL freight transportation.

Harbin
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O Nonhub nodes

FIGURE 2: Optimized capacitated hybrid hub-and-spoke network for LTL freight transportation.
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quantity discount function in order to solve the reversal of
the total costs and the total flow. In fact, for a company
engaged in nationwide transportation in an existing hub-and
spoke network, when the OD flows are not big enough for
direct transport, a hub-and-spoke system can help to obtain
economies of scale. The results of the model application for
the sample enterprise indicate that 56.21% of the goods flows
are sent by direct transport, 32.15% of which are sent from
one depot to another; 27.95% of the goods flows are sent and
transferred once at a hub, and only 15.84% are transferred
twice; the hybrid hub-and-spoke network operation saves
8.0% more on total costs and 15.3% more on total trips
than the pure hub-and-spoke network does. Furthermore, the
incremental quantity discount price policy can eliminate the
reversal of the total cost and the total transport volume.

In daily management, trucks are seldom dispatched
between different pairs of OD except in case of emergency
or by request. Thus, we have to take capacity constraint into
account. In the extension model in this paper, the assumed
capacity constraint increases the total costs. The main reason
is that the excess OD flow has to be sent via bypass transport,
at higher cost. This extension model can be used to support
business owners in making decisions on optimizing facilities.

The proposed models can be applied to logistic companies
and cargo transportation companies with an existing physical
hub-and-spoke network. The models adapt well to different
numbers of hubs and the OD flow matrix. They can be used
to support daily decision-making in the case of changing OD
flow matrices.

Appendix

See Tables 3, 4, and 5.
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