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In the context of travel demand uncertainty, this paper investigates how to determine the robust road speed limits for improving
mobility and lowering vehicular emissions in bimodal transportation systems that involve private cars and subway. More specifically,
the total demand vector is supposed to vary within a given set. Our target is to find the optimal road speed limits against the worst
feasible demand scenario so as to minimize the sum social cost of system travel time and vehicular emissions. In order to estimate
traffic emissions more reliably, motor vehicle emission simulator (MOVES) is utilized to simulate the emission factor function with
respect to average speed. On these bases, we formulate the robust speed limits design problem as a “min-max” nonlinear model
with complementarity constraints and solve it iteratively by a cutting-plane scheme that contains two sub-MPCCs. A numerical

example is illustrated at the end.

1. Introduction

As the ownership of motor vehicles is constantly increasing,
traffic congestion alleviation has been the paramount mission
for traffic management agency. Recently, traffic emissions
attract more attention because of worsening of the air quality.
The hazy weather occurs frequently in Beijing since the
end of 2012. It is reported that excessive concentration of
PM, ; (particulate matter smaller than 2.5 micrometers) in
the atmosphere is the prime cause of hazy weather, and the
PM, ; emissions from mobile sources account for 25%. In
addition, longtime exposure to PM, s would cause respi-
ratory infections, asthma, lung cancer, and other diseases.
Therefore, traffic pollution harms human health and it should
be addressed together with traffic congestion for traffic
management.

Scholars investigate some countermeasures, that is, road
pricing, road space rationing, imposing speed limits, and
so forth, to mitigate traffic congestion and reduce vehicular
emissions. Moreover, most previous studies are concentrated
on road pricing (see, e.g., [1-3], for recent reviews) that is the-
oretically advocated as an effective instrument to internalize

traffic negative externalities since the pioneering work by
Pigou [4]. However, the public acceptance of road pricing is
quite poor that restricts it to be implemented in practice [1].
In contrast, it is easier and more widespread to impose speed
limits in practical traffic management, which is the concern
of this paper.

Setting speed limits is widely used to reduce traffic
crashes, because a higher driving speed contributes to a
higher fatality risk. The work of Joksch [5] concluded that
taking the fatality risk involved in a traffic crash at 40 mph
as a reference, the fatality risk rises 2.5-fold at 60 mph, 6-
fold at 70 mph, and approximately 20-fold at 80 mph. Besides,
imposing speed limits also serves the purpose of reducing
traffic emissions and fuel consumption [6]. Texas Trans-
portation Commission created environmental speed limits
to lower vehicular emissions and meet federal air quality
standards at the request of Texas Commission on Environ-
mental Quality (TCEQ) [7]. Madireddy et al. [8] showed
that CO, and NO, emissions were reduced by approximately
25% in residential areas when speed limits declined from 50
to 30 km/h. Yang et al. [9, 10] examined how speed limits
affect the network-wide pollutant emissions and revealed



that a suitable speed limits setting has the potential of
reducing traffic emissions and accidents. In addition to safety
and environment considerations, imposing speed limits is
capable of altering traffic flow distribution at equilibrium
and further influencing the system performance. Woolley
et al. [11] and Madireddy et al. [8] employed microscopic
traffic simulation tools to investigate the influence of speed
limit setting on network system performance and suggested
that speed limits can reallocate traffic flow distribution. Yang
et al. [12] demonstrated that imposing speed limits can
decentralize the traffic flow pattern just as road pricing from
macroscopic network equilibrium perspective. Wang [13]
investigated the impact of setting speed limits, on network
efficiency and equity, and developed a bilevel programming
model to find the optimal speed limit scheme that maximizes
the network efficiency. Yang et al. [9, 10] envisioned a variable
speed limits system to achieve better efficiency, safety, and
environment sustainability on traffic networks. Since that
vehicular emissions not only are nonmonotonic functions
of vehicular speeds [14] but also are associated with many
other factors such as vehicle acceleration, fuel type, and local
weather conditions [15], Yang et al. [9, 10] employed MOVES
to calculate traffic emissions.

To our best knowledge, these existing studies on speed
limits design only considered road networks and made the
hypothesis that the traffic demand is fixed. Nevertheless,
an urban transportation system usually involves multiple
transport modes and the total travel demand is uncertain.
To fill this gap, this paper attempts to explore the speed
limits design problem under demand uncertainty in bimodal
transportation systems. First of all, we propose a synthesized
link performance function and establish user equilibrium
model for our bimodal networks. Given a speed limit scheme,
the UE flow pattern is determined by the proposed model.
To achieve both minimum system travel time and minimum
traffic emissions with demand uncertainty, we then assume
that the total demand belongs to a given set and develop
a “min-max” model to find the optimal road speed limits
against the worst-case feasible demand scenario for bimodal
networks. Furthermore, emission simulator (MOVES) is
utilized to simulate emission factor functions to make the
emission estimation more reliable, and a cutting plane is
applied to solve the robust speed limits design model.

For the remainder, Section2 describes the specific
bimodal network structure composed of two modes and
proposes the link performance function in such a combined
system. Subsequently, the user equilibrium model for a
bimodal network under speed limits is developed. Section 3
makes use of emission simulator (MOVES) to obtain emis-
sion factor functions and proposes a robust speed limits
design model formulated as a “min-max” nonlinear problem
with complementarity constraints to minimize the sum social
cost of system travel time and emissions. To describe the
demand uncertainty, the total demand is assumed to vary
within a given set. Section 4 conducts a cutting plane scheme
to solve the proposed model and applies the manifold subop-
timization algorithm to solve two sub-MPCCs. Section 5
illustrates how to design the optimal robust speed limits with
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a numerical example and conducts the sensitive analysis of
parking fees. Finally, this paper is ended with conclusions.

2. UE with Speed Limits in Bimodal Networks

Multimodal network equilibrium problem has been well
studied in the literature (e.g., [16-19]). Ying and Yang [20]
proposed a stochastic user equilibrium model for congested
bimodal networks and optimized road pricing with sensitive
analysis method. Hamdouch et al. [21] extended the pricing
design framework to multimodal transportation networks.
Wau et al. [22] developed a multimodal network equilibrium
model and designed a Pareto-improving pricing scheme to
reduce congestion for multimodal transportation networks.
Fu and Lam [19] formulated an activity-based network
equilibrium model to schedule daily activity-travel patterns
for multimodal networks. Slightly different from the previous
research, we explore the bimodal network equilibriummod-
eling while considering speed limits. Two travel modes in
our transportation system, private cars and subway, are
considered in this paper and the following assumptions are
made before modeling work.

(a) Travelers can only choose a preferring mode; their
mode choice behaviors follow the principle of utility
maximization and can be described by a bimodal
Logit model.

(b) For each origin-destination (O-D) pair, the total
demand is tentatively fixed in this section.

(c) The speed limits can be only imposed on road links.

(d) A 100% compliance of the speed limits is ensured by
autoenforcement system. In other words, all travelers
utilizing road links drive completely inconsistent with
the posted speed limits.

In our research, the combined bimodal network, denoted
by G(N,Q), involves two subnetworks: road network and
subway network, where N is the set of nodes and stations and
Q is the set of road links and subway segments. According
to the link characteristics, 3 can be divided into road
link set Q" and subway segment set (O°. Henceforth, the
superscripts  and s represent private car mode and subway
mode, respectively. Moreover, subway segments are further
classified into three categories: subway links, transfer links,
and embarking or alighting links. Generally, a subway line
is composed of serial subway links. Passengers can change
subway lines by transfer links in transfer stations and must
pass through embarking or alighting links between stations
and centroids (origins or destinations). Figure 1 applies an
example to demonstrate the basic structure of a bimodal
network, which consists of an O-D pair (1-3), 6 nodes, and
9 links. Note that SI1-S2-S3 and 2a-S3 are two separate subway
lines. In fact, S2 and 2a are the same station. To specify the
transfer link within station S2 more distinctly, we add a virtual
station 2a in this network.

Let W denote the set of origin-destination (O-D) pairs; let
M denote the set of transportation modes; that is, M = {r, s}.
For each O-D pairw € W bymodem € M, the travel demand
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FIGURE 1: Basic structure of a bimodal network.

is denoted by d. Thus, the total travel demand between O-
D pair w with respect to all modes is represented by g*,
tentatively assumed to be a constant in this section. Let x|,
be the passenger link flow vector for O-D pair w by mode m,
and let A be the node-link incidence matrix. To represent the
flow balance constraints between O-D pair w, we define E,, as
its “input-output” vector, that is, a vector that has exactly two
nonzero components: 1 and -1, corresponding to the origin
node and the destination node, respectively. For each link
a € Q,v,,, represents the traffic flow on link a by mode m.
The feasible region A for the bimodal network equilibrium
flow model can be given as follows:

Zdi:qw, Yw e W, 1)
meM
Ax, =E d., YweW, VmeM, (2)
Vam = Z Xy Va€Q, VYme M, 3)
wew
Xy 20, YweW, acQ, Vme M. (4)

Equation (1) expresses that for each O-D pair, the total
demand is equivalent to the sum of travel demands by subway
and private cars. Equation (2) is the flow balance constraint.
Equation (3) defines the aggregate link flow and (4) ensures
that the link flow by each mode is nonnegative. All the feasible
(v,d) are yielding to the above region A.

For each link a € ', we denote s, by the imposed
speed limit. Let £, represent the least travel time under the
speed limit s, on link a; then we have t, = 1 /s,, where
I, is the length of road link a. Denote v, by the amount of
traffic flow on link a. The original link travel time function
t,(v,) is assumed to be continuously increasing, differen-
tiable, convex, and strictly monotone without considering
speed limits. However, in presence of speed limits, the link
performance function is expressed as ,,(v,), and the equation
t,(v,) = max(t,(v,),t,) holds under the assumption of 100%
speed limits’ compliance [12]. 7,(v,) is continuous, convex,
and monotonically increasing, but not differentiable at v, =
t.'(t,) as shown in Figure 2.

Average travel time

N
\

Va Link flow

- - ta(vﬂ)
— T,(v,)

FIGURE 2: Travel time function under speed limit.

Yang et al. [12] showed that UE model under speed limits
can be solved by existing traffic assignment methods, for
example, Frank-Wolf method, and proved that the unique-
ness of link travel time at user equilibrium (UE) still holds.
For the links with nonbinding speed limits, the link flows
at equilibrium are definitely unique. But for those links with
binding speed limits, the UE flows are not necessarily unique.

Different from road network, subway segments are clas-
sified into three categories: subway links, transfer links, and
embarking or alighting links. The travel time on subway
link includes the running time TR and stop interval TS
between two adjacent stations, both of which are fixed and
independent of the amount of passengers. For each transfer
link or embarking or alighting link, the travel time generally
includes passengers walking time TP and waiting time TW.
We suppose that walking time is associated with the amount
of passengers and can be expressed as a nonlinear function
of link passenger flow, that is, TP(v,) = tg(l + oc(vu/Ca)ﬁ),
where ¢ is the passenger flow free walking time and & and
B are calibrated parameters. Assuming that passenger arrival
rate is uniform, the waiting time for subway line 7 is 0.5/ f;
[23], where f; is the frequency of line i. Note that the waiting
time for alighting links is zero. In order to generalize the
representation, the link performance function for subway
network is given by

TP (v,) + TW,, Vae Q"

5
TR, + TS,, Va € Q% ®)

)|

where TW, = Y,0.5/f;6,; and §,; is a 0-1 variable. §,; =
1 when passengers can arrive at line i through link a.
Otherwise, 8,; = 0. Q' is denoted by the set of transfer,
embarking, and alighting links. Q** is denoted by the set of
subway links. We have Q°' U Q% = Q°. Thus, the synthesized



link performance function for the bimodal network can be
written as shown below:

IL(a,m (Vu,m’ Su,m)

max (ta,m (Va,m) ’Za,m (Sa,m)) , Vace Qr’ (6)
= TPa,m (Va,m) + TWa,m: Va € QSI,
TRa,m + TSa’m, Va € Qsz.

We make a hypothesis that, within the same trans-
portation mode, travelers’ behaviors are consistent with the
Wardrop user equilibrium principle that all the utilized paths
between an arbitrary O-D pair experience the same and
least travel time and the travel time along unutilized paths
is definitely equal to or longer than the former one. In this

case, the following user equilibrium condition for each mode
holds:

v {:c;:; if B, >0,
pm Zcz ifhlu;’mzo, 7)

VweW, meM, peP,,

where P is the set of paths between O-D pair w by mode
m, ?;’)m represents the travel time along path p between O-D
pair w by mode m, and h}",,m is the corresponding path flow.
¢, implies the equilibrium travel time between O-D pair w by
mode m.

Moreover, travelers’ modal choice is in the light of the
generalized travel cost for each mode, which is assumed to
include the equilibrium travel time and tolling in this paper
and can be formulated as follows:

ty =0c, + 1, YweW, meM, (8)
where y, denotes the generalized travel cost of mode m
between O-D pair w. 0 can be interpreted as the value of time.
7., represents the extra payment for travelers using mode m
between O-D pair w. More specifically, 7,” can be considered
as parking fare at the destination. 7" indicates the subway
ticket fare and can be implemented in various manners. For
example, the subway ticket fare is ride-based and fixed as
2¥ in Beijing, while it is a link-based charge in Shanghai.
It is assumed that travelers’ mode choice behavior can be
described by a multinomial Logit model as follows:

exp (—#,,)

du) — qw—,
ZmEM exp (_M%)

m

Yw e W. )
The multimodal traffic network equilibrium conditions

can be described by the following variational inequality (VI)
model [24]. Consider the following:

7008 (v=v) 4y (@) (d-d*) 20, V(d)eA.
(10)

At least one optimal solution (v*,d”) must exist because
the objective function is continuous and the feasible region is
a compact polyhedron [25].
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According to the Karush-Kuhn-Tucker (KKT) conditions
associated with the above variational inequality problem,
we obtain the following equivalent multimodal network
equilibrium conditions:

xzm (?a)m (Vo> Sam) — rr;f’m + n}fm) =0,
Va=(i,j)€Q, weW, meM,
Lo (Vagm Sam) = Ty + i 2 0,
Va:(i,j)GQ, weW, meM,
exp (—9 (n:jm - n;’,m) - T,l:,’)
Tmers 5 (=0 (s, = 74,,) = 722)

Yw e W,

1
dw — qw

m

5

(v,d) € A,

where 71, is the node potential vector [26, 27] for mode m
between O-D pair w.

The mathematical programming model for this bimodal
network equilibrium problem can be formulated as follows:

min Z = Z Z Jvm o (@, 84,,) dw

acQ) meM

+zj

wew 70

av

1 o v _w (12)
6(lnd“’—a+TS Tr)dO

s.t. (v,d) € A,

where d{ is the traffic demand for subway mode. This model
is a nonlinear problem with linear constraints and can be
solved by many existing algorithms. Given a speed limit
scheme, we can obtain the UE flow distribution and traffic
demand for each mode by solving this model.

3. Robust Speed Limits Design Model

As aforementioned, this paper aims to find out a robust speed
limits scheme on road network to minimize the total social
cost for a bimodal transportation system, which is referred to
as the summation of the social cost of system travel time and
network-wide emissions. So how to calculate traffic emissions
is the primary issue before developing robust speed limits
design model.

3.1. Traffic Emissions Functions Extracted from MOVES. Usu-
ally, traffic emissions can be estimated by two different
approaches: (1) making use of the existing traffic emission
calculation models or software, such as CMEM and MOVES;
(2) fitting traffic emissions functions through extracting
samples from those available emission calculators [28]. The
former one needs various input parameters, that is, weather
and driving mode distribution, and is definitely more time-
consuming (US Environmental Protection Agency). Conse-
quently, we can receive more accurate and reliable results,
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at a price of time cost. When this method is employed to
calculate traffic emissions in a network optimization problem,
it requires conducting a significant number of calculations to
obtain the optimal solution. More importantly, the objective
function is no longer differentiable and many derivative-
based optimization algorithms cannot be applied to the prob-
lem [9, 10]. The latter provides not accurate but reliable traffic
emissions fitting functions that reflect the trends of emissions
to some extent. On the other hand, the optimization models
with explicit objective functions are much easier to solve.
In this paper, we obtain the emissions fitting functions by
collecting samples in MOVES, a kind of traffic emissions
estimation software developed by EPA.

Let K be the set of the air pollutants from mobile sources.
For each pollutant k € K, we define the pollutant amount
released by a standard motor vehicle traveling one kilometer
on link a as emission factor r,;. Many empirical studies
indicated that emission factor is associated with average
speed [15]. Therefore, this paper adopts MOVES to fit the
emission factor function e, ;(u,) of the average speed u,.
Subsequently, the total emission of pollutant k on link a can
be expressed by the following equation:

fax (Vo) =1 -v, - ear (u,) VaeQ', keKkK. 13)

Taking fitting the emission factor function of NO, as
an example, we input the meteorological data, source type,
fuel type, and other deterministic parameters and then run
MOVES with different average speed and get the correspond-
ing emission factors. Finally, the emission factor function is
fitted in OriginPro 8 and is shown as follows:

e, (u,) = 1.86022 — 0.03203u, + 2.02256u. + 10™*.  (14)

3.2. Model Formulation. Robust optimization is an effec-
tive approach to address design problems with uncertainty.
Specifically, the robust design focuses on the problem’s
worst-case scenario and aims at finding the solution that
outperforms all other solutions in the worst-case scenario.
Literature review shows that robust optimization approach
has been applied to address many traffic problems. Chen
et al. [29] developed a toll and capacity design model with
demand uncertainty for a build operate-transfer roadway. Yin
[30] proposed three robust signal timing design models to
cope with traffic flow fluctuations. Later, these models were
reformulated to determine the optimal road improvement
scheme subject to demand uncertainty [31]. Chung et al.
[32] adopted this method to optimize dynamic congestion
pricing under demand uncertainty. See more recent reviews
on robust network design or road pricing in Yin and Lou [33]
and Koster et al. [34].

As a pioneering endeavor, this paper applies this method
to design road speed limits against travel demand uncertainty.
We suppose traffic managers are more concerned about the
worst case rather than the best or average performance.
Furthermore, it is assumed that the emissions from subway
system are close to zero and the imposed speed limits are
continuous variables.

For each O-D pair w € W, the travel demand g" is
assumed to be uncertain in this section. To model traffic

demand uncertainty, we assume that the total demands
belong to an uncertainty set denoted by Q, g € Q. For a
given demand vector g € Q, A, denotes the corresponding
feasible region of travel demand and flow distributions. This
paper aims to find a speed limits scheme that minimizes the
sum social costs of system travel time and vehicular emissions
against the worst-case demand scenario. Thus, the robust
speed limits design model can be formulated as a mathemat-
ical program with complementarity constraints (MPCC):

6 Z Z z:a,m (Va,m’ Sa,m) Vam

aeQmeM

+ Z Z Pr - e )Vala (15)

acQ" keK

min max
S xvd,m

s.t. Equation (11)

min < max
a a — Sa 4

(v,d) € A, VqeQ 17)

YaeQ (16)

whereu, = 1,/f,, a € Q". p, represents the unit social cost of
pollutant k and consequently the objective is to minimize the
total travel social cost. Equation (11) describes the bimodal
network equilibrium conditions with complementarity con-
straints. s and s;"* are, respectively, the lower bound and
upper bound of s,, In general, s™ is the free flow speed. s™"
is associated with road conditions. In this paper, the demand
uncertainty set Q is expressed as an ellipsoid form [33]:

{‘J'Z(q —u) 8}, )

where ‘uw = (1/2)(qfnn + qxax) and ﬂw = (1/2)(qf1ax - qﬁin)‘
Note that gi, and g, are given. ¢ implies the traffic man-
agers’ attitude toward risk. Generally, if traffic managers are
risk averse, larger ¢ would be appropriate, and vice versa [35].

Since that the feasible region is nonconvex and standard
stationarity conditions may not hold [36], MPCC is very
difficult to solve.

4. Solution Algorithms

The proposed robust speed limit design model can be solved
by conducting a cutting-plane scheme, whose basic idea is to
generate one extreme point of the feasible region at a time,
each of which produces a constraint that cuts away part of the
region not feasible to the original problem [37]. When applied
to the proposed model in this paper, the specific procedures
are listed as follows.

Step 1. Create a subset Q' of demand set Q. Set N = 1, selecta
demand vector q1 € Q,andlet Q' be {ql}. Initialize the speed
limits scheme s° and solve bimodal UE model in Section 2 to
obtain a feasible solution (x, v, 77, d) and go to Step 2.

Step 2. Let An - BZaEQ ZmEM?Z,m(V:,m’sa,m)vZ,m + ZuEQ’
Yrex Pe - exuivil,, n € {1,2,...,N}. Introduce a new
variable vy, so the min-max model can be reformulated as



Subproblem 1. Solve it to find the optimal speed limits s™*
and y* within the subset Q'

Subproblem 1. We have

min
X,V,TT,S,A 1//

s.t. Equation (16)

X Farn (Ve Sam) = i +75m) = 0,
Va=(i,j) €Q, wew,
meM, ne{l,2,...,N}

w,n

- n wyn
tu,m (Va,m’ Sa,m) - T[i,m + ﬂj,m >0,
Va=(i,j) €Q, wew,
meM, ne{l,2,...,N}
wn _ _wn) _ _w
dw,n _ wn €xp (_9 (T[O,m T[d,m) Tm)
m

Ymens exp (=6 (miy —miyn) — )
VvweW, d"eQ, ne{l,2,...,N}
A<y ne{l,2,...,N}

(Vd")eAy q'€Q, ne{l,2,...,N}.
19)

This above model has complementarity constraints and
can be solved by manifold suboptimization algorithm devel-
oped by Lawphongpanich and Yin [38]. The basic idea of the
algorithm is to solve a sequence of restricted nonlinear opti-
mization problems to obtain a strongly stationary solution.

Step 3. Let (/) = 0 ZaEQ ZmEM ’fa,m(va,m’ Sa,m)va,m +
Yacqr 2kek Pr * €ax(Ug)Vv,l,. Set the solution of Subproblem 1
as the initial value and solve the following Subproblem 2 to
find the worst-case demand scenario g™* in the set Q that
maximizes the objective function whose optimal value is
noted as ¢™*.

Subproblem 2. We have

max
x,v,d,r ¢)

(20)
s.t. Equations (11),(17).

As formulated, this above model is MPCC and can be also

solved by manifold suboptimization algorithm developed by
Lawphongpanich and Yin [38].
Step 4. If ¢"* < yN*, then sV* is the best solution.
Otherwise, Q' = Q' Ug"* and N = N + 1. Go back to Step 2,
and set the solution of Subproblem 2 as the initial value of
Subproblem 1.
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TABLE 1: The parameters of road links.

Link t, (min) Capacity Length (km)
1,2) 6 8000 8

1, 4) 5 5000 7

2, 3) 2 3000 3

@, 5) 3 3500 4
(3,6) 2 3300 3
(4,2) 1 8000 15
(4,5) 4 8000 6
(5,6) 3.5 8000

In general, we can figure out the robust speed limit by
solving Subproblem 1 with respect to a subset Q' ¢ Q
that contains N demand vectors and solving Subproblem 2
to generate new demand vectors to expand Q'. Repeat this
procedure until the output meets some stopping criterion.

5. Numerical Examples

This section illustrates the proposed model and algorithm
with a virtual bimodal network shown in Figure 4 that
comprises two O-D pairs: 1-5 and 4-6, respectively. Note
that the uncertain total demand vector g varies within the
specified set Q by (14), where g,;,,, = [10000, 12000]”, Gmmin =
[3000,4000]”, and ¢ = 1.2 in this example. To simplify
the demonstration, we only set speed limits on links (1,4)
and (5,6). The lower bound of each speed limit variable is
40 km/h, and the upper bound is the free flow speed. Our goal
is to find the optimal speed limit scheme within the specified
range.

The parameters of road links are displayed in Table 1. We
use the BPR function (US Bureau of Public Roads), that is,
t(v,) = tg(l + 0.15(va/Ca)4), to calculate the travel time on
road links without speed limits.

As shown in Figure 3, the subway network is constituted
with 6 stations and 3 lines. Note that S2 (2a), S3 (3a),
and S4 (4a) are transfer stations. The parameters of subway
links, embarking and alighting links, and transfer links are
displayed in Table 2. We can see that the waiting time
on alighting links is 0, consistent with common sense. In
addition, we assume the following walking time function has
the similar form as BPR function, where « = 0.15 and § = 2.

TP (v,) = t;’(l +a<é—‘;>ﬁ). 1)

Let7/° = 74°% = 5§, and let 7/ = 7% = 2$. To
simplify the calculation, we only consider the NO,, emissions
that can be figured out by (13) and (14). Because the unit
social cost of NO, is much higher than travel time, we set
0 = 0.5 and p = 3 in this example. Through applying the
solution algorithm proposed in the previous section, we get
the optimum displayed in Tables 3 and 4.

In Table 3, it is obvious to see that under the worst-case
demand scenario, the sharing rate of private cars in this
network is 69.94%, higher than the sharing rate of subway.
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TABLE 2: The parameters of links in subway system.

Link TR + TS (min) TW (min) t, (min) Capacity
(S1, S2) 4 — — 10000
Subway links on orange line (S2, S4) 3.5 — — 10000
(S4, S6) 2 — — 10000
Subway links on green line (22, 3a) 6 - - 10000
(3a, 4a) 3 — — 10000
(81, S3) 3 — — 10000
Subway links on purple line (83, S5) 3.5 — — 10000
(S5, S6) 4 — — 10000
@, S1) — 1 3 10000
Embarking links (4,S2) — 1 3 10000
(4, 2a) — 1 3 10000
(84, 5) — 0 35 10000
Alighting links (4a, 5) — 0 3.5 10000
(S6, 6) — 0 35 10000
(S2, 2a) — 1 2 10000
Transfer links (53, 3a) o ! 25 10000
(3a, S3) — 1 2 10000
(4a, S4) — 1 2 10000

TABLE 3: The worst-case demand and allocation results.

O-D pairs Worst-case demand Demand on private cars Demand on subway
1-5 8519.519 6443.683 2075.837
4-6 10488.581 6851.332 3637.249

o
~ 2.0 A
=
,E Equati y = intercept +
B duation Blex' + B2sx’
q>) ‘Weight No weighting
= Residual sum 025358
50 1.5 of squares
- Adj. R 0.89548
=1 Value Standard error
% o Intercept 1.86022 0.07332
“~ Emission factor Bl -0.03203 0.0027
g o B2 2.02256E -4  2.09897E - 5
‘D
£ 104
M
0.5 T T T 1
0 50 100 150
Speed (km/h)

o NOy emission factor
—— Polynomial fitting result

FIGURE 3: Emission factor fitting function of NO,.

In the light of multinomial Logit model, the sharing rate of
each transport mode is associated with the minimum O-D
travel time, parking fare, and ticket fare. Therefore, different
fare setting would impact the modal split result.

The optimal road speed limits settings are presented
in Table 4. It can be found that the best imposed speed
limit on Link (1,4) reaches the upper bound, but on Link
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FIGURE 4: A hypothetical bimodal network.

(5,6), the opposite situation happens. This interesting result
indicates that imposing the same or similar speed limits on
road links in practical traffic management could not benefit
traffic congestion or emissions reduction, even worsen them
sometimes. Other link-specific results, that is, link flow
distributions, average travel time, and emission factors, are
as well listed in Table 4.

Now we conduct a sensitive analysis on parking fare.
Specifically, except the parking fare between each O-D pair,
all the other parameters are fixed as the above mentioned.
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TABLE 4: The link-specific results.
Road links  Link flow Travel time Emission factor ~ Speed limits ~ Links in subway Link flow Travel time
(veh) (min) (g/km) (km/h) system (passenger) (min)
1,2) 3001.517 6.018 0.592 (S1,82) 1176.966 4
(1, 4) 3442.166 5.168 0.593 84 (S2,54) 898.871 35
(2,3) 5277154 4.872 0.953 (84, S6) 0.210 2
2,5) 3001.517 3.243 0.598 (2a, 3a) 4814.005 6
(3,6) 5277154 3.962 0.822 (3a, 4a) 898.999 3
(4,2) 5277154 1.028 0.606 (S1, S3) 0.082 3
(4,5) 5016.344 4.093 0.608 (83,55) 3637167 3.5
(5,6) 1574.178 5.770 0.742 52 (S5, S6) 0.082 4
(1, S1) 2075.837 4.019
(4, 92) 3637104 4.060
(4, 2a) 0.145 4.000
(4, 5) 1176.932 3.507
(4a, 5) 898.904 3.504
(S6, 6) 3637.249 3.569
(S2, 2a) 0.065 3.000
(S3, 3a) 898.887 3.503
(3a, S3) 0.098 3.000
(4a, S4) 0.095 3.000
TaBLE 5: The optimal speed limit schemes under 81 scenarios.
2 3 4 5 6 7 8 9 10
2 (84, 86) (42, 40) (84, 42) (40, 86) (84, 59) (84, 40) (84, 86) (84, 63) (84, 60)
3 (44, 40) (50, 42) (44, 40) (56, 85) (84, 86) (56, 85) (56, 86) (84, 86) (84, 60)
4 (63,42) (84, 86) (84, 86) (62, 52) (84, 70) (60, 86) (84, 86) (63, 85) (84,72)
5 (71, 42) (84, 86) (84, 42) (84,52) (59, 57) (71, 85) (71, 86) (71, 86) (84, 86)
6 (74, 42) (84, 86) (74, 42) (84, 86) (84, 86) (84, 86) (62, 46) (84, 40) (84, 86)
7 (84, 86) (83, 40) (81, 86) (82, 52) (84, 70) (84, 84) (84, 86) (68, 83) (84, 84)
8 (84, 40) (84, 40) (84, 40) (84, 86) (84, 60) (84, 86) (84, 86) (72, 62) (67, 61)
9 (84, 40) (84, 40) (84, 40) (84, 52) (84, 55) (40, 86) (47, 40) (84, 62) (79, 47)
10 (84, 40) (84, 40) (84, 40) (80, 40) (84, 70) (84, 75) (84, 86) (84, 61) (84, 86)

Starting from 2$, we gradually increase the parking fare
between each O-D pair by 1$, until both of them attain 108.
Thus, the total number of parking fare scenarios is 81. By using
the proposed model and solution algorithm, we obtain the
objective value, modal split, and optimal speed limits scheme
with respect to each parking fare scenario.

Observing the change trends of the following objective
values under 81 scenarios as shown in Figure 5, we intuitively
conclude that higher parking fares result in lower transporta-
tion social cost. However, this conclusion does not always
hold when one parking fare is fixed, such that the other
parking fares vary from 2$ to 10$. For example, g[2,3] =
521527.486 > g[2,2] = 472145.734, where g represents
the objective value and [}, 7¥7] denotes the parking fare
scenario. After analysis, the reasons are considered as follows.
(i) The obtained worst-case demand for each parking fare sce-
nario is independent and different, given that the total travel

demand is subjected to an uncertain set. (ii) The solution and
best objective value for our robust speed limit design model is
local optimum instead of global optimum. (iii) Initialization
probably impacts the optimal objective value.

Figure 6 demonstrates the modal split rate of private cars
under 81 parking fare scenarios. Overall, it is straightforward
that private cars carry a large proportion of traffic demand
in case of cutting parking fares. On the contrary, along with
rising parking fares, the traffic demand proportion loaded by
private cars would decrease. However, we can observe that
this lemma is violated under some parking fare scenarios as
shown in Figure 6. This is because the worst-case total travel
demand is changeable. It cannot be guaranteed that the drop
rate of total demand carried by private cars is great than that
of worst-case total travel demand with higher parking fares.

Table 5 displays the optimal speed limit schemes under
81 parking fare scenarios. It is easily found that the optimal
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speed limit schemes with different parking fares are quite
untraceable. Therefore, parking fares significantly impact
the optimal imposed speed limits, and an integrated design
of speed limits and parking fares is more recommended.

Similarly, different subway fare scenarios would have an
influence on the best objective value, modal split pattern, and
optimal speed limit scheme. We do not repeatedly conduct
the sensitivity analysis of subway fare in this paper. Still, it can
be concluded that an integrated design of speed limits and
extra fares, that is, parking fares and subway fares, is more
recommended.

6. Conclusions

This paper investigated the design of robust speed limits
scheme in an attempt to reduce transportation externalities

for a bimodal transportation system including private cars
and subway. First of all, a synthesized travel time function
under speed limits was established for such a system. The
bimodal network equilibrium model with speed limits was
developed to provide a feasible initial solution for the subse-
quent robust speed limits scheme design model. Assuming
that the total demand vector belongs to a given demand
set, we formulated the robust speed limits scheme design
problem as a min-max MPCC model. To estimate traffic
emissions more reliably, a professional emissions calculation
tool, MOVES, was employed to simulate emission factor
functions. Then we utilize the cutting plane method frame-
work to solve the proposed model. At the end, a numerical
example was demonstrated to verify the proposed model
and solution algorithm. Besides, we conducted a sensitivity
analysis of parking fares in the example. The results showed
that the objective value and modal split rate of private cars
did not necessarily decline when increasing the parking fares,
which contradicted with our intuitions. Consequently, our
further study should design the speed limits and extra fares,
that is, parking fares and subway fares, in an integrated
manner.
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