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This paper considers a distributed𝐻
∞
sampled-data filtering problem in sensor networks with stochastically switching topologies.

It is assumed that the topology switching is triggered by a Markov chain. The output measurement at each sensor is first sampled
and then transmitted to the corresponding filters via a communication network. Considering the effect of a transmission delay,
a distributed filter structure for each sensor is given based on the sampled data from itself and its neighbor sensor nodes. As a
consequence, the distributed 𝐻

∞
sampled-data filtering in sensor networks under Markovian switching topologies is transformed

into𝐻
∞
mean-square stability problem of a Markovian jump error system with an interval time-varying delay. By using Lyapunov

Krasovskii functional and reciprocally convex approach, a new bounded real lemma (BRL) is derived, which guarantees the mean-
square stability of the error system with a desired𝐻

∞
performance. Based on this BRL, the topology-dependent𝐻

∞
sampled-data

filters are obtained. An illustrative example is given to demonstrate the effectiveness of the proposed method.

1. Introduction

A sensor network is composed of a large number of sensor
nodes which are usually distributed in a spatial region.These
sensor nodes are capable of cooperatively achieving some
special tasks by communicating with neighbour nodes. In
recent years, lots of attentions have been paid to sensor
networks due to their wide applications such as environment
monitoring and forecasting, object tracking, infrastructure
safety, intelligent traffic system, and space exploration. An
important problem in sensor networks is to observe the
states of a system via the information exchange among sensor
nodes. Since sensor nodes are spatially assigned in a large
scale domain, it is practical to design a distributed algorithm
for state estimation or filtering in sensor networks. Recently,
the distributed filtering or state estimation over sensor net-
works has drawn considerable interests of many researchers.
For example, a distributed filtering for sensor network was
addressed in [1], where a consensus algorithmwas introduced
to make the estimate of each sensor asymptotically converge
to the average estimation of these sensors. The distributed
Kalman filtering algorithm in [1] was further improved in [2].

In [3], pining observers were designed under the condition
that sensor can only observe partial states of the target. In [4],
a novel distributed estimation scheme was proposed based
on local Luenberger-like observers with a consensus strategy,
where network-induced delays and package dropouts were
considered.

In addition, 𝐻
∞

filtering has been widely investigated
in the past two decades due to its capability of minimizing
the highest energy gain of the estimation error for all initial
conditions and noise; see [5–7]. The aim of 𝐻

∞
filtering

is to design a stable filter by using the measurements
outputs to estimate the system states or a combination of
them. Such an approach has been recently applied to the
distributed filtering for sensor networks. To mention some,
in [8], the distributed filtering problem for sensor networks
with multiple missing measurements was investigated, where
the concept of 𝐻

∞
consensus performance was defined to

quantify the consensus degree over a finite horizon. By using
the vector dissipativity, a novel approach to the design of
distributed robust 𝐻

∞
consensus filters was given in [9].

The 𝐻
∞

filtering problem was investigated in [10] for class
of nonlinear systems with randomly occurring incomplete
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information including both sensor saturations and miss-
ing measurements. The distributed 𝐻

∞
filtering problem

in sensor networks for discrete-time systems with missing
measurements and communication link failure was studied
in [11].

With the rapid development of digital technologies, the
𝐻
∞

filtering based on sampled data has been exploited in
recent years; see, for example, [12–16]. It is well known
that sampled-data control can bring some advantages for
multiagent systems such as flexibility, robustness, low cost,
and energy saving. Due to the limited energy power of
sensor networks, it is therefore more practical and significant
to design distributed filters by using the sampled data of
each sensor. In [17], a stochastic sampled-data approach to
the analysis and design of distributed 𝐻

∞
filters for sensor

networks was proposed. It is worth pointing out that the𝐻
∞

sampled-data filtering in sensor networks has not yet been
fully investigated. In addition, the communication topologies
of sensor network may randomly change duo to the effect of
link failures, packet dropouts, external disturbances, channel
fading, task execution alteration, and so forth. In [18], the
consensus-based distributed filtering problem for a discrete-
time linear system was solved where the communication
topology was time-varying with a stochastic process. Con-
sidering lossy sensor networks, the distributed finite-horizon
filtering problem for a class of time-varying systems was
investigated in [19]. In [20], a distributed robust estimation
over sensor network with Markovian randomly varying
topology was addressed, where the sufficient conditions were
given to guarantee a suboptimal𝐻

∞
level of disagreement of

estimates. Notice that these results with stochastically switch-
ing topologies are mainly concerned with the distributed
filtering in pure continuous-time or discrete-time setting;
however, there is little related work done for the distributed
𝐻
∞

filtering in a sampled-data setting over sensor network
with Markovian switching topologies, which motivates the
current study.

In this paper, we aim to investigate the distributed
𝐻
∞

sampled-data filtering in sensor networks, where the
communication topologies are switched by a Markov chain.
A new filter structure for each sensor node is given with the
sampled data of the output measurements from itself and
its neighbour sensor nodes, where the communication delay
is taken into consideration. Based on this filter structure,
the 𝐻

∞
sampled-data filtering problem is transformed into

the 𝐻
∞

control problem of Markovian jump systems with
a time-varying delay. Then, a new BRL for the system is
obtained by employing Lyapunov-Krasovskii functional and
reciprocally convex approach. Correspondingly, based on this
the appropriate topology-dependent𝐻

∞
sampled-data filters

are derived by solving a set of linear matrix inequalities,
whose effectiveness is illustrated by a numerical example.

Notation. N represents the set of natural numbers. 𝐼
𝑛
∈ N𝑛×𝑛

is the identity matrix. 1
𝑛

∈ R𝑛 and 0
𝑛

∈ R𝑛 represent
vectors whose entries are ones and zeros, respectively. ‖ ⋅ ‖

denotes the Euclidean norm. diag{𝑎
𝑖
} is a diagonal matrix

with diagonal entries 𝑎
𝑖
. 𝑃 > 0 means that matrix 𝑃

is symmetric positive definite. The symbol ∗ denotes the
symmetric terms in a symmetric matrix.

2. Problem Statement

In this paper, we consider that the sensor network with
𝑁 sensor nodes is spatially distributed, whose topology is
represented by a directed weighted graph G = {Δ,E,W} of
order𝑁, where Δ = {V

1
, V
2
, . . . , V

𝑁
} andE ⊆ Δ×Δ are the set

of nodes and edges,W = [𝑤
𝑖𝑗
] ∈ R𝑁×𝑁 represents a weighted

adjacency matrix with nonnegative adjacency elements 𝑤
𝑖𝑗
.

An edge defined as 𝜀
𝑖𝑗

= (V
𝑖
, V
𝑗
) implies that node V

𝑖
can

receive information from node V
𝑗
. Node V

𝑗
is considered as

a neighbor of node V
𝑖
if 𝜀
𝑖𝑗

∈ E. For all 𝑖 ∈ Δ, 𝑤
𝑖𝑖

> 0, and
𝑤
𝑖𝑗

> 0 if 𝜀
𝑖𝑗

∈ E; otherwise, 𝑤
𝑖𝑗

= 0.
Consider continuous-time systems as follows:

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵V
1
(𝑡) ,

𝑧 (𝑡) = 𝐸𝑥 (𝑡) ,

(1)

where 𝑥(𝑡) ∈ R𝑛 and 𝑧(𝑡) ∈ R𝑝 are the state vector and
the output signal to be estimated, respectively; V

1
(𝑡) ∈ R𝑚

is exogenous disturbance belonging toL
2
[0,∞);𝐴, 𝐵, and 𝐸

are known constant matrices of appropriate dimensions. The
state𝑥 of the system (1) is observed by a network of𝑁 sensors,
where each sensor is given as

𝑦
𝑖
(𝑡) = 𝐶

𝑖
𝑥 (𝑡) + 𝐷

𝑖
V
2
(𝑡) , 𝑖 = 1, 2, . . . , 𝑁, (2)

where 𝑦
𝑖
(𝑡) ∈ R𝑙 is the measured output received by the

sensor 𝑖 from the plant, V
2
(𝑡) ∈ R𝑚 is output measurement

noise belonging to L
2
[0,∞), and 𝐶

𝑖
and 𝐷

𝑖
are known

constant matrices of appropriate dimensions.
Due to the possible occurrence of random events in

sensor networks, we consider a group of directed graph
G(𝛾(𝑡)) ∈ {G

1
,G
2
, . . . ,G

𝑞
}, where 𝛾(𝑡) is a continuous-time

Markov process with values in a finite set S = {1, 2, . . . , 𝑞}.
The transition probabilities are defined as

prob {𝛾 (𝑡 + Δ𝑡) = 𝑠 | 𝛾 (𝑡) = 𝑟} = {

𝜋
𝑟𝑠
Δ𝑡 + 𝑜 (Δ𝑡) , 𝑟 ̸= 𝑠

1 + 𝜋
𝑟𝑟

+ 𝑜 (Δ𝑡) , 𝑟 = 𝑠,

(3)

whereΔ𝑡 > 0, 𝑜(Δ𝑡) → 0 asΔ𝑡 → 0, and𝜋
𝑟𝑠
is the transition

rate from mode 𝑟 to mode 𝑠, which satisfies 𝜋
𝑟𝑠

≥ 0 for 𝑟 ̸= 𝑠

and 𝜋
𝑟𝑟

= −∑
𝑚

𝑠=1,𝑠 ̸= 𝑟
𝜋
𝑟𝑠
for 𝑟 ∈ S. Then, it is easily known

that 𝐿(𝛾(𝑡)) ∈ {𝐿
1
, 𝐿
2
, . . . , 𝐿

𝑞
}.

Remark 1. In many practical applications, for example, the
marine oil pervasion monitoring systems deployed in an
oceanic area, see in [21], the topologies of the mobile
sensor network may vary (switch) with the coverage area
and the spatial distribution of the pervading oil, which is
affected by some random factors such as wind, sea wave,
and temperature. In this case, it is suitable to model the
randomly switching network topologies as a Markov process
[21]. Another example for Markovian switching topology can
be seen in [22]. Hence, in this paper we focus on the filtering
problem in the sensor network with Markovian switching
topologies.
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In this paper, we investigate the filter design issue for
sensor networks in a sampled-data setting. Denote 𝑥

𝑖
∈ R𝑛

as the estimate of the plant’s state 𝑥(𝑡) at sensor node 𝑖 and
define the output estimation error for sensor node 𝑖 as

𝑦
𝑖
(𝑡) = 𝑦

𝑖
(𝑡) − 𝐶

𝑖
𝑥
𝑖
(𝑡) . (4)

It is assumed that the sampler is time-driven and the output
estimation error 𝑦

𝑖
(𝑡) of sensor 𝑖 is first sampled at each

sampling instant 𝑠
𝑘
, and then the sampled output estimation

error 𝑦
𝑖
(𝑠
𝑘
) will be sent to the ZOHs (zero order hold)

of itself and its neighbors for the filter design through a
communication network. Then, the ZOH of sensor 𝑖 is used
to collect the sampled data from itself and its neighbor sensor
𝑗 and keep them constant until a new sampled data arrives.
All the collected sampled data of the ZOH is then sent to
filter 𝑖 for the estimate of the state 𝑥(𝑡). Considering the
negative effects of network uncertainty, all the sampled-data
transmitted via communication network is assumed to suffer
an expected communication delay 𝜏, where 𝜏 is constant and
larger than zero. Also, we assume that there exists a constant
ℎ > 0 such that 0 < 𝑠

𝑘+1
− 𝑠
𝑘

= ℎ
𝑘+1

≤ ℎ. Based on the
above analysis, the filter to be designed for sensor 𝑖 is given as
follows:

̇
�̂�
𝑖
(𝑡) = 𝐴𝑥

𝑖
(𝑡) − 𝐹

𝑖
(𝛾 (𝑠
𝑘
))

𝑁

∑

𝑗=1

𝑤
𝑖𝑗
(𝛾 (𝑠
𝑘
)) 𝑦
𝑗
(𝑠
𝑘
) ,

�̂�
𝑖
(𝑡) = 𝐸𝑥

𝑖
(𝑡) , 𝑡 ∈ [𝑠

𝑘
+ 𝜏, 𝑠
𝑘+1

+ 𝜏) ,

(5)

where 𝑥
𝑖
(0) = 0, �̂�

𝑖
∈ R𝑝 is the estimate of 𝑧(𝑡) at sensor node

𝑖, andmatrix 𝐹
𝑖
(𝛾(𝑠
𝑘
)) are parameters of filter 𝑖 to be designed

later.

Remark 2. In fact, due to the introduction of a communica-
tion network, sampled-data information during transmission
may suffer the network uncertainty such as communication
delay, data packet dropouts, and disorders. In order to make
the analysis easier, we only take the effect of communication
delay into account. Considering the effect of communication
delays, data packet dropouts and disorders simultaneously
will be investigated in the future work.

Let 𝑒
𝑖
(𝑡) = 𝑥 − 𝑥

𝑖
and �̃�
𝑖
(𝑡) = 𝑧 − �̂�

𝑖
be the local estimate

error and the local filtering error at sensor 𝑖. From (1), (2),
and (5), we have the following filtering error system for sensor
node 𝑖:

̇𝑒
𝑖
(𝑡) = 𝐴𝑒

𝑖
(𝑡) + 𝐹

𝑖
(𝛾 (𝑠
𝑘
))

𝑁

∑

𝑗=1

𝑤
𝑖𝑗
(𝛾 (𝑠
𝑘
)) 𝐶
𝑗
𝑒
𝑗
(𝑠
𝑘
)

+ 𝐵V
1
(𝑡) + 𝐹

𝑖
(𝛾 (𝑠
𝑘
))

𝑁

∑

𝑗=1

𝑤
𝑖𝑗
(𝛾 (𝑠
𝑘
))𝐷
𝑗
V
2
(𝑠
𝑘
) ,

�̃�
𝑖
(𝑡) = 𝐸𝑒

𝑖
(𝑡) , 𝑡 ∈ [𝑠

𝑘
+ 𝜏, 𝑠
𝑘+1

+ 𝜏) .

(6)

Defining 𝑒(𝑡) = [𝑒
𝑇

1
(𝑡), 𝑒
𝑇

2
(𝑡), . . . , 𝑒

𝑇

𝑁
(𝑡)]
𝑇 and �̃�(𝑡) =

[�̃�
𝑇

1
(𝑡), �̃�
𝑇

2
(𝑡), . . . , �̃�

𝑇

𝑁
(𝑡)]
𝑇, we have

̇𝑒 (𝑡) = 𝐴𝑒 (𝑡) + 𝐹
𝑟
𝐿
𝑟
𝐶𝑒 (𝑠
𝑘
) + 𝐵V

1
(𝑡) + 𝐹

𝑟
𝐿
𝑟
𝐷V
2
(𝑠
𝑘
) ,

�̃� (𝑡) = 𝐸𝑒 (𝑡) , 𝑡 ∈ [𝑠
𝑘
+ 𝜏, 𝑠
𝑘+1

+ 𝜏) ,

(7)

where 𝐴 = 𝐼
𝑁

⊗ 𝐴, 𝐶 = diag{𝐶
𝑖
}, 𝐵 = 1

𝑁
⊗ 𝐵, 𝐷 =

[𝐷
𝑇

1
, 𝐷
𝑇

2
, . . . , 𝐷

𝑇

𝑁
]
𝑇, 𝐿
𝑟

= W ⊗ 𝐼
𝑙
, 𝐸 = 𝐼

𝑁
⊗ 𝐸, and 𝐹

𝑟
=

diag{𝐹
𝑖𝑟
} for each fixed 𝛾(𝑡

𝑘
) = 𝑟.

Define an “artificial delay” as 𝑑
𝑘
(𝑡) = 𝑡 − 𝑠

𝑘
, 𝑡 ∈ [𝑠

𝑘
+

𝜏, 𝑠
𝑘+1

+ 𝜏). Apparently, 𝑑
𝑘
(𝑡) is piecewise-linear with the

derivative ̇
𝑑
𝑘
(𝑡) = 1 at 𝑡 ̸= 𝑠

𝑘
+ 𝜏 and is discontinuous at

𝑡 = 𝑠
𝑘
+ 𝜏. Then, it is clear that 𝜏 ≤ 𝑑

𝑘
(𝑡) < ℎ

𝑘+1
+ 𝜏 < ℎ + 𝜏,

𝑡 ∈ [𝑠
𝑘
+ 𝜏, 𝑠
𝑘+1

+ 𝜏). Thus, the system (7) can be written as

̇𝑒 (𝑡) = 𝐴𝑒 (𝑡) + 𝐹
𝑟
𝐿
𝑟
𝐶𝑒 (𝑡 − 𝑑

𝑘
(𝑘)) + 𝐵V

1
(𝑡)

+ 𝐹
𝑟
𝐿
𝑟
𝐷V
2
(𝑡 − 𝑑

𝑘
(𝑘)) ,

�̃� (𝑡) = 𝐸𝑒 (𝑡) , 𝑡 ∈ [𝑠
𝑘
+ 𝜏, 𝑠
𝑘+1

+ 𝜏) .

(8)

The initial condition of state 𝑒(𝑡) is supplemented as
𝑒(𝜃) = 𝜙(𝜃), 𝜃 ∈ [−𝜏 − ℎ, 0], with 𝜙(0) = 𝑒(0) =

[𝑒
𝑇

1
(0), 𝑒
𝑇

2
(0), . . . , 𝑒

𝑇

𝑁
(0)]
𝑇 and 𝜙 ∈ 𝑊, where 𝑊 denotes

the Banach space of absolutely continuous functions [−𝜏 −

ℎ, 0] → R𝑁 with square-integrable derivatives and the norm

‖𝜙‖
𝑊

= max
𝜃∈[−ℎ−𝜏,0]

‖𝜙(𝜃)‖ + [∫

0

−𝜏−ℎ

‖
̇

𝜙(𝑠)‖

2

𝑑𝑠]

1/2

.
Next, we need to introduce the following definition.

Definition 3. The system (8) with V
1
(𝑡) = V

2
(𝑡) = 0 is said to

be exponentially mean-square stable if there exist constants
𝜆 > 0 and 𝛽 > 0 such that

E {‖𝑒 (𝑡)‖
2

} ≤ 𝜆𝑒
−𝛽𝑡 sup
−𝜏−ℎ≤𝜃≤0

E {




𝜙 (𝜃)






2

} . (9)

The distributed 𝐻
∞

sampled-data filtering problem under
consideration in the paper is to determine the parameters
𝐹
𝑖𝑟
of the filter (5) such that the following requirements are

simultaneously satisfied:
(i) the filtering error system (8) with V

1
(𝑡) = V

2
(𝑡) = 0 is

exponentially mean-square stable;
(ii) under the zero-initial condition, for a prescribed𝐻

∞

performance level 𝛾, the filtering error �̃�(𝑡) satisfies

E{∫

∞

0

‖�̃� (𝑡)‖
2

𝑑𝑡}

≤ 𝛾
2

∫

∞

0





V
1
(𝑡)






2

+




V
2
(𝑡 − 𝑑

𝑘
(𝑡))






2

𝑑𝑡

(10)

for any nonzero V
1
(𝑡), V
2
(𝑡) ∈ L

2
[0,∞).

Before ending this section, the following lemmas are very
useful for the proofs of the main results.

Lemma 4 (Schur complement [23]). Let 𝑆 be a symmetric
real matrix represented by [

𝑠
11
𝑠
12

𝑠
𝑇

12
𝑠
22

], where 𝑠
22

is square and
nonsingular. Then 𝑆 > 0 if and only if 𝑠

22
> 0 and 𝑠

11
−

𝑠
12
𝑠
−1

22
𝑠
12

> 0.
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Lemma 5 (see [24]). For any constant matrix 𝑅 > 0 ∈ R𝑛×𝑛,
scalar 𝜏 > 0, and vector function �̇� : [−𝜏, 0] → R𝑛 such that
the following integration is well defined, then

− 𝜏∫

𝑡

𝑡−𝜏

̇𝑒
𝑇

(𝑠) 𝑅 ̇𝑒 (𝑠) 𝑑𝑠

≤ −[𝑒 (𝑡) − 𝑒 (𝑡 − 𝜏)]
𝑇

𝑅 [𝑒 (𝑡) − 𝑒 (𝑡 − 𝜏)] .

(11)

Lemma 6 (see [25]). For given positive integers 𝑛, 𝑚, a scalar
𝜂 in the interval (0, 1), and a given matrix 𝑅 > 0, two matrices
𝑊
1
and 𝑊

2
, define the function 𝑓(𝜂, 𝑅) for all vector 𝜑(𝑡) in

R𝑚 as

𝑓 (𝜂, 𝑅) =

1

𝜂

𝜑
𝑇

(𝑡)𝑊
𝑇

1
𝑅𝑊
1
𝜑 (𝑡)

+

1

1 − 𝜂

𝜑
𝑇

(𝑡)𝑊
𝑇

2
𝑅𝑊
2
𝜑 (𝑡) .

(12)

If there exists a matrix 𝑌 ∈ R𝑛×𝑛 such that [ 𝑅 𝑌
∗ 𝑅

] ≥ 0, then the
following inequality holds:

min
𝜂∈(0,1)

𝑓 (𝜂, 𝑅) ≥ 𝜑
𝑇

(𝑡) [

𝑊
1

𝑊
2

]

𝑇

[

𝑅 𝑌

∗ 𝑅
] [

𝑊
1

𝑊
2

] 𝜑 (𝑡) . (13)

3. Main Results

3.1. 𝐻
∞

Filtering Analysis. In this subsection, we will derive
a BRL for the filtering error system (8). For this purpose, we
first choose a Lyapunov-Krasovskii functional as

𝑉 (𝑡, 𝑒
𝑡
, ̇𝑒
𝑡
) =

3

∑

𝑖=1

𝑉
𝑖
(𝑡, 𝑒
𝑡
, ̇𝑒
𝑡
) , (14)

where

𝑉
1
(𝑡, 𝑒
𝑡
, ̇𝑒
𝑡
) = 𝑒
𝑇

(𝑡) 𝑃
𝑟
𝑒 (𝑡) ,

𝑉
2
(𝑡, 𝑒
𝑡
, ̇𝑒
𝑡
) = ∫

𝑡

𝑡−𝜏

𝑒
𝑇

(𝑠) 𝑄
1
𝑒 (𝑠) 𝑑𝑠

+ ∫

𝑡−𝜏

𝑡−ℎ−𝜏

𝑒
𝑇

(𝑠) 𝑄
2
𝑒 (𝑠) 𝑑𝑠,

𝑉
3
(𝑡, 𝑒
𝑡
, ̇𝑒
𝑡
) = 𝜏∫

0

−𝜏

∫

𝑡

𝑡+𝜃

̇𝑒
𝑇

(𝑠) 𝑅
1

̇𝑒 (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

−𝜏

−ℎ−𝜏

∫

𝑡

𝑡+𝜃

̇𝑒
𝑇

(𝑠) 𝑅
2

̇𝑒 (𝑠) 𝑑𝑠 𝑑𝜃,

(15)

with 𝑒
𝑡
(𝜃) = 𝑒(𝑡 + 𝜃), 𝜃 ∈ [−ℎ − 𝜏, 0], 𝑃 > 0, 𝑄

1
> 0,

𝑄
2

> 0, 𝑅
1

> 0, 𝑅
2

> 0. For the sake of simplicity, let
𝜓(𝑡) = [𝑒

𝑇

(𝑡), 𝑒
𝑇

(𝑡 − 𝑑
𝑘
(𝑡)), 𝑒
𝑇

(𝑡 − 𝜏), 𝑒
𝑇

(𝑡 − ℎ − 𝜏)]
𝑇, �̆�(𝑡) =

[𝜓
𝑇

(𝑡), V𝑇
1
(𝑡), V𝑇
2
(𝑡 − 𝑑

𝑘
(𝑡))]
𝑇 and E

𝑖
be a block entry matrix

with E
𝑖𝑗

= E
𝑖
− E
𝑗
. For example, E

1
= [𝐼, 0, 0, 0, 0, 0] and

E
35

= [0, 0, 𝐼, 0, −𝐼, 0].
Now, we state and establish the following result.

Theorem 7. For given scalars ℎ > 0, 𝜏, and filter parameters
𝐹
𝑖𝑟
, the filtering error system (8) with V

1
(𝑡) = V

2
(𝑡) = 0 is

exponentially mean-square stable if there exist real matrices
𝑃
𝑟

> 0 (𝑟 = 1, 2, . . . , 𝑞), 𝑄
1

> 0, 𝑄
2

> 0, 𝑅
1

> 0, 𝑅
2

> 0

and some matrices 𝑌 of appropriate dimensions such that

[

𝑅
2

𝑌

∗ 𝑅
2

] ≥ 0, (16)

Ψ
𝑟
=

[

[

Γ
𝑟

Υ
𝑇

𝑟
(𝜏
2

𝑅
1
+ ℎ
2

𝑅
2
)

∗ − (𝜏
2

𝑅
1
+ ℎ
2

𝑅
2
)

]

]

< 0 (17)

for 𝑟 = 1, 2, . . . , 𝑞, where

Γ
𝑟
= E
𝑇

1
[

𝑞

∑

𝑠=1

𝜋
𝑟𝑠
𝑃
𝑠
+ 𝑄
1
]E
1
+ E
𝑇

1
𝑃
𝑟
Υ
𝑟

+ Υ
𝑟
𝑃
𝑟
E
1
+ E
𝑇

3
(𝑄
2
− 𝑄
1
)E
3
− E
𝑇

4
𝑄
2
E
4

− E
𝑇

13
𝑅
1
E
13

− [

E
24

E
32

]

𝑇

[

𝑅
2

𝑌

𝑌 𝑅
2

] [

E
24

E
32

]

Υ
𝑟
= 𝐴E

1
+ 𝐹
𝑟
𝐿
𝑟
𝐶E
2
.

(18)

Proof. Define the weak infinitesimal operator L of𝑉(𝑡, 𝑧
𝑡
, �̇�
𝑡
)

along the trajectory (8) with respect to 𝑡 ∈ [𝑠
𝑘
+ 𝜏, 𝑠
𝑘+1

+ 𝜏) as

L𝑉 (𝑡, 𝑧
𝑡
, �̇�
𝑡
) = lim
Δ→0

+

1

Δ

{E {𝑉 (𝑡 + Δ, 𝑧
𝑡+Δ

, �̇�
𝑡+Δ

) | 𝑧
𝑡
}

−𝑉 (𝑡, 𝑧
𝑡
, �̇�
𝑡
)} .

(19)

Then, along with (14), we have

L𝑉 (𝑡, 𝑧
𝑡
, �̇�
𝑡
) =

3

∑

𝑖=1

L𝑉
𝑖
(𝑡, 𝑧
𝑡
, �̇�
𝑡
) , (20)

where

L𝑉
1
(𝑡, 𝑧
𝑡
, �̇�
𝑡
) = 2𝜓

𝑇

(𝑡)E
𝑇

1
[𝑃
𝑟
Υ
𝑟
+

1

2

𝑞

∑

𝑠=1

𝜋
𝑟𝑠
𝑃
𝑠
E
1
]𝜓 (𝑡) ,

L𝑉
2
(𝑡, 𝑧
𝑡
, �̇�
𝑡
) = 𝜓
𝑇

(𝑡) {E
𝑇

1
𝑄
1
E
1
+ E
𝑇

3
(𝑄
2
− 𝑄
1
)E
3

−E
𝑇

4
𝑄
2
E
4
} 𝜓 (𝑡) ,

L𝑉
3
(𝑡, 𝑧
𝑡
, �̇�
𝑡
) = 𝜓
𝑇

(𝑡) {Υ
𝑇

𝑟
[𝜏
2

𝑅
1
+ ℎ
2

𝑅
2
] Υ
𝑟
} 𝜓 (𝑡) + 𝜂

1
+ 𝜂
2
,

(21)

with 𝜂
1

= −𝜏 ∫

𝑡

𝑡−𝜏

̇𝑒
𝑇

(𝑠)𝑅
1

̇𝑒(𝑠)𝑑𝑠 and 𝜂
2

=

−ℎ∫

𝑡−𝜏

𝑡−ℎ−𝜏

̇𝑒
𝑇

(𝑠)𝑅
2

̇𝑒(𝑠)𝑑𝑠. Applying Lemma 5, we have

𝜂
1
(𝑡) ≤ −𝜓

𝑇

(𝑡)E
𝑇

13
𝑅
1
E
13
𝜓 (𝑡) . (22)
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Notice that

𝜂
2
= −ℎ∫

𝑡−𝑑
𝑘
(𝑡)

𝑡−𝜏−ℎ

̇𝑒
𝑇

(𝑠) 𝑅
2

̇𝑒 (𝑠) 𝑑𝑠

− ℎ∫

𝑡−𝜏

𝑡−𝑑
𝑘(𝑡)

̇𝑒
𝑇

(𝑠) 𝑅
2

̇𝑒 (𝑠) 𝑑𝑠

≤ −

ℎ

𝜏 + ℎ − 𝑑
𝑘
(𝑡)

𝜓
𝑇

(𝑡)E
𝑇

24
𝑅
2
E
24
𝜓 (𝑡)

−

ℎ

𝑑
𝑘
(𝑡) − 𝜏

𝜓
𝑇

(𝑡)E
𝑇

32
𝑅
2
E
32
𝜓 (𝑡) .

(23)

Using Lemma 6, we obtain

𝜂
2
≤ −𝜓
𝑇

(𝑡) [

E
24

E
32

]

𝑇

[

𝑅
2

𝑌

𝑌 𝑅
2

] [

E
24

E
32

]𝜓 (𝑡) . (24)

Taking the mathematical expectation on both sides of
(20) and from (20)–(24), we have for 𝑡 ∈ [𝑠

𝑘
+ 𝜏, 𝑠
𝑘+1

+ 𝜏)

E {L𝑉 (𝑡, 𝑧
𝑡
, �̇�
𝑡
)} ≤ E {𝜓

𝑇

(𝑡) Σ
𝑟
𝜓 (𝑡)} , (25)

where Σ
𝑟

= Γ
𝑟
+ Υ
𝑇

𝑟
(𝜏
2

𝑅
1
+ ℎ
2

𝑅
2
)Υ
𝑟
. It is clear that if Σ

𝑟
<

0, then there exists a small enough constant 𝑐
1

> 0 such
that E{L𝑉(𝑡, 𝑒

𝑡
, ̇𝑒
𝑡
)} ≤ −𝑐

1
E{‖𝑒(𝑡)‖

2

)}, which means that the
system (8) is mean-square stable.

Define a new functionV = 𝑒
−𝜀𝑡

𝑉(𝑡, 𝑧
𝑡
, �̇�
𝑡
), where 𝜀 > 0 is

a scalar to be determined. Then, we have

LV = 𝑒
𝜀𝑡

[𝜀𝑉 (𝑡, 𝑧
𝑡
, �̇�
𝑡
) + L𝑉 (𝑡, 𝑧

𝑡
, �̇�
𝑡
)] . (26)

Integrating both sides of (26) from 0 to 𝑇 > 0 and taking
the expectation, one can obtain that

E {𝑒
𝜀𝑇

𝑉 (𝑇, 𝑒
𝑇
, ̇𝑒
𝑇
)} − E {𝑉 (0, 𝑒

0
, ̇𝑒
0
)}

= ∫

𝑇

0

𝜀𝑒
𝜀𝑡

E {𝑉 (𝑡, 𝑒
𝑡
, ̇𝑒
𝑡
)} 𝑑𝑡 + ∫

𝑇

0

𝑒
𝜀𝑡

E {L𝑉 (𝑡, 𝑒
𝑡
, ̇𝑒
𝑡
)} 𝑑𝑡.

(27)

Using the similar method in [26], we can know that there
exists a scalar 𝜆 > 0 such that for 𝑇 ≥ 0

E {𝑉 (𝑇, 𝑒
𝑇
, ̇𝑒
𝑇
)} ≤ 𝜆𝑒

−𝜀𝑇 sup
−2(𝜏+ℎ)≤𝜃≤0

E {




𝜙 (𝜃)






2

} . (28)

Due to the fact that𝑉(𝑇, 𝑧
𝑇
, �̇�
𝑇
) ≥ 𝜅𝑧

𝑇

(𝑇)𝑧(𝑇), where 𝜅 =

min
𝑟=1,2,...,𝑞

{𝜆min(𝑃𝑟)},

E {‖𝑒 (𝑇)‖
2

} ≤

𝜆

𝜅

𝑒
−𝜀𝑇 sup
−2(𝜏+ℎ)≤𝜃≤0

E {




𝜙 (𝜃)






2

} . (29)

Therefore, it can be concluded from Definition 3 that the
error system (8) is exponentially mean-square stable. Apply-
ing Lemma 4 to Γ

𝑟
, one can arrive at (17). The proof is

completed.

Next, we are in a position to obtain a sufficient condition
that guarantees the 𝐻

∞
performance in (11) for the filtering

error system (8).

Theorem 8. For given scalars ℎ > 0, 𝜏, and filter parameters
𝐹
𝑖𝑟
, the filtering error system (8) is exponentially mean-square

stable with a prescribed 𝐻
∞

performance level 𝛾 if there exist
real matrices 𝑃

𝑟
> 0 (𝑟 = 1, 2, . . . , 𝑞), 𝑄

1
> 0, 𝑄

2
> 0, 𝑅

1
> 0,

𝑅
2

> 0 and some matrices 𝑌 of appropriate dimensions such
that

[

𝑅
2

𝑌

∗ 𝑅
2

] ≥ 0, (30)

Ψ̆
𝑟
=

[

[

Γ̆
𝑟

Ῠ
𝑇

𝑟
(𝜏
2

𝑅
1
+ ℎ
2

𝑅
2
)

∗ − (𝜏
2

𝑅
1
+ ℎ
2

𝑅
2
)

]

]

< 0 (31)

for 𝑟 = 1, 2, . . . , 𝑞, where

Γ̆
𝑟
= E
𝑇

1
[

𝑞

∑

𝑠=1

𝜋
𝑟𝑠
𝑃
𝑠
+ 𝑄
1
+ 𝐸

𝑇

𝐸]E
1
+ E
𝑇

1
𝑃
𝑟
Ῠ
𝑟
+ Ῠ
𝑟
𝑃
𝑟
E
1

+ E
𝑇

3
(𝑄
2
− 𝑄
1
)E
3
− E
𝑇

4
𝑄
2
E
4
− E
𝑇

13
𝑅
1
E
13

− [

E
24

E
32

]

𝑇

[

𝑅
2

𝑌

𝑌 𝑅
2

] [

E
24

E
32

] − 𝛾
2

E
𝑇

5
E
5
− 𝛾
2

E
𝑇

6
E
6
,

Ῠ
𝑟
= 𝐴E

1
+ 𝐹
𝑟
𝐿
𝑟
𝐶E
2
+ 𝐵E
5
+ 𝐹
𝑟
𝐿
𝑟
𝐷E
6
.

(32)

Proof. First, it is easily known that if the inequality (31)
holds, then the inequality (17) is satisfied, which ensures that
the filtering error system (8) with V

1
(𝑡) = V

2
(𝑡) = 0 is

exponentially mean-square stable. The remaining proof is to
guarantee that under zero initial conditions, the filtering error
system (8) satisfies the 𝐻

∞
performance (11). Similar to the

proof of Theorem 7, we can calculate

�̇� (𝑡, 𝑒
𝑡
, ̇𝑒
𝑡
) ≤ �̆�
𝑇

(𝑡) Σ̆�̆� (𝑡) − 𝑧(𝑡)
𝑇

𝑧 (𝑡)

+ 𝛾
2V
1
(𝑡)
𝑇V
1
(𝑡)

+ 𝛾
2V
2
(𝑡 − 𝑑

𝑘
(𝑡))
𝑇V
2
(𝑡 − 𝑑

𝑘
(𝑡)) ,

(33)

where Σ̆ = Γ̆ + Ῠ
𝑇

𝑟
(𝜏
2

𝑅
1
+ ℎ
2

𝑅
2
)Ῠ
𝑟
. It is clear from Lemma 4

that the inequality (31) leads to Σ̆ < 0. Under the zero initial
condition, it follows from (33) that the inequality (11) holds.
The proof of Theorem 8 is completed.

3.2. 𝐻
∞

Filter Design. Based on Theorem 8, we will derive
a sufficient condition on the existence of the topology
dependent 𝐻

∞
filter parameters 𝐹

𝑖𝑟
as follows.

Theorem 9. For given scalars ℎ > 0, 𝜏, 𝜇, the distributed
filtering problem is solvable by the filters (5) if there exist real
matrices �̂�

𝑟
= diag{�̂�

𝑖
} > 0 (𝑟 = 1, 2, . . . , 𝑞), 𝐹 = diag{𝐹

𝑖
},

𝑄
1

> 0, 𝑄
2

> 0, 𝑅
1

> 0, 𝑅
2

> 0 and some matrices 𝑌 of
appropriate dimensions such that

[

𝑅
2

𝑌

∗ 𝑅
2

] ≥ 0, (34)

Ψ̂
𝑟
= [

Γ̂
𝑟

Υ̂
𝑇

𝑟

∗ 𝜇
2

(𝜏
2

𝑅
1
+ ℎ
2

𝑅
2
) − 2𝜇�̂�

𝑟

] < 0 (35)
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for 𝑟 = 1, 2, . . . , 𝑞, where

Γ̂
𝑟
= E
𝑇

1
[

𝑞

∑

𝑠=1

𝜋
𝑟𝑠
𝑃
𝑠
+ 𝑄
1
+ 𝐸

𝑇

𝐸]E
1
+ E
𝑇

1
Υ̂
𝑟
+ Υ̂
𝑟
E
1

+ E
𝑇

3
(𝑄
2
− 𝑄
1
)E
3
− E
𝑇

4
𝑄
2
E
4
− E
𝑇

13
𝑅
1
E
13

− [

E
24

E
32

]

𝑇

[

𝑅
2

𝑌

𝑌 𝑅
2

] [

E
24

E
32

] − 𝛾
2

E
𝑇

5
E
5
− 𝛾
2

E
𝑇

6
E
6
,

Υ̂
𝑟
= �̂�
𝑟
𝐴E
1
+ 𝐹
𝑟
𝐿
𝑟
𝐶E
2
+ �̂�
𝑟
𝐵E
5
+ 𝐹
𝑟
𝐿
𝑟
𝐷E
6
.

(36)

Moreover, the filter gain 𝐹
𝑖𝑟
is given by

𝐹
𝑖𝑟

= �̂�
−1

𝑖𝑟
𝐹
𝑖𝑟
. (37)

Proof. First, for any real symmetric matrix 𝑅 and a given
scalar 𝜇 > 0, we have that (𝜇𝑅 − 𝑃)

𝑇

𝑅
−1

(𝜇𝑅 − 𝑃) ≥ 0, which
implies that

−𝑃𝑅
−1

𝑃 ≤ 𝜇
2

𝑅 − 2𝜇𝑃. (38)

Let 𝑃
𝑟
= �̂�
𝑟
= diag{�̂�

𝑖𝑟
} for the conditions (17) in Theorem 7,

and define 𝐹
𝑖𝑟

= �̂�
𝑖𝑟
𝐹
𝑖𝑟
, 𝐽
𝑟

= diag{𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, (𝜏2𝑅
1

+

ℎ
2

𝑅
2
)
−1

𝑃
𝑟
, 𝐼}. Pre- and postmultiplying both sides of (31) by 𝐽,

respectively, and using Lemma 4, one can obtain (35), where
the term 𝑃

𝑟
(𝜏
2

𝑅
1
+ ℎ
2

𝑅
2
)
−1

𝑃
𝑟
is dealt with by the inequality

(38). The proof of Theorem 9 is completed.

Remark 10. It should be pointed out that, to simplify the
analysis, we assume that the communication delay is constant
and larger than zero. In fact, the design method proposed
in this paper can be extended to the more general case that
the communication delay 𝜏(𝑡) is time-varying with an upper
bound.

4. A Numerical Example

In this section, a numerical example is given to illustrate the
effectiveness of the proposed method.

Example 1. Consider a continuous linear system as

�̇� (𝑡) = [

0.1 −1

0 −0.5
] 𝑥 (𝑡) + [

0.8

0.5
] V
1
(𝑡) ,

𝑧 (𝑡) = [0.1 0.1] 𝑥 (𝑡) ,

(39)

with the initial state 𝑥(0) = [0, 0]
𝑇 and the exogenous

disturbance V
1
(𝑡) = (sin(0.5𝑡))/(1+5𝑡).The state of plant (39)

0 5 10 15 20 25 30
0.5

1

1.5

2

2.5

Figure 1: Markov chain.

is estimated by a sensor network with 4 sensor nodes, where
the parameters of sensor 𝑖 are given by

𝐶
1
= [1, 0] ;

𝐶
2
= [0.25, −0.75] ;

𝐶
3
= [−0.5, −1.5] ;

𝐶
4
= [−1, 0.1] ;

𝐷
1
= 0.3;

𝐷
2
= 0.1;

𝐷
3
= 0.15;

𝐷
4
= 0.06

(40)

and output measurement noise is given by V
2
(𝑡) =

3𝑒
−𝑡 cos(0.2 + 0.3𝜋)𝑡. The network topologies of the sensor

network are given by two directed graphs, whose adjacency
matrices are given by

W
1
=

[

[

[

[

1 1 0 0

1 1 1 1

0 1 1 0

1 0 0 1

]

]

]

]

; W
2
=

[

[

[

[

1 0 0 1

0 1 0 0

1 0 1 0

0 1 0 1

]

]

]

]

. (41)

The topology switching is trigged by a Markov chain, whose
transition rate is given by

𝜋 = [

−0.5 0.5

0.8 −0.8
] . (42)

Then, the switching rule ofMarkov chain is shown in Figure 1.
ByTheorem 9, we design the filter parameters 𝐹

𝑖𝑟
. Set the

sampling period

ℎ
𝑘
= {

0.1 s 𝑘 = 1, 3, 5, . . .

0.05 s 𝑘 = 2, 4, 6, . . . .

(43)

Then, it is easily known that the maximum sampling period
ℎ = 0.1 s. It is assumed that all the sampled data is subject to a
communication delay 𝜏 = 0.05 in the process of transmission.
By choosing the performance level 𝛾 = 1 and the parameter
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Figure 2: Filtering errors �̃�
𝑖
(𝑡).

𝜇 = 10, we employTheorem 9 to obtain the suitable filer gains
𝐹
𝑖𝑟
as follows

𝐹
11

= [

−1.8108

−0.4434
] ,

𝐹
21

= [

−0.0236

−0.0177
] ,

𝐹
31

= [

2.4356

0.2352
] ,

𝐹
41

= [

1.0779

0.2406
] ,

𝐹
21

= [

−2.1748

−0.5260
] ,

𝐹
22

= [

−7.6882

1.1413
] ,

𝐹
32

= [

2.7854

0.1978
] ,

𝐹
42

= [

3.1132

0.8868
] .

(44)

Based on the derived filter gains, we depict the filtering
errors of node 𝑖 in Figure 2 and the system output and its
estimates from filter 𝑖 in Figure 3. It follows from all the
figures that the method proposed in the paper can effectively
solve the distributed sampled-data filtering problem in sensor
networks with a desired performance level 𝛾.

5. Conclusion

We have proposed a distributed𝐻
∞
sampled-data filtering in

sensor networks with Markovian switching topologies. Each
sensor node can receive sampled data of outputmeasurement
from itself and its neighbouring nodes for filter design.
In this scheme, the distributed 𝐻

∞
sampled-data filtering

problem in sensor networks can be converted into the 𝐻
∞
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Figure 3: Output of system 𝑧(𝑡) and its estimation �̂�
𝑖
(𝑡).

mean-square stable problem of a Markovian jump system
with an interval time-varying delay. By using Lyapunov-
Krasovskii functional approach, we have given a new BRL
to guarantee the mean-square stability of the transformed
system with a desired performance index 𝛾. Based on this
BRL, we have derived the filter gains corresponding to the
network topology switching by solving a set of LMIs. Finally,
the effectiveness of the proposed method has been illustrated
by a numerical example.

In the future research, we will investigate network-based
𝐻
∞

filtering for sensor networks like [27]. Another possible
research direction is to extend the proposedmethod to sensor
networks under energy constraints [28].
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