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This paper is devoted to construct Schwarzschild-de Sitter and anti-de Sitter thin-shell wormholes by employing Visser’s cut and
paste technique. The Darmois-Israel formalism is adopted to formulate the surface stresses of the shell. We analyze null and weak
energy conditions as well as attractive and repulsive characteristics of thin-shell wormholes. We also explore stable and unstable
solutions against linear perturbations by taking two different Chaplygin gas models for exotic matter. It is concluded that the stress-
energy tensor components violate the null and weak energy conditions indicating the existence of exotic matter at the wormhole
throat. Finally, we find unstable and stable configurations for the constructed thin-shell wormholes.

1. Introduction

A wormhole is a hypothetical region of spacetime which acts
as a shortcut connecting different regions of the universe
through a handle or tunnel. The word “wormhole,” also
known as Einstein-Rosen bridge, was first investigated by
Einstein and Rosen [1]. The occurrence of event horizon
prevents the traversable motion across distant regions of
the universe through this wormhole. Morris and Thorne [2]
suggested traversable wormhole solution which has no event
horizon and enables the observers to traverse across both
universes.

Traversable wormholes are made up of two asymptoti-
cally flat regions which are associated by a throat and satisfy
the flare-out condition to conserve the wormhole geometry.
The violation of null (NEC) and weak energy conditions
(WEC) is the fundamental property for traversable worm-
holes indicating the occurrence of exotic matter which must
be fulfilled at the wormhole throat. The physical evidence of
wormholes is a debatable issue due to exotic matter at the
throat. Null energy condition is the weakest condition whose
violation leads to the violation of WEC as well as strong
energy condition (SEC).We characterize exotic matter by the
stress-energy tensor components formulated by applying the
Darmois-Israel formalism [3, 4]. It was proposed [5] that the

violation of NEC can be minimized by applying the cut and
paste procedure to construct a spherically symmetric thin-
shell wormhole (TSW).The exoticmatterwas restricted at the
edges and corners of the wormhole throat so that an observer
could easily travel without encountering it.

It has always been fascinating to explore the stability
issue of different solutions of the field equations. Different
stability phases of the celestial objects give rise to various
evolutionary mechanisms in the universe [6, 7]. Traversable
wormholes are of remarkable significance if they are stable
under linear perturbations preserving the symmetry. The
stable/unstable wormhole models can be analyzed either by
taking perturbations around a static solution or by using
equation of state (EoS) for exotic matter at the wormhole
throat. In this context, Poisson and Visser [8] investigated
stable TSWs against linear perturbations formed by joining
two different manifolds of the Schwarzschild geometry. Lobo
and Crawford [9] extended this analysis for spherically
symmetric TSWs with cosmological constant (Λ) and found
that positive Λ increases the stability regions but this region
decreases for negative Λ.

Thibeault et al. [10] studied stable 5D wormhole configu-
rations with Gauss-Bonnet term in Einstein-Maxwell theory.
Amirabi et al. [11] analyzed the effects of Gauss-Bonnet
term on wormhole stability in higher dimensions. Sharif and
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Yousaf [12] found some stable wormhole solutions due to𝑅 +
𝜖𝑅
2 gravity. Eiroa and Simeone [13] explored only unstable

cylindrical TSWs from local cosmic strings. Richarte [14]
studied these solutions by invoking Chaplygin as well as anti-
Chaplygin gases with Λ > 0. Recently, we have constructed
charged black string wormhole configurations and examined
stable TSWs [15].

In order to explore some realistic sources for exotic
matter at the wormhole throat, a lot of work has been done
by taking various candidates like phantom energy [16, 17],
tachyon matter [18], and Chaplygin gas [19, 20]. Eiroa [21]
constructed spherical TSWs in the context of generalized
Chaplygin gas (GCG). Kuhfittig [22] discussed the stability
of spherical TSWs in the presence of Λ and charge by
considering phantomlike EoS at the throat. Bandyopadhyay
et al. [23] investigated the stability of TSWs supported
by modified Chaplygin gas (MCG). Banerjee [24] explored
stability formalism for (2+1)-dimensional spherical TSWs by
taking phantomenergy andChaplygin gas as an exoticmatter.
Sharif and Azam have investigated both stable and unstable
spherical TSWs by usingmodified generalized Chaplygin gas
(MGCG) [25] and generalized cosmicChaplygin gas (GCCG)
[26].

This paper is devoted to analyze the stability of spherical
TSWs in the presence of Λ by taking two different EoSs for
exotic matter. The paper is arranged in the following way.
In Section 2, we implement Visser’s cut and paste approach
to construct Schwarzschild-de Sitter and anti-de Sitter TSWs
and discuss different physical aspects of these constructed
TSWs. A general linearized formalism for stability is devel-
oped in Section 3. This analysis is applied to the constructed
TSWs in Section 4.The last section deals with the conclusions
of our results.

2. General Formalism

In this section, we provide a basic formalism to construct
spherical TSWs. The static spherically symmetric spacetime
with nonvanishing Λ is given by

𝑑𝑠
2
= −𝐺 (𝑟) 𝑑𝑡

2
+ 𝐺
−1
(𝑟) 𝑑𝑟

2
+ 𝐻 (𝑟) (𝑑𝜃

2
+ sin2𝜃𝑑𝜙2) ,

(1)

where 𝐺(𝑟) = 1 − (2𝑀/𝑟) − (Λ𝑟
2
/3) and 𝐻(𝑟) = 𝑟

2. For
Λ > 0, this gives Schwarzschild-de Sitter, Λ < 0 leads to
Schwarzschild-anti-de Sitter, and Λ = 0 yields Schwarzschild
metric. Since 𝐺(𝑟) < 0 for Λ𝑀2 > 1/9, so we must have
0 < Λ𝑀

2
≤ 1/9, which leads to two roots, the event horizon

𝑟
ℎ
and the cosmological horizon 𝑟

𝑐
for the Schwarzschild-de

Sitter geometry as follows:

𝑟
ℎ
=

2

√Λ
cos(𝛼

3
) ,

𝑟
𝑐
=

2

√Λ
cos(𝛼

3
+
4𝜋

3
) ,

(2)

where cos𝛼 = −3𝑀√Λ with 𝜋 < 𝛼 < 3𝜋/2 and the domain
2𝑀 < 𝑟

ℎ
< 3𝑀 and 𝑟

𝑐
> 3𝑀.

The wormhole construction is not possible for Λ𝑀2 =
1/9, because both horizons merge at 𝑟

ℎ
= 𝑟
𝑐
= 3𝑀. This

implies that the wormhole throat radius 𝑎
0
must have the

range 𝑟
ℎ
< 𝑎
0
< 𝑟
𝑐
and 0 < Λ𝑀

2
< 1/9 for the static

solution. The event horizon for the Schwarzschild-anti-de
Sitter geometry is given by

𝑟
ℎ
= (

3𝑀

|Λ|
)

1/3

×
[
[

[

3
√1 + √1 +

1

9 |Λ|𝑀
2
+
3
√1 − √1 +

1

9 |Λ|𝑀
2

]
]

]

.

(3)

Notice that, for the existence of static wormhole configura-
tion, we must have 𝑟

ℎ
< 𝑎
0
and 0 < 𝑟

ℎ
< 2𝑀.

The cut and paste procedure is a successful way for
mathematical construction of TSWs. In this context, the
interior region of the given spacetime is cut with 𝑟 < 𝑎,
yielding two 4D copiesM± with 𝑟 ≥ 𝑎. A new manifoldM =

M+ ∪M− is obtained by joining them at the hypersurface:

Σ
±
= Σ = {𝑟 = 𝑎} . (4)

The geometric condition required for the wormhole con-
struction is the fulfillment of flare-out condition by the
throat radius; that is, the embedding function 𝐻(𝑟) in (1)
satisfies the relation 𝐻󸀠(𝑎) = 2𝑎 > 0. The proper radial
distance can be defined on the constructed wormhole as
𝑠 = ± ∫

𝑟

𝑎
√(1/𝐺(𝑟))𝑑𝑟, which depicts the throat position

for 𝑠 = 0. If this construction fulfills the radial flare-
out condition, then the new manifold is called geodesically
complete and describes a TSW obtained by connecting two
regions with radius 𝑎, which corresponds to theminimal area
hypersurface. We define the coordinates 𝜉𝑖 = (𝜏, 𝜃, 𝜙) at Σ, 𝜏
the proper time on the shell. The induced 3D metric at Σ is
defined as

𝑑𝑠
2
= −𝑑𝜏

2
+ 𝑎
2
(𝜏) (𝑑𝜃

2
+ sin2𝜃𝑑𝜙2) . (5)

We employ the standard Darmois-Israel formalism [3] to
discuss the dynamics of TSWs. The surface stresses at Σ
are evaluated by the Einstein equations at Σ, that is, by the
Lanczos equations:

𝑆
𝑖𝑗
=
1

8𝜋
{𝑔
𝑖𝑗
𝐾 − [𝐾

𝑖𝑗
]} , (6)

where [𝐾
𝑖𝑗
] = 𝐾

+

𝑖𝑗
− 𝐾
−

𝑖𝑗
and 𝐾 = tr[𝐾

𝑖𝑗
] = [𝐾

𝑖

𝑖
]. The surface

stress-energy tensor 𝑆
𝑖𝑗
= diag(𝜎, 𝑝

𝜙
, 𝑝
𝑧
) provides the surface

energy density 𝜎 and surface tensions 𝑝 = 𝑝
𝜙
= 𝑝
𝑧
. The

extrinsic curvatures 𝐾±
𝑖𝑗
joining the two sides of the shell are

defined as

𝐾
±

𝑖𝑗
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±

𝜅
(
𝜕
2
𝑥
𝜅

±

𝜕𝜉𝑖𝜕𝜉𝑗
+ Γ
𝜅

𝜇]
𝜕𝑥
𝜇

±
𝜕𝑥

]
±

𝜕𝜉𝑖𝜕𝜉𝑖
) , (𝑖, 𝑗 = 0, 2, 3) . (7)
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The unit four-vector normals 𝑛±
𝜅
toM± are defined by

𝑛
±

𝜅
= ±

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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𝐺 (𝑟)
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(8)

satisfying the relation 𝑛
𝜅
𝑛
𝜅
= 1. Using (1) and (7), the

components of extrinsic curvature are

𝐾
±

𝜏𝜏
= ∓

𝐺
󸀠
(𝑎) + 2 ̈𝑎

2√𝐺 (𝑎) + ̇𝑎2
, 𝐾

±

𝜙𝜙
= ±𝑎√𝐺 (𝑎) + ̇𝑎2,

𝐾
±

𝑧𝑧
= 𝛼
2
𝐾
±

𝜙𝜙
,

(9)

where dot and prime correspond to 𝑑/𝑑𝜏 and 𝑑/𝑑𝑟, respec-
tively. Using (6) and (9), the surface stresses to Σ yield

𝜎 = −
1

2𝜋𝑎

√𝐺 (𝑎) + ̇𝑎2, (10)

𝑝 = 𝑝
𝜙
= 𝑝
𝑧
=
1

8𝜋

2 ̇𝑎
2
+ 2𝑎 ̈𝑎 + 2𝐺 (𝑎) + 𝑎𝐺

󸀠
(𝑎)

𝑎√𝐺 (𝑎) + ̇𝑎2
. (11)

We require the following energy conditions, that is,WEC:
𝜎 ≥ 0, 𝜎 + 𝑝 ≥ 0, NEC: 𝜎 + 𝑝 ≥ 0, and SEC: 𝜎 + 𝑝 ≥ 0,
𝜎 + 3𝑝 ≥ 0. We see from (10) and (11) that 𝜎 < 0 and
𝜎 + 𝑝 < 0, which shows the violation of NEC and WEC
for different values of𝑀 and 𝑎, leading to the occurrence of
exotic matter at the shell 𝑟 = 𝑎. The violation of the energy
conditions corresponding to both spherical TSWs is shown
in Figure 1.

Now, we investigate the attractive and repulsive nature of
the constructed TSWs. For this purpose, we have to calculate
the observer’s four-acceleration:

𝑎
𝜇
= 𝑢
𝜇

;]𝑢
]
, (12)

where 𝑢𝜇 = 𝑑𝑥
𝜇
/𝑑𝜏 = (1/√𝐺(𝑟), 0, 0, 0) is the observer’s

four-velocity. The nonzero component of four-acceleration
for (1) is given by

𝑎
𝑟
= Γ
𝑟

𝑡𝑡
(
𝑑𝑡

𝑑𝜏
)

2

=
𝑀

𝑟2
−
Λ𝑟

3
, (13)

for which the geodesic equation of motion has the form

𝑑
2
𝑟

𝑑𝜏2
= −Γ
𝑟

𝑡𝑡
(
𝑑𝑡

𝑑𝜏
)

2

= −𝑎
𝑟
. (14)

It is worth mentioning here that a wormhole has attractive
nature if 𝑎𝑟 > 0; that is, an observer must move with an
outward-directed radial acceleration in order to avoid being
dragged by the wormhole. The wormhole is repulsive for
𝑎
𝑟
< 0; that is, an observer must have the radial acceleration

directed towards inside in order to keep away from being
pushed by the wormhole [22, 24].The attractive and repulsive
characteristics of the spherical TSWs are shown in Figure 2.

For large values of Λ, 𝑀, and 𝑎
0
, a surface tension is

needed to support or hold the wormhole from expanding, so
that a traveler can easily traverse through it. For low values of
Λ,𝑀, and 𝑎

0
, the surface pressure 𝑝

0
prevents the wormhole

from expanding. The corresponding results are shown in
Figure 3.
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Figure 1: Plots of energy conditions for TSWs corresponding to
𝑀 = 1, Λ = 0.01 (a) and𝑀 = 1, Λ = −0.1 (b).

3. Standard Approach for Stability Analysis

This section deals with the wormhole stability through linear
perturbations. The corresponding surface stresses, that is, 𝜎
and 𝑝, for the static wormhole solutions ( ̇𝑎 = ̈𝑎 = 0) using
(10) and (11) turn out to be

𝜎
0
= −

√𝐺 (𝑎
0
)

2𝜋𝑎
0

, 𝑝
0
=
1

8𝜋

2𝐺 (𝑎
0
) + 𝑎
0
𝐺
󸀠
(𝑎
0
)

𝑎
0
√𝐺 (𝑎

0
)

. (15)

The dynamics of throat is described by thin-shell equation
of motion which can be obtained by rearranging (10) as ̇𝑎

2
+

𝑉(𝑎) = 0, where 𝑉(𝑎) is the potential function given by

𝑉 (𝑎) = 𝐺 (𝑎) − [2𝜋𝑎𝜎 (𝑎)]
2
. (16)

We observe that 𝜎 and 𝑝 satisfy the conservation equation:

𝑑

𝑑𝜏
(𝜎Δ) + 𝑝

𝑑Δ

𝑑𝜏
= 0, (17)
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Figure 2: Plots for attractive and repulsive nature of Schwarzschild-
de Sitter corresponding to 𝑀 = 1 and Λ = 0.01 (a) and
Schwarzschild-anti-de Sitter with𝑀 = 1 andΛ = −1 (b).Theworm-
holes are attractive for 𝑎𝑟 > 0 and repulsive for 𝑎𝑟 < 0.

where Δ = 4𝜋𝑎2 is the wormhole throat area. This equation
can be written as

𝑎𝜎
󸀠
= −2 (𝜎 + 𝑝) , (18)

where we have used 𝜎󸀠 = 𝜎̇/ ̇𝑎. To investigate the wormhole
stability, we expand𝑉(𝑎) by Taylor’s series up to second order
around 𝑎 = 𝑎

0
, yielding

𝑉 (𝑎) = 𝑉 (𝑎
0
) + 𝑉
󸀠
(𝑎
0
) (𝑎 − 𝑎

0
)

+
1

2
𝑉
󸀠󸀠
(𝑎
0
) (𝑎 − 𝑎

0
)
2

+ 𝑂 [(𝑎 − 𝑎
0
)
3

] .

(19)

Differentiating (16) and using (18), we have

𝑉
󸀠
(𝑎) = 𝐺

󸀠
(𝑎) + 8𝜋

2
𝑎𝜎 (𝑎) [𝜎 (𝑎) + 2𝑝 (𝑎)] . (20)

It is remarked that stability of wormhole static solution
depends upon 𝑉󸀠(𝑎

0
) = 0 = 𝑉(𝑎

0
) and 𝑉󸀠󸀠(𝑎

0
) ≷ 0.
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Figure 3: Plots of surface pressure for TSWs corresponding to𝑀 =

0.2, Λ = −0.1 (a) and surface tension for𝑀 = 1, Λ = 0.1 (b).

4. Schwarzschild-de Sitter and
Anti-de Sitter Wormholes

Here we construct Schwarzschild-de Sitter as well as anti-
de Sitter TSWs. From (15), the surface stresses for static
configuration become

𝜎
0
= −

√3𝑎
0
− 6𝑀 − Λ𝑎

3

0

2𝜋𝑎
0
√3𝑎
0

,

𝑝
0
=

3𝑎
0
− 3𝑀 − 2Λ𝑎

3

0

4𝜋𝑎
0
√3𝑎
0
(3𝑎
0
− 6𝑀 − Λ𝑎

3

0
)

.

(21)

The matter violating the null and weak energy conditions is
known as exotic matter. In order to explore some realistic
sources for exotic matter at the WH throat, a lot of work has
been done by taking various candidates of dark energy like
family of Chaplygin gas, phantom energy, and quintessence.
To support the exotic matter at the wormhole throat, we
model wormholes by taking GCCG and modified cosmic
Chaplygin gas (MCCG) EoSs in the following subsections.
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4.1. Generalized Cosmic Chaplygin Gas. Wemodel the exotic
matter with GCCG [27] at the shell to investigate the
wormhole dynamics. The EoS for GCCG is defined as

𝑝 = −
1

𝜎𝛾
[𝐸 + (𝜎

1+𝛾
− 𝐸)
−𝑤

] , (22)

where 𝐸 = 𝐵/(1 + 𝑤) − 1, 𝐵 ∈ (−∞,∞), and −𝐶 < 𝑤 < 0.
Here 𝐶 is taken as a positive constant other than unity. This
EoS corresponds to GCG in the limit 𝑤 → 0 and the usual
Chaplygin gas is recovered for𝑤 = 0, 𝛾 = 1. Using (15) in (22),
we formulate the following equation for static configuration:

[𝑎
2

0
𝐺
󸀠
(𝑎
0
) + 2𝑎

0
𝐺 (𝑎
0
)] [2𝑎

0
]
𝛾

− 2(4𝜋𝑎
2

0
)
1+𝛾

[𝐺 (𝑎
0
)]
(1−𝛾)/2

× [𝐸 + {(2𝜋𝑎
0
)
−(1+𝛾)

(𝐺 (𝑎
0
))
(1+𝛾)/2

− 𝐸}

−𝑤

] = 0.

(23)

By taking the first derivative of (22), we have

𝑝
󸀠
(𝑎) = 𝜎

󸀠
(𝑎) [𝑤 (1 + 𝛾) {𝜎

1+𝛾
− 𝐸}
−(1+𝑤)

−
𝛾𝑝 (𝑎)

𝜎 (𝑎)
] , (24)

which leads to

𝜎
󸀠
(𝑎) + 2𝑝

󸀠
(𝑎)

= 𝜎
󸀠
(𝑎) [1 + 2𝑤 (1 + 𝛾) {𝜎

1+𝛾
− 𝐸}
−(1+𝑤)

−
2𝛾𝑝 (𝑎)

𝜎 (𝑎)
] .

(25)

By differentiating (20) and using (25), 𝑉󸀠󸀠(𝑎) can be written
as

𝑉
󸀠󸀠
(𝑎)

= 𝐺
󸀠󸀠
(𝑎) − 8𝜋

2

× {[𝜎 (𝑎) + 2𝑝 (𝑎)]
2
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× [1 −
2𝛾𝑝

𝜎
+ 2𝑤 (1 + 𝛾) (𝜎(𝑎)

1+𝛾
− 𝐸)
−1−𝑤

]} .

(26)

Inserting the values of 𝜎(𝑎
0
) and 𝑝(𝑎

0
) from (15), we see that

both 𝑉(𝑎) and 𝑉󸀠(𝑎) become zero at 𝑎 = 𝑎
0
, while (26) takes

the form

𝑉
󸀠󸀠
(𝑎
0
) = 𝐺

󸀠󸀠
(𝑎
0
) +

(𝛾 − 1) [𝐺
󸀠
(𝑎
0
)]
2

2𝐺 (𝑎
0
)

+
𝐺
󸀠
(𝑎
0
)

𝑎
0

[

[

1 + 2𝑤 (1 + 𝛾)

×{(
√𝐺(𝑎

0
)

2𝜋𝑎
0

)

1+𝛾

− 𝐸}

−(1+𝑤)

]

]

−
2𝐺 (𝑎
0
)

𝑎
2

0

(1 + 𝛾)

× [

[

1 + 2𝑤{(
√𝐺(𝑎

0
)

2𝜋𝑎
0

)

1+𝛾

− 𝐸}

−(1+𝑤)

]

]

.

(27)

We are interested to study the stability of Schwarzschild-
de Sitter and anti-de Sitter TSWs. In this context, the
corresponding dynamical equation for static solution by
substituting (21) in (22) takes the form

3𝑎
0
− 3𝑀 − 2Λ𝑎

3

0
− 2(2𝜋𝑎

0
√3𝑎
0
)
1+𝛾

× [3𝑎
0
− 6𝑀 − Λ𝑎

3

0
]
(1−𝛾)/2

× [𝐸 + {(2𝜋𝑎
0
√3𝑎
0
)
−(1+𝛾)

× (3𝑎
4

0
− 6𝑀 − Λ𝑎

3

0
)
(1+𝛾)/2

− 𝐸}

−𝑤

] = 0,

(28)

where its solutions represent static spherical TSWs. Equation
(27) yields

𝑉
󸀠󸀠
(𝑎
0
)

=
2

3𝑎
3

0
(3𝑎
0
− 6𝑀 − Λ𝑎

4

0
)

× [9𝑀Λ𝑎
3

0
(2 − 𝑎

0
) + Λ𝑎

4

0
(𝑎
0
− 1)

× [6 − Λ𝑎
2

0
(𝑎
0
− 1)] + 2𝑀(𝑎

0
−𝑀) − 9𝑎

2

0

+𝛾 [Λ
2
𝑎
6

0
(1 − 𝑎

2

0
) −6𝑀Λ𝑎

3

0
(1+2𝑎

0
)+9𝑀(4𝑎

0
− 3𝑀)

−9𝑎
2

0
] + 2 (1 + 𝛾)

× {3𝑀Λ𝑎
3

0
(2 − 𝑎

0
) + Λ𝑎

4

0
(Λ𝑎
3

0
− 3) + 3𝑀

× (3𝑎
0
− 7𝑀) − 1}𝑤

× ((2𝜋𝑎
0
)
−(1+𝛾)

3𝑎
3

0

×(3𝑎
0
− 6𝑀 − Λ𝑎

4

0
)
(1+𝛾)/2

− 𝐸)

−1−𝑤

] .

(29)

We evaluate the numerical value of 𝑎
0
from (28) for 𝛾 =

0.2, 0.6, 1 and check the behavior of solutions by inserting
𝑎
0
in (29). We analyze the wormhole stability for static

Schwarzschild-de Sitter and anti-de Sitter solutions. The
wormhole throat radius 𝑎

0
must have the range 𝑟

ℎ
< 𝑎
0
< 𝑟
𝑐

for the existence of Schwarzschild-de Sitter solution. Static
stable and unstable solutions exist if 𝑎

0
> 𝑟
ℎ
, 𝑉󸀠󸀠(𝑎

0
) > 0

and 𝑉󸀠󸀠(𝑎
0
) < 0, respectively. For 𝑎

0
≤ 𝑟
ℎ
, there is no static

solution which leads to the nonphysical region (grey zone).
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Figure 4: Plots for stable and unstable spherical TSWs with GCCG and the parameters 𝛾 = 0.2,𝑀 = 1, and 𝑤 = −10.

The unstable and stable wormhole solutions correspond
to dotted and solid curves, respectively.The results in Figures
4–6 can be summarized as follows.

(i) Figure 4 for Λ𝑀2 = 0.01, −0.1, −1, −5 indicates
unstable and stable solutions for both Schwarzschild-
de Sitter and anti-de-Sitter TSWs corresponding to
𝛾 = 0.2.These solutions tend to decrease andmeet the
horizon radius with increasing value of 𝐸𝑀(1+𝛾). The
horizon radius continues to step down by decreasing
the value of Λ.

(ii) For 𝛾 = 0.6, 1, we have two types of solutions (stable
and unstable) for Λ𝑀2 = 0.01, −0.1, while there exist
different solutions for Λ𝑀2 = −1, −5; two of them

are stable and one is unstable with 𝛾 = 1 as shown
in Figures 5 and 6. Here also, the horizon radius
continues to decrease as in the previous cases.

4.2. Modified Cosmic Chaplygin Gas. Now we consider
MCCG as exotic matter at the wormhole throat. The EoS for
MCCG is given by

𝑝 = 𝐴𝜎 −
1

𝜎𝛾
[𝐸 + (𝜎

1+𝛾
− 𝐸)
−𝑤

] . (30)

Sadeghi and Farahani [28] usedMCCG as varyingMCCG by
assuming 𝐸 as a function of scale factor 𝑎. Here, we assume 𝐸
as a constant as in the above model. Inserting (15) in (30), we
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Figure 5: Plots for GCCG with 𝛾 = 0.6,𝑀 = 1, and 𝑤 = −10.

formulate the corresponding dynamical equation (for static
configuration) as

[𝑎
2

0
𝐺
󸀠
(𝑎
0
) + 2𝑎

0
𝐺 (𝑎
0
)] (1 + 2𝐴) [2𝑎

0
]
𝛾

− 2(4𝜋𝑎
2

0
)
1+𝛾

[𝐺 (𝑎
0
)]
(1−𝛾)/2

× [𝐸 + {(2𝜋𝑎
0
)
−(1+𝛾)

(𝐺 (𝑎
0
))
(1+𝛾)/2

− 𝐸}

−𝑤

] = 0.

(31)

Differentiating (30), we have

𝜎
󸀠
(𝑎) + 2𝑝

󸀠
(𝑎) = 𝜎

󸀠
(𝑎)

× [1 + 2 (1 + 𝛾) {𝐴 + 𝑤(𝜎
1+𝛾

− 𝐸)
−(1+𝑤)

} −
2𝛾𝑝 (𝑎)

𝜎 (𝑎)
] .

(32)

The second derivative of𝑉(𝑎) by using (20) and (32) becomes
𝑉
󸀠󸀠
(𝑎) = 𝐺

󸀠󸀠
(𝑎) − 8𝜋

2

× {[𝜎 (𝑎) + 2𝑝 (𝑎)]
2

+ 2𝜎 (𝑎) [𝜎 (𝑎) + 𝑝 (𝑎)]

× [1 −
2𝛾𝑝

𝜎
+ 2 (1 + 𝛾)

× [𝐴 + 𝑤(𝜎(𝑎)
1+𝛾

− 𝐸)
−1−𝑤

] ]} .

(33)

Inserting the values of 𝜎(𝑎
0
) and 𝑝(𝑎

0
), we find that 𝑉(𝑎) =

𝑉
󸀠
(𝑎) = 0 at 𝑎 = 𝑎

0
, while (33) turns out to be

𝑉
󸀠󸀠
(𝑎
0
)

= 𝐺
󸀠󸀠
(𝑎
0
) +

(𝛾 − 1) [𝐺
󸀠
(𝑎
0
)]
2

2𝐺 (𝑎
0
)

+
𝐺
󸀠
(𝑎
0
)

𝑎
0
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Figure 6: Plots corresponding to GCCG with 𝛾 = 1,𝑀 = 1, and 𝑤 = −10.

×
[
[
[

[

1+2

{{{

{{{

{

𝐴 +𝑤 (1+𝛾)

{{

{{

{

(

√𝐺(𝑎
0
)

2𝜋𝑎
0

)

1+𝛾

− 𝐸

}}

}}

}

−(1+𝑤)

}}}

}}}

}

]
]
]

]

−
2𝐺 (𝑎
0
)

𝑎
2

0

(1 + 𝛾)

× [

[

1+2 (1 + 𝛾)[

[

𝐴+𝑤{(
√𝐺(𝑎

0
)

2𝜋𝑎
0

)

1+𝛾

− 𝐸}

−(1+𝑤)

]

]

]

]

.

(34)

For the Schwarzschild-de Sitter and anti-de Sitter worm-
hole static solutions, (31) takes the form

3𝑎
0
(1 + 2𝐴) − 3𝑀 (1 + 4𝐴) − 2Λ𝑎

3

0
(1 + 𝐴)

− 2(2𝜋𝑎
0
√3𝑎
0
)
1+𝛾

[3𝑎
0
− 6𝑀 − Λ𝑎

3

0
]
(1−𝛾)/2

× [𝐸 + {(2𝜋𝑎
0
√3𝑎
0
)
−(1+𝛾)

× (3𝑎
4

0
− 6𝑀 − Λ𝑎

3

0
)
(1+𝛾)/2

− 𝐸}

−𝑤

] = 0.

(35)
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Figure 7: Plots for MCCG with 𝛾 = 0.2,𝑀 = 1, 𝐴 = 2, and 𝑤 = −10.

By substituting 𝐺(𝑎) and 𝐺󸀠(𝑎) in (34), 𝑉󸀠󸀠(𝑎
0
) (satisfied by

the throat radius) turns out to be

𝑉
󸀠󸀠
(𝑎
0
)

=
2

3𝑎
3

0
(3𝑎
0
− 6𝑀 − Λ𝑎

4

0
)

× [9𝑀Λ𝑎
3

0
(2 − 𝑎

0
) + Λ𝑎

4

0
(𝑎
0
− 1)

× [6 − Λ𝑎
2

0
(𝑎
0
− 1)] + 2𝑀(𝑎

0
−𝑀) − 9𝑎

2

0
+ 𝛾

× [Λ
2
𝑎
6

0
(1 − 𝑎

2

0
) − 6𝑀Λ𝑎

3

0
(1 + 2𝑎

0
)

+9𝑀(4𝑎
0
− 3𝑀) − 9𝑎

2

0
]

+ 2 (1 + 𝛾) {3𝑀Λ𝑎
3

0
(2 − 𝑎

0
) + Λ𝑎

4

0
(Λ𝑎
3

0
− 3)

+3𝑀(3𝑎
0
− 7𝑀) − 1}

× [𝐴 + 𝑤((2𝜋𝑎
0
)
−(1+𝛾)

3𝑎
3

0

× (3𝑎
0
−6𝑀− Λ𝑎

4

0
)
(1+𝛾)/2

− 𝐸)

−1−𝑤

]].

(36)

To discuss the behavior of spherical TSWs with MCCG, we
evaluate the numerical value of 𝑎

0
from (35) for 𝛾 = 0.2, 0.6, 1

and then substitute it in (36). The results in Figures 7–10
corresponding to 𝛾 = 0.2, 0.6, 1 show stable and unstable
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Figure 8: Plots corresponding to MCCG with 𝛾 = 0.6,𝑀 = 1, 𝐴 = 2, and 𝑤 = −10.

wormhole solutions for Λ𝑀2 = 0.01, −0.1, −1, −5. In Figures
7 and 8, we find both stable and unstable configurations
corresponding to 𝛾 = 0.2, 0.6. These solutions tend to
decrease andmeet the horizon radius with increasing value of
𝐸𝑀
(1+𝛾). Similarly, we examine both types of solutions for 𝛾 =

1 (Figures 9-10). The throat radius appears as an increasing
function of 𝐸𝑀(1+𝛾) for Λ = −5 and 𝛾 = 1. Moreover, the
radius of horizon for the given manifold decreases with small
values of Λ𝑀2.

5. Conclusions

This paper is devoted to construct spherical TSWs with
nonvanishing cosmological constant by employing Visser’s

cut and paste scheme. We have found that the stress-energy
tensor components violate the NEC and WEC showing the
existence of exotic matter at the throat. We have also exam-
ined the attractive and repulsive characteristics of TSWs. A
wormhole has attractive nature if 𝑎𝑟 > 0 which exhibits that
an observer shouldmovewith an outgoing radial acceleration
𝑎
𝑟 to avoid being dragged by the wormhole, while it is

repulsive for 𝑎𝑟 < 0; that is, an observer must have the radial
acceleration directed towards the inside to keep away from
being pushed by the wormhole.

The standard stability approach has been applied by con-
sidering two differentmodels of Chaplygin gas as dark energy
candidates at the wormhole throat. We have formulated the
solutions numerically by solving the dynamical equations
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Figure 9: Plots with MCCG corresponding to 𝛾 = 1,𝑀 = 1, 𝐴 = 2, and 𝑤 = −10.

for 𝛾 = 0.2, 0.6, 1. The results corresponding to GCCG and
MCCG for the stability of Schwarzschild-de Sitter and anti-
de Sitter configurations are summarized as follows.

(i) Firstly, we have investigated solutions for GCCG
corresponding to 𝛾 = 0.2, 0.6, 1. We have found
one stable and one unstable static wormhole solution
for the given values of 𝛾 and Λ𝑀2 = 0.01, −0.1.
For Λ𝑀2 = −1, −5, there exist three types of static
solutions (one unstable and two stable) with 𝛾 = 1.
For 𝛾 = 0.2, 0.6, the wormhole throat is a decreasing
function of 𝐸𝑀(1+𝛾) and touches the horizon radius
which decreases gradually.

(ii) Secondly, for MCCG, we have both stable and unsta-
ble solutions corresponding to both spherical TSW
geometries for all values of 𝛾.

Table 1 shows the comparison of solutions for GCCG and
MCCG with GCG and MGCG for different values of 𝛾 =

0.2, 0.6, 1. This indicates that the stability of static solutions
depends upon the choice of EoS. Here “1S” and “1US” stand
for one stable and one unstable solution, respectively. There
exist unstable spherical TSW solutions for 𝛾 = 0.2, 0.6 corre-
sponding toGCG [21].We find that some stable solutions also
exist for GCCG and MCCG with 𝛾 = 0.2, 0.6 as compared to
GCG. It is worthwhile to mention here that our results for
both EoS reduce to [21, 25] in the limit 𝑤 → 0.
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Table 1: Comparison of solutions for different EoS.

Value of 𝛾 EoS Λ = 0.01 Λ = −0.1 Λ = −1 Λ = −5

𝛾 = 0.2 GCG 1US 1US 1US 1US
𝛾 = 0.2 MGCG 1US 1US 2US 1S
𝛾 = 0.2 GCCG 1S, 1US 1S, 1US 1S, 1US 1S, 1US
𝛾 = 0.2 MCCG 1S, 1US 1S, 1US 1S, 1US 1S, 1US
𝛾 = 0.6 GCG 1US 1US 1US 1S, 2US
𝛾 = 0.6 MGCG 1US 1US 1S, 2US 1S, 2US
𝛾 = 0.6 GCCG 1S, 1US 1S, 1US 1S, 1US 1S, 1US
𝛾 = 0.6 MCCG 1S, 1US 1S, 1US 1S, 1US 1S, 1US
𝛾 = 1 GCG 1US 1US 1S, 1US 1S, 1US
𝛾 = 1 MGCG 1S, 1US 1S, 1US 1S, 2US 1S, 1US
𝛾 = 1 GCCG 1S, 1US 1S, 1US 2S, 1US 2S, 1US
𝛾 = 1 MCCG 1S, 1US 1S, 1US 1S, 1US 1S, 1US
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Figure 10: Plots with MCCG corresponding to 𝛾 = 1,𝑀 = 1, 𝐴 = 1, and 𝑤 = 0.
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