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An iterative algorithm for solving the variational inequality and the generalized equilibrium problem has been introduced.
Convergence result is given.

1. Introduction

Let H be a real Hilbert space with inner product ⟨⋅, ⋅⟩ and
norm ‖ ⋅ ‖, respectively. Let C be a nonempty closed convex
subset of H. Recall that a mapping A : C → H is said to be

(i) nonexpansive⇔ ‖A𝑢−AV‖ ≤ ‖𝑢− V‖, for all 𝑢, V ∈ C

(we use Fix(A) to denote the set of the fixed points of
A);

(ii) firmly nonexpansive ⇔ ‖A𝑢 − AV‖2 ≤ ⟨𝑢 − V,A𝑢 −

AV⟩, for all 𝑢, V ∈ C;
(iii) 𝐿-Lipschitz⇔ there exists a constant 𝐿 > 0 such that

‖A𝑢 − AV‖ ≤ 𝐿‖𝑢 − V‖, for all 𝑢, V ∈ C;
(iv) monotone⇔ ⟨𝑢 − V,A𝑢 − AV⟩ ≥ 0, for all 𝑢, V ∈ C;
(v) strongly monotone ⇔ there exists a constant ] > 0

such that ⟨𝑢−V,A𝑢−AV⟩ ≥ ]‖𝑢 − V‖2, for all 𝑢, V ∈ C;
(vi) inverse strongly monotone⇔ there exists 𝜁 > 0 such

that ⟨𝑢 − V,A𝑢 −AV⟩ ≥ 𝜁‖A𝑢 − AV‖2, for all 𝑢, V ∈ C;
(vii) 𝜁-inverse strongly 𝜙-monotone⇔ ⟨𝜙(𝑢) − 𝜙(V),A𝑢 −

AV⟩ ≥ 𝜁‖A𝑢 − AV‖2, for all 𝑢, V ∈ C and for some
𝜁 > 0, where 𝜙 : C → C is a nonlinear mapping.

If A is a multivalued mapping of𝐻 into 2
H, then A is said to

be a monotone operator on H ⇔ ⟨𝑥 − 𝑦, 𝑢 − V⟩ ≥ 0, for all
𝑥, 𝑦 ∈ dom(A), 𝑢 ∈ A𝑥, and V ∈ A𝑦. Amonotone operatorA

onH is said to bemaximal if and only if its graph is not strictly
contained in the graph of any other monotone operator onH.

Let A, B, and 𝜙 be three nonlinear mappings on C. Let
𝜃 : C × C → R be a bifunction. Recall that the equilibrium
problem is to find 𝑥

†
∈ C such that

𝜃 (𝑥
†
, 𝑦) + ⟨A𝑥

†
, 𝑦 − 𝑥

†
⟩ ≥ 0, ∀𝑦 ∈ C. (1)

The solution set of (1) is denoted by 𝐸𝑃(𝜃,A). Now we know
that the equilibrium theory provides us a natural, novel, and
unified framework to study a wide class of problems arising
in economics, finance, transportation, network and structural
analysis, elasticity, and optimization. For relatedworks, please
refer to [1–3] and the references therein.

Recall also that the variational inequality problem is to
find 𝑢 ∈ C, 𝜙(𝑢) ∈ C such that

⟨B𝑢, 𝜙 (V) − 𝜙 (𝑢)⟩ ≥ 0, ∀𝜙 (V) ∈ C. (2)

The solution set of (2) is denoted by 𝑉𝐼(B, 𝜙,C). It is well
known that variational inequality theory has emerged as an
important tool in studying a wide class of obstacle, unilateral,
free, moving, and equilibrium problems arising in several
branches of pure and applied sciences in a unified and general
framework. Several numerical methods have been developed
for solving variational inequalities and related optimization
problems. For related works, please see [4–14]. Noor [15]
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introduced an iterative scheme and studied the approximate
solutions of variational inclusion inHilbert spaces. Glowinski
and Le Tallec [16] used the iterative schemes to find the
approximate solutions of the elastoviscoplasticity problem,
liquid crystal theory, and eigenvalue computation. In 1998,
Haubruge et al. [17] studied the convergence analysis of the
iterative schemes of Glowinski and Le Tallec and applied
these schemes to obtain new splitting-type algorithms for
solving variational inequalities, separable convex program-
ming, and minimization of a sum of convex functions.

Our main purpose in the present paper is to solve the
following equilibrium problem and variational inequality
problem: finding a point 𝑥† such that

𝑥
†
∈ 𝑉𝐼 (B, 𝜙,C) , 𝜙 (𝑥

†
) ∈ 𝐸𝑃 (𝜃,A) . (3)

Our main motivations are inspired by the following two
reasons.

Firstly, it is still an interesting topic for solving the varia-
tional inequality problem and the equilibrium problem based
on their applications in science and engineering. Secondly,
the split problem of finding a point 𝑥 such that

𝑥
†
∈ C, 𝜙 (𝑥

†
) ∈ D (4)

has received much attention. For related works, please refer
to [18–20]. However, we observe that the involved operator
𝜙 in (4) is a bounded liner operator. In this paper, we
devote to study the problem (3), where the transformation
𝜙 is a nonlinear mapping. For this purpose, we introduce a
new iterative algorithm. Consequently, strong convergence
analysis is demonstrated.

2. Preliminaries

In this section, we recall some useful lemmas.
Recall that the metric projection projC : H → C

satisfies ‖𝑢 − projC𝑢‖ = inf{‖𝑢 − V‖ : V ∈ C}. The
metric projection projC is a typical firmly nonexpansive
mapping. The characteristic inequality of the projection is
⟨𝑢 − projC𝑢, V − projC𝑢⟩ ≤ 0, for all 𝑢 ∈ H, V ∈ C.

Assume that 𝜃 : C×C → R is a bifunctionwhich satisfies
the following conditions:

(C1) 𝜃(𝑢, 𝑢) = 0, for all 𝑢 ∈ C;
(C2) 𝜃 is monotone; that is, 𝜃(𝑢, V) + 𝜃(V, 𝑢) ≤ 0, for all

𝑢, V ∈ C;
(C3) for each 𝑢, V, 𝑤 ∈ C, lim

𝑡↓0
𝜃(𝑡𝑤+(1−𝑡)𝑢, V) ≤ 𝜃(𝑢, V);

(C4) for each 𝑢 ∈ C, V 󳨃→ 𝜃(𝑢, V) is convex and lower
semicontinuous.

Lemma 1 (see [2]). Let C be a nonempty closed convex subset
of a real Hilbert space H. Let 𝜃 : C × C → R be a bifunction
which satisfies conditions (C1)–(C4). Let 𝜏 > 0 and 𝑢 ∈ C.
Then, there exists 𝑤 ∈ C such that

𝜃 (𝑤, V) +
1

𝜏
⟨V − 𝑤,𝑤 − 𝑢⟩ ≥ 0, ∀V ∈ C. (5)

Further, if S
𝜏
(𝑢) = {𝑤 ∈ C : 𝜃(𝑤, V) + (1/𝜏)⟨V−𝑤,𝑤−𝑢⟩ ≥ 0,

for all V ∈ C}, then the following hold:

(a) S
𝜏
is single-valued and S

𝜏
is firmly nonexpansive;

(b) 𝐸𝑃(𝜃) is closed and convex and 𝐸𝑃(𝜃) = Fix(S
𝜏
).

Lemma 2 (see [21]). Let {𝑥
𝑛
} and {𝑦

𝑛
} be bounded sequences

in a Banach space X and let {𝜂
𝑛
} be a sequence in [0, 1] with

0 < lim inf
𝑛→∞

𝜂
𝑛
≤ lim sup

𝑛→∞
𝜂
𝑛
< 1. Suppose that 𝑥

𝑛+1
=

(1−𝜂
𝑛
)𝑦
𝑛
+𝜂
𝑛
𝑥
𝑛
, for all 𝑛 ≥ 0, and lim sup

𝑛→∞
(‖𝑦
𝑛+1

−𝑦
𝑛
‖−

‖𝑥
𝑛+1

− 𝑥
𝑛
‖) ≤ 0. Then, lim

𝑛→∞
‖𝑦
𝑛
− 𝑥
𝑛
‖ = 0.

Lemma 3 (see [22]). Assume that the sequence {𝑎
𝑛
} satisfies

𝑎
𝑛
≥ 0 and 𝑎

𝑛+1
≤ (1 − ]

𝑛
)𝑎
𝑛
+ 𝜍
𝑛
]
𝑛
, where {]

𝑛
} is a sequence

in (0, 1) and {𝜍
𝑛
} is a sequence such that ∑∞

𝑛=1
]
𝑛
= ∞ and

lim sup
𝑛→∞

𝜍
𝑛
≤ 0 (or ∑∞

𝑛=1
|𝜍
𝑛
]
𝑛
| < ∞). Then, lim

𝑛→∞
𝑎
𝑛
=

0.

3. Main Results

Let C be a nonempty closed convex subset of a real Hilbert
space H. Let A : C → H be an 𝜂-inverse strongly monotone
mapping. Let 𝜙 : C → C be a weakly continuous and ]-
strongly monotone mapping such that 𝑅(𝜙) = C. Let B :

C → H be a 𝜁-inverse strongly 𝜙-monotone mapping. Let
󰜚 : C → H be an L-Lipschitz continuous mapping. Let 𝜃 :

C × C → R be a bifunction which satisfies (C1)–(C4) in the
above section. Let {𝜁

𝑛
} ⊂ [0, 1], {𝜂

𝑛
} ⊂ [0, 1], {𝜛

𝑛
} ⊂ (0,∞),

and {𝜏
𝑛
} ⊂ (0,∞) be four real number sequences and let 𝜍 > 0

be a constant.
WeuseΔ to denote the solution set of (3). In order to solve

(3), we introduce the following three-step algorithm.

Algorithm 4. Let 𝑥
0

∈ C be an initial guess. Define the
sequence {𝑥

𝑛
} as follows:

𝑢
𝑛
= projC [𝜙 (𝑥

𝑛
) − 𝜛
𝑛
B𝑥
𝑛
] , 𝑛 ≥ 0,

𝜃 (𝑧
𝑛
, 𝑦) + ⟨A𝑢

𝑛
, 𝑦 − 𝑧

𝑛
⟩ +

1

𝜏
𝑛

⟨𝑦 − 𝑧
𝑛
, 𝑧
𝑛
− 𝑢
𝑛
⟩ ≥ 0,

∀𝑦 ∈ C,

𝜙 (𝑥
𝑛+1

)

= 𝜂
𝑛
𝜙 (𝑥
𝑛
) + (1 − 𝜂

𝑛
) projC [𝜁

𝑛
𝜍󰜚 (𝑥
𝑛
) + (1 − 𝜁

𝑛
) 𝑧
𝑛
] ,

𝑛 ≥ 0.

(6)

Theorem 5. Suppose that Δ ̸= 0. Assume that the following
conditions are satisfied:

(r1) 𝜛
𝑛
∈ (𝑎
1
, 𝑎
2
) ⊂ (0, 2𝜁) and lim

𝑛→∞
(𝜛
𝑛+1

− 𝜛
𝑛
) = 0;

(r2) 𝜏
𝑛
∈ (𝑎
3
, 𝑎
4
) ⊂ (0, 2𝜂) and lim

𝑛→∞
(𝜏
𝑛+1

− 𝜏
𝑛
) = 0;

(r3) 𝜂
𝑛
∈ [𝑎
5
, 𝑎
6
] ⊂ (0, 1);

(r4) lim
𝑛→∞

𝜁
𝑛
= 0 and ∑

𝑛
𝜁
𝑛
= ∞;

(r5) ] ∈ (𝐿𝜍, 2𝜁).

Then, the sequence {𝑥
𝑛
} generated by (6) converges strongly to

𝑥
∗
∈ Δ which solves the following variational inequality:

⟨𝜍󰜚 (𝑥
∗
) − 𝜙 (𝑥

∗
) , 𝜙 (𝑥) − 𝜙 (𝑥

∗
)⟩ ≤ 0, ∀𝑥 ∈ Δ. (7)
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Proof. First of all, we prove that the solution of the variational
inequality (7) is unique. In fact, if 𝑥 ∈ Δ also solves (7), then
we get

⟨𝜍󰜚 (𝑥
∗
) − 𝜙 (𝑥

∗
) , 𝜙 (𝑥) − 𝜙 (𝑥

∗
)⟩ ≤ 0,

⟨𝜍󰜚 (𝑥) − 𝜙 (𝑥) , 𝜙 (𝑥
∗
) − 𝜙 (𝑥)⟩ ≤ 0.

(8)

It follows that

⟨𝜍󰜚 (𝑥) − 𝜙 (𝑥) − 𝜍󰜚 (𝑥
∗
) + 𝜙 (𝑥

∗
) , 𝜙 (𝑥

∗
) − 𝜙 (𝑥)⟩ ≤ 0. (9)

So,

󵄩󵄩󵄩󵄩𝜙(𝑥
∗
) − 𝜙(𝑥)

󵄩󵄩󵄩󵄩
2

≤ 𝜍 ⟨󰜚 (𝑥
∗
) − 󰜚 (𝑥) , 𝜙 (𝑥

∗
) − 𝜙 (𝑥)⟩

≤ 𝜍
󵄩󵄩󵄩󵄩󰜚 (𝑥
∗
) − 󰜚 (𝑥)

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝜙 (𝑥
∗
) − 𝜙 (𝑥)

󵄩󵄩󵄩󵄩 ,

(10)

which implies that
󵄩󵄩󵄩󵄩𝜙 (𝑥
∗
) − 𝜙 (𝑥)

󵄩󵄩󵄩󵄩 ≤ 𝜍
󵄩󵄩󵄩󵄩󰜚 (𝑥
∗
) − 󰜚 (𝑥)

󵄩󵄩󵄩󵄩 . (11)

Since 𝜙 is ]-strongly monotone, we have

]󵄩󵄩󵄩󵄩𝑥
∗
− 𝑥

󵄩󵄩󵄩󵄩
2

≤ ⟨𝜙 (𝑥
∗
) − 𝜙 (𝑥) , 𝑥

∗
− 𝑥⟩

≤
󵄩󵄩󵄩󵄩𝜙 (𝑥
∗
) − 𝜙 (𝑥)

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥
∗
− 𝑥

󵄩󵄩󵄩󵄩 .

(12)

Thus,

] 󵄩󵄩󵄩󵄩𝑥
∗
− 𝑥

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝜙 (𝑥
∗
) − 𝜙 (𝑥)

󵄩󵄩󵄩󵄩

≤ 𝜍
󵄩󵄩󵄩󵄩󰜚 (𝑥
∗
) − 󰜚 (𝑥)

󵄩󵄩󵄩󵄩 ≤ 𝜍𝐿
󵄩󵄩󵄩󵄩𝑥
∗
− 𝑥

󵄩󵄩󵄩󵄩 .
(13)

Since 𝜍𝐿 < ], we deduce the contradiction.Therefore, 𝑥∗ = 𝑥.
So, the solution of variational inequality (7) is unique.

Let 𝑥
#

∈ Δ. Hence, 𝑥#
∈ 𝑉𝐼(B, 𝜙,C) and 𝜙(𝑥

#
) ∈

𝐸𝑃(𝜃,A). Note that

𝑥
#
∈ 𝑉𝐼 (B, 𝜙,C) ⇐⇒ 𝜙(𝑥

#
) = projC (𝜙 (𝑥

#
) − ]B𝑥#

) ,

∀] > 0.

(14)

Since 𝜛
𝑛
> 0, we have 𝜙(𝑥#

) = projC[𝜙(𝑥
#
) − 𝜛
𝑛
B𝑥#

], for all
𝑛 ≥ 0. For 𝑢, V ∈ C, we have

󵄩󵄩󵄩󵄩(𝜙(𝑢) − 𝜛
𝑛
B𝑢) − (𝜙(V) − 𝜛

𝑛
BV)󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩𝜙 (𝑢) − 𝜙 (V)󵄩󵄩󵄩󵄩

2

− 2𝜛
𝑛
⟨B𝑢 − BV, 𝜙 (𝑢) − 𝜙 (V)⟩

+ 𝜛
2

𝑛
‖B𝑢 − BV‖2

≤
󵄩󵄩󵄩󵄩𝜙(𝑢) − 𝜙(V)󵄩󵄩󵄩󵄩

2

− 2𝜛
𝑛
𝜁‖B𝑢 − BV‖2 + 𝜛

2

𝑛
‖B𝑢 − BV‖2

≤
󵄩󵄩󵄩󵄩𝜙(𝑢) − 𝜙(V)󵄩󵄩󵄩󵄩

2

+ 𝜛
𝑛
(𝜛
𝑛
− 2𝜁) ‖B𝑢 − BV‖2.

(15)

Hence,
󵄩󵄩󵄩󵄩(𝜙 (𝑢) − 𝜛

𝑛
B𝑢) − (𝜙 (V) − 𝜛

𝑛
BV)󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝜙 (𝑢) − 𝜙 (V)󵄩󵄩󵄩󵄩 , (16)

for all 𝑢, V ∈ C. Thus,

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
projC [𝜙 (𝑥

𝑛
) − 𝜛
𝑛
B𝑥
𝑛
] − projC [𝜙 (𝑥

#
) − 𝜛
𝑛
B𝑥

#
]
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
(𝜙 (𝑥
𝑛
) − 𝜛
𝑛
B𝑥
𝑛
) − (𝜙 (𝑥

#
) − 𝜛
𝑛
B𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩
.

(17)

From (6), we have 𝑧
𝑛
= S
𝜏
𝑛

(𝐼 − 𝜏
𝑛
A)𝑢
𝑛
, for all 𝑛 ≥ 0. Noting

that 𝜙(𝑥#
) ∈ 𝐸𝑃(𝜃,A), we deduce 𝜙(𝑥#

) = S
𝜏
𝑛

(𝐼 − 𝜏
𝑛
A)𝜙(𝑥

#
),

for all 𝑛 ≥ 0. It follows from (17) that

󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥
𝑛+1

) − 𝜙 (𝑥
#
)
󵄩󵄩󵄩󵄩󵄩

≤ 𝜂
𝑛

󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

+ (1 − 𝜂
𝑛
)
󵄩󵄩󵄩󵄩󵄩
projC [𝜁

𝑛
𝜍󰜚 (𝑥
𝑛
) + (1 − 𝜁

𝑛
) 𝑧
𝑛
] − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

≤ 𝜂
𝑛

󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

+ (1 − 𝜂
𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝜁
𝑛
(𝜍󰜚 (𝑥

𝑛
) − 𝜙 (𝑥

#
)) + (1 − 𝜁

𝑛
) (𝑧
𝑛
− 𝜙 (𝑥

#
))
󵄩󵄩󵄩󵄩󵄩

≤ 𝜂
𝑛

󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

+ (1 − 𝜂
𝑛
) [𝜁
𝑛

󵄩󵄩󵄩󵄩󵄩
𝜍󰜚 (𝑥
𝑛
) − 𝜍󰜚 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩
+ 𝜁
𝑛

󵄩󵄩󵄩󵄩󵄩
𝜍󰜚 (𝑥

#
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

+ (1 − 𝜁
𝑛
)

×
󵄩󵄩󵄩󵄩󵄩
S
𝜏
𝑛

(𝐼 − 𝜏
𝑛
A) 𝑢
𝑛
− S
𝜏
𝑛

(𝐼 − 𝜏
𝑛
A) 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩
]

≤ 𝜂
𝑛

󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

+ (1 − 𝜂
𝑛
) [𝜁
𝑛
𝜍𝐿

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑥

#󵄩󵄩󵄩󵄩󵄩 + 𝜁
𝑛

󵄩󵄩󵄩󵄩󵄩
𝜍󰜚 (𝑥

#
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

+ (1 − 𝜁
𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩
]

≤ 𝜂
𝑛

󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

+ (1 − 𝜂
𝑛
) [

𝜁
𝑛
𝜍𝐿

]
󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩
+𝜁
𝑛

󵄩󵄩󵄩󵄩󵄩
𝜍󰜚 (𝑥

#
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

+ (1 − 𝜁
𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩
]

= [1 − (1 −
𝜍𝐿

]
) (1 − 𝜂

𝑛
) 𝜁
𝑛
]
󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

+ (1 −
𝜍𝐿

]
) (1 − 𝜂

𝑛
) 𝜁
𝑛

󵄩󵄩󵄩󵄩󵄩
𝜍󰜚 (𝑥

#
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

1 − 𝜍𝐿/]
.

(18)
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An induction implies that
󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

≤ max{󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥
0
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩
,

󵄩󵄩󵄩󵄩󵄩
𝜍󰜚 (𝑥

#
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

1 − 𝜍𝐿/]
} .

(19)

Hence, {𝜙(𝑥
𝑛
)} is bounded. Since 𝜙 is ]-strongly monotone,

we can deduce ]‖𝑥
𝑛
− 𝑥

#
‖ ≤ ‖𝜙(𝑥

𝑛
) − 𝜙(𝑥

#
)‖. So,

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑥

#󵄩󵄩󵄩󵄩󵄩

≤
1

]
󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

≤
1

]
max{󵄩󵄩󵄩󵄩󵄩

𝜙 (𝑥
0
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩
,

󵄩󵄩󵄩󵄩󵄩
𝜍󰜚 (𝑥

#
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

1 − 𝜍𝐿/]
} .

(20)

This implies that {𝑥
𝑛
} is bounded.

From (6), we have

𝜃 (𝑧
𝑛
, 𝑦) +

1

𝜏
𝑛

⟨𝑦 − 𝑧
𝑛
, 𝑧
𝑛
− (𝑢
𝑛
− 𝜏
𝑛
A𝑢
𝑛
)⟩ ≥ 0, ∀𝑦 ∈ C.

(21)

So,

𝜃 (𝑧
𝑛
, 𝑧
𝑛+1

) +
1

𝜏
𝑛

⟨𝑧
𝑛+1

− 𝑧
𝑛
, 𝑧
𝑛
− (𝑢
𝑛
− 𝜏
𝑛
A𝑢
𝑛
)⟩ ≥ 0. (22)

Similarly,

𝜃 (𝑧
𝑛+1

, 𝑧
𝑛
) +

1

𝜏
𝑛+1

⟨𝑧
𝑛
− 𝑧
𝑛+1

, 𝑧
𝑛+1

− (𝑢
𝑛+1

− 𝜏
𝑛+1

A𝑢
𝑛+1

)⟩

≥ 0.

(23)

Hence,
𝜃 (𝑧
𝑛
, 𝑧
𝑛+1

) + 𝜃 (𝑧
𝑛+1

, 𝑧
𝑛
) + ⟨A𝑢

𝑛
− A𝑢
𝑛+1

, 𝑧
𝑛+1

− 𝑧
𝑛
⟩

+ ⟨𝑧
𝑛+1

− 𝑧
𝑛
,
𝑧
𝑛
− 𝑢
𝑛

𝜏
𝑛

−
𝑧
𝑛+1

− 𝑢
𝑛+1

𝜏
𝑛+1

⟩ ≥ 0.
(24)

Since 𝜃 is monotone, we have

𝜃 (𝑧
𝑛
, 𝑧
𝑛+1

) + 𝜃 (𝑧
𝑛+1

, 𝑧
𝑛
) ≤ 0. (25)

So,
⟨A𝑢
𝑛
− A𝑢
𝑛+1

, 𝑧
𝑛+1

− 𝑧
𝑛
⟩

+ ⟨𝑧
𝑛+1

− 𝑧
𝑛
,
𝑧
𝑛
− 𝑢
𝑛

𝜏
𝑛

−
𝑧
𝑛+1

− 𝑢
𝑛+1

𝜏
𝑛+1

⟩ ≥ 0.
(26)

Thus,
𝜏
𝑛
⟨A𝑢
𝑛
− A𝑢
𝑛+1

, 𝑧
𝑛+1

− 𝑧
𝑛
⟩

+ ⟨𝑧
𝑛+1

− 𝑧
𝑛
, 𝑧
𝑛
− 𝑧
𝑛+1

+ 𝑧
𝑛+1

− 𝑢
𝑛
−

𝜏
𝑛

𝜏
𝑛+1

(𝑧
𝑛+1

− 𝑢
𝑛+1

)⟩

≥ 0.

(27)

It follows that
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧

𝑛

󵄩󵄩󵄩󵄩
2

≤ 𝜏
𝑛
⟨A𝑢
𝑛
− A𝑢
𝑛+1

, 𝑧
𝑛+1

− 𝑧
𝑛
⟩

+ ⟨𝑧
𝑛+1

− 𝑧
𝑛
, 𝑢
𝑛+1

− 𝑢
𝑛
+ (1 −

𝜏
𝑛

𝜏
𝑛+1

) (𝑧
𝑛+1

− 𝑢
𝑛+1

)⟩

= ⟨(𝐼 − 𝜏
𝑛
A) 𝑢
𝑛+1

− (𝐼 − 𝜏
𝑛
A) 𝑢
𝑛
, 𝑧
𝑛+1

− 𝑧
𝑛
⟩

+ ⟨𝑧
𝑛+1

− 𝑧
𝑛
, (1 −

𝜏
𝑛

𝜏
𝑛+1

) (𝑧
𝑛+1

− 𝑢
𝑛+1

)⟩

≤
󵄩󵄩󵄩󵄩(𝐼 − 𝜏

𝑛
A) 𝑢
𝑛+1

− (𝐼 − 𝜏
𝑛
A) 𝑢
𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧

𝑛

󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1 −

𝜏
𝑛

𝜏
𝑛+1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧
𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑢

𝑛+1

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧

𝑛

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢

𝑛

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1 −

𝜏
𝑛

𝜏
𝑛+1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑢
𝑛+1

󵄩󵄩󵄩󵄩)

(28)

and hence

󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧
𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢

𝑛

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1 −

𝜏
𝑛

𝜏
𝑛+1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑢
𝑛+1

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢

𝑛

󵄩󵄩󵄩󵄩 +
1

𝑎
3

󵄨󵄨󵄨󵄨𝜏𝑛+1 − 𝜏
𝑛

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑢

𝑛+1

󵄩󵄩󵄩󵄩 .

(29)

By (6) and (16), we have
󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢

𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩projC [𝜙 (𝑥

𝑛+1
) − 𝜛
𝑛+1

B𝑥
𝑛+1

]−projC [𝜙 (𝑥
𝑛
) − 𝜛
𝑛
B𝑥
𝑛
]
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩[𝜙 (𝑥

𝑛+1
) − 𝜛
𝑛+1

B𝑥
𝑛+1

] − [𝜙 (𝑥
𝑛
) − 𝜛
𝑛
B𝑥
𝑛
]
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝜙 (𝑥
𝑛+1

) − 𝜛
𝑛+1

B𝑥
𝑛+1

− (𝜙 (𝑥
𝑛
) − 𝜛
𝑛+1

B𝑥
𝑛
)
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝜛𝑛+1 − 𝜛

𝑛

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩B (𝑥
𝑛
)
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝜙 (𝑥
𝑛+1

) − 𝜙 (𝑥
𝑛
)
󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨𝜛𝑛+1 − 𝜛
𝑛

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩B (𝑥
𝑛
)
󵄩󵄩󵄩󵄩 .

(30)

Therefore,
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧

𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝜙 (𝑥
𝑛+1

) − 𝜙 (𝑥
𝑛
)
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝜛𝑛+1 − 𝜛

𝑛

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩B (𝑥
𝑛
)
󵄩󵄩󵄩󵄩 +

1

𝑎
3

󵄨󵄨󵄨󵄨𝜏𝑛+1 − 𝜏
𝑛

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑢

𝑛+1

󵄩󵄩󵄩󵄩 .

(31)

It follows that
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧

𝑛

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝜙 (𝑥
𝑛+1

) − 𝜙 (𝑥
𝑛
)
󵄩󵄩󵄩󵄩

≤
󵄨󵄨󵄨󵄨𝜛𝑛+1 − 𝜛

𝑛

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩B (𝑥
𝑛
)
󵄩󵄩󵄩󵄩 +

1

𝑎
3

󵄨󵄨󵄨󵄨𝜏𝑛+1 − 𝜏
𝑛

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑢

𝑛+1

󵄩󵄩󵄩󵄩 .

(32)
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Since lim
𝑛→∞

(𝜛
𝑛+1

− 𝜛
𝑛
) = 0, lim

𝑛→∞
(𝜏
𝑛+1

− 𝜏
𝑛
) = 0,

and the sequences {󰜚(𝑥
𝑛
)}, {𝜙(𝑥

𝑛
)}, {𝑧
𝑛
}, {𝑢
𝑛
}, and {B𝑥

𝑛
} are

bounded, we have

lim sup
𝑛→∞

(
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧

𝑛

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝜙 (𝑥
𝑛+1

) − 𝜙 (𝑥
𝑛
)
󵄩󵄩󵄩󵄩) ≤ 0. (33)

From Lemma 2, we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝜙 (𝑥
𝑛
)
󵄩󵄩󵄩󵄩 = 0. (34)

Note that

󵄩󵄩󵄩󵄩𝜙 (𝑥
𝑛+1

) − 𝜙 (𝑥
𝑛
)
󵄩󵄩󵄩󵄩 ≤ (1 − 𝜂

𝑛
) 𝜁
𝑛

󵄩󵄩󵄩󵄩𝜍󰜚 (𝑥𝑛) − 𝜙 (𝑥
𝑛
)
󵄩󵄩󵄩󵄩

+ (1 − 𝜂
𝑛
) (1 − 𝜁

𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝜙 (𝑥

𝑛
)
󵄩󵄩󵄩󵄩 .

(35)

Hence,

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝜙 (𝑥
𝑛+1

) − 𝜙 (𝑥
𝑛
)
󵄩󵄩󵄩󵄩 = 0. (36)

This togetherwith the ]-strongmonotonicity of𝜙 implies that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (37)

From (18), we have

󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥
𝑛+1

) − 𝜙 (𝑥
#
)
󵄩󵄩󵄩󵄩󵄩

≤ 𝜂
𝑛

󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

+ (1 − 𝜂
𝑛
) [𝜁
𝑛
𝜍𝐿

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑥

#󵄩󵄩󵄩󵄩󵄩 + 𝜁
𝑛

󵄩󵄩󵄩󵄩󵄩
𝜍󰜚 (𝑥

#
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

+ (1 − 𝜁
𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩
]

≤ 𝜂
𝑛

󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

+ (1 − 𝜂
𝑛
) [

𝜁
𝑛
𝜍𝐿

]
󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

+ 𝜁
𝑛

󵄩󵄩󵄩󵄩󵄩
𝜍󰜚 (𝑥

#
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

+ (1 − 𝜁
𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩
]

= [1 − (1 − 𝜂
𝑛
) (1 −

𝜍𝐿𝜁
𝑛

]
)]

󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

+ (1 − 𝜁
𝑛
) (1 − 𝜂

𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

+ (1 − 𝜂
𝑛
) 𝜁
𝑛
(1 −

𝜍𝐿

]
)

󵄩󵄩󵄩󵄩󵄩
𝜍󰜚 (𝑥

#
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

1 − 𝜍𝐿/]
.

(38)

By the convexity of the norm and (17), we have

󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥
𝑛+1

) − 𝜙 (𝑥
#
)
󵄩󵄩󵄩󵄩󵄩

2

≤ [1 − (1 − 𝜂
𝑛
) (1 −

𝜍𝐿𝜁
𝑛

]
)]

󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

2

+ (1 − 𝜁
𝑛
) (1 − 𝜂

𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

2

+ (1 − 𝜂
𝑛
) 𝜁
𝑛
(1 −

𝜍𝐿

]
)(

󵄩󵄩󵄩󵄩󵄩
𝜍󰜚 (𝑥

#
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

1 − 𝜍𝐿/]
)

2

≤ [1 − (1 − 𝜂
𝑛
) (1 −

𝜍𝐿𝜁
𝑛

]
)]

󵄩󵄩󵄩󵄩󵄩
𝜙(𝑥
𝑛
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

2

+ (1 − 𝜁
𝑛
) (1 − 𝜂

𝑛
)

×
󵄩󵄩󵄩󵄩󵄩
(𝜙 (𝑥
𝑛
) − 𝜛
𝑛
B𝑥
𝑛
) − (𝜙 (𝑥

#
) − 𝜛
𝑛
B𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

2

+ (1 − 𝜂
𝑛
) 𝜁
𝑛
(1 −

𝜍𝐿

]
)(

󵄩󵄩󵄩󵄩󵄩
𝜍󰜚 (𝑥

#
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

1 − 𝜍𝐿/]
)

2

≤ [1 − (1 − 𝜂
𝑛
) (1 −

𝜍𝐿𝜁
𝑛

]
)]

󵄩󵄩󵄩󵄩󵄩
𝜙(𝑥
𝑛
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

2

+ (1 − 𝜁
𝑛
) (1 − 𝜂

𝑛
)

× (
󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

2

+ 𝜛
𝑛
(𝜛
𝑛
− 2𝜁)

󵄩󵄩󵄩󵄩󵄩
B𝑥
𝑛
− B𝑥

#󵄩󵄩󵄩󵄩󵄩
2

)

+ (1 − 𝜂
𝑛
) 𝜁
𝑛
(1 −

𝜍𝐿

]
)(

󵄩󵄩󵄩󵄩󵄩
𝜍󰜚 (𝑥

#
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

1 − 𝜍𝐿/]
)

2

≤
󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

2

+ (1 − 𝜁
𝑛
) (1 − 𝜂

𝑛
) 𝜛
𝑛
(𝜛
𝑛
− 2𝜁)

󵄩󵄩󵄩󵄩󵄩
B𝑥
𝑛
− B𝑥

#󵄩󵄩󵄩󵄩󵄩
2

+ (1 − 𝜂
𝑛
) 𝜁
𝑛
(1 −

𝜍𝐿

]
)(

󵄩󵄩󵄩󵄩󵄩
𝜍󰜚 (𝑥

#
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

1 − 𝜍𝐿/]
)

2

.

(39)

So,

(1 − 𝜂
𝑛
) (1 − 𝜁

𝑛
) 𝜛
𝑛
(2𝜁 − 𝜛

𝑛
)
󵄩󵄩󵄩󵄩󵄩
B𝑥
𝑛
− B𝑥

#󵄩󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥
𝑛+1

) − 𝜙 (𝑥
#
)
󵄩󵄩󵄩󵄩󵄩

2

+ (1 − 𝜂
𝑛
) 𝜁
𝑛
(1 −

𝜍𝐿

]
)(

󵄩󵄩󵄩󵄩󵄩
𝜍󰜚 (𝑥

#
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

1 − 𝜍𝐿/]
)

2

≤ (
󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥
𝑛+1

) − 𝜙 (𝑥
#
)
󵄩󵄩󵄩󵄩󵄩
)

×
󵄩󵄩󵄩󵄩𝜙 (𝑥
𝑛+1

) − 𝜙 (𝑥
𝑛
)
󵄩󵄩󵄩󵄩

+ (1 − 𝜂
𝑛
) 𝜁
𝑛
(1 −

𝜍𝐿

]
)(

󵄩󵄩󵄩󵄩󵄩
𝜍󰜚 (𝑥

#
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

1 − 𝜍𝐿/]
)

2

.

(40)
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Since 𝜁
𝑛
→ 0, ‖𝜙(𝑥

𝑛+1
) − 𝜙(𝑥

𝑛
)‖ → 0, and lim inf

𝑛→∞
(1 −

𝜂
𝑛
)(1 − 𝜁

𝑛
)𝜛
𝑛
(2𝜁 − 𝜛

𝑛
) > 0, we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
B𝑥
𝑛
− B𝑥

#󵄩󵄩󵄩󵄩󵄩 = 0. (41)

Note that

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝜙(𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
projC [𝜙 (𝑥

𝑛
) − 𝜛
𝑛
B𝑥
𝑛
] − projC [𝜙 (𝑥

#
) − 𝜛
𝑛
B𝑥

#
]
󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨𝜙 (𝑥
𝑛
) − 𝜛
𝑛
B𝑥
𝑛
− (𝜙 (𝑥

#
) − 𝜛
𝑛
B𝑥

#
) , 𝑢
𝑛
− 𝜙 (𝑥

#
)⟩

=
1

2
{
󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥
𝑛
) − 𝜛
𝑛
B𝑥
𝑛
− (𝜙 (𝑥

#
) − 𝜛
𝑛
B𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝜙(𝑥
𝑛
) − 𝜛
𝑛
B𝑥
𝑛
−(𝜙 (𝑥

#
)−𝜛
𝑛
B𝑥

#
)−𝑢
𝑛
+𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

2

}

≤
1

2
{
󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝜙(𝑥
𝑛
) − 𝑢
𝑛
− 𝜛
𝑛
(B𝑥
𝑛
− B𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

2

}

=
1

2
{
󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝜙(𝑥𝑛) − 𝑢

𝑛

󵄩󵄩󵄩󵄩
2

− 𝜛
2

𝑛

󵄩󵄩󵄩󵄩󵄩
B𝑥
𝑛
− B𝑥

#󵄩󵄩󵄩󵄩󵄩
2

+2𝜛
𝑛
⟨𝜙 (𝑥
𝑛
) − 𝑢
𝑛
,B𝑥
𝑛
− B𝑥

#
⟩ } .

(42)

It follows that

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝜙(𝑥
𝑛
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝜙(𝑥𝑛) − 𝑢

𝑛

󵄩󵄩󵄩󵄩
2

− 𝜛
2

𝑛

󵄩󵄩󵄩󵄩󵄩
B𝑥
𝑛
− B𝑥

#󵄩󵄩󵄩󵄩󵄩
2

+ 2𝜛
𝑛

󵄩󵄩󵄩󵄩𝜙 (𝑥
𝑛
) − 𝑢
𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩󵄩
B𝑥
𝑛
− B𝑥

#󵄩󵄩󵄩󵄩󵄩 .

(43)

From (39) and (43), we have

󵄩󵄩󵄩󵄩󵄩
𝜙(𝑥
𝑛+1

) − 𝜙 (𝑥
#
)
󵄩󵄩󵄩󵄩󵄩

2

≤ [1 − (1 − 𝜂
𝑛
) (1 −

𝜍𝐿𝜁
𝑛

]
)]

󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

2

+ (1 − 𝜁
𝑛
) (1 − 𝜂

𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

2

+ (1 − 𝜂
𝑛
) 𝜁
𝑛
(1 −

𝜍𝐿

]
)(

󵄩󵄩󵄩󵄩󵄩
𝜍󰜚 (𝑥

#
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

1 − 𝜍𝐿/]
)

2

≤ [1 − (1 − 𝜂
𝑛
) (1 −

𝜍𝐿𝜁
𝑛

]
)]

󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

2

+ (1 − 𝜁
𝑛
) (1 − 𝜂

𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝜙(𝑥
𝑛
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

2

− (1 − 𝜁
𝑛
) (1 − 𝜂

𝑛
)
󵄩󵄩󵄩󵄩𝜙 (𝑥
𝑛
) − 𝑢
𝑛

󵄩󵄩󵄩󵄩
2

+ 2 (1 − 𝜁
𝑛
) (1 − 𝜂

𝑛
) 𝜛
𝑛

󵄩󵄩󵄩󵄩𝜙 (𝑥
𝑛
) − 𝑢
𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩󵄩
B𝑥
𝑛
− B𝑥

#󵄩󵄩󵄩󵄩󵄩

+ (1 − 𝜂
𝑛
) 𝜁
𝑛
(1 −

𝜍𝐿

]
)(

󵄩󵄩󵄩󵄩󵄩
𝜍󰜚 (𝑥

#
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

1 − 𝜍𝐿/]
)

2

≤
󵄩󵄩󵄩󵄩󵄩
𝜙(𝑥
𝑛
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

2

− (1 − 𝜁
𝑛
) (1 − 𝜂

𝑛
)
󵄩󵄩󵄩󵄩𝜙(𝑥𝑛) − 𝑢

𝑛

󵄩󵄩󵄩󵄩
2

+ 2𝜛
𝑛

󵄩󵄩󵄩󵄩𝜙 (𝑥
𝑛
) − 𝑢
𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩󵄩
B𝑥
𝑛
− B𝑥

#󵄩󵄩󵄩󵄩󵄩

+ (1 − 𝜂
𝑛
) 𝜁
𝑛
(1 −

𝜍𝐿

]
)(

󵄩󵄩󵄩󵄩󵄩
𝜍󰜚 (𝑥

#
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

1 − 𝜍𝐿/]
)

2

.

(44)

Then, we obtain

(1 − 𝜁
𝑛
) (1 − 𝜂

𝑛
)
󵄩󵄩󵄩󵄩𝜙(𝑥𝑛) − 𝑢

𝑛

󵄩󵄩󵄩󵄩
2

≤ (
󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑥
𝑛+1

) − 𝜙 (𝑥
#
)
󵄩󵄩󵄩󵄩󵄩
)

×
󵄩󵄩󵄩󵄩𝜙 (𝑥
𝑛+1

) − 𝜙 (𝑥
𝑛
)
󵄩󵄩󵄩󵄩

+ 2𝜛
𝑛

󵄩󵄩󵄩󵄩𝜙 (𝑥
𝑛
) − 𝑢
𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩󵄩
B𝑥
𝑛
− B𝑥

#󵄩󵄩󵄩󵄩󵄩

+ (1 − 𝜂
𝑛
) 𝜁
𝑛
(1 −

𝜍𝐿

]
)(

󵄩󵄩󵄩󵄩󵄩
𝜍󰜚 (𝑥

#
) − 𝜙 (𝑥

#
)
󵄩󵄩󵄩󵄩󵄩

1 − 𝜍𝐿/]
)

2

.

(45)

Since lim
𝑛→∞

𝜁
𝑛
= 0, lim

𝑛→∞
‖𝜙(𝑥
𝑛+1

) − 𝜙(𝑥
𝑛
)‖ = 0, and

lim
𝑛→∞

‖B𝑥
𝑛
− B𝑥#

‖ = 0, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝜙 (𝑥
𝑛
) − 𝑢
𝑛

󵄩󵄩󵄩󵄩 = 0. (46)

Next, we prove that lim sup
𝑛→∞

⟨𝜍󰜚(𝑥
∗
)−𝜙(𝑥

∗
), 𝑢
𝑛
−𝜙(𝑥
∗
)⟩ ≤

0, where 𝑥
∗ is the unique solution of (7). Let {𝑢

𝑛
𝑖

} be a
subsequence of {𝑢

𝑛
} such that

lim sup
𝑛→∞

⟨𝜍󰜚 (𝑥
∗
) − 𝜙 (𝑥

∗
) , 𝑢
𝑛
− 𝜙 (𝑥

∗
)⟩

= lim
𝑖→∞

⟨𝜍󰜚 (𝑥
∗
) − 𝜙 (𝑥

∗
) , 𝑢
𝑛
𝑖

− 𝜙 (𝑥
∗
)⟩

= lim
𝑖→∞

⟨𝜍󰜚 (𝑥
∗
) − 𝜙 (𝑥

∗
) , 𝜙 (𝑥

𝑛
𝑖

) − 𝜙 (𝑥
∗
)⟩ .

(47)

By the boundedness of {𝑥
𝑛
𝑖

}, there exists a subsequence {𝑥
𝑛
𝑖
𝑗

}

of {𝑥
𝑛
𝑖

}which convergesweakly to somepoint 𝑧 ∈ C.Without
loss of generality, we may assume that 𝑥

𝑛
𝑖

⇀ 𝑧. From the
weak continuity of 𝜙, we deduce 𝜙(𝑥

𝑛
𝑖

) ⇀ 𝜙(𝑧). Next, we
prove 𝑧 ∈ Δ. We firstly show 𝑧 ∈ 𝐸𝑃(𝜃,A). Noting that 𝑧

𝑛
=

S
𝜏
𝑛

(𝑢
𝑛
− 𝜏
𝑛
A𝑢
𝑛
), for any 𝑦 ∈ C, we have

𝜃 (𝑧
𝑛
, 𝑦) +

1

𝜏
𝑛

⟨𝑦 − 𝑧
𝑛
, 𝑧
𝑛
− (𝑢
𝑛
− 𝜏
𝑛
A𝑢
𝑛
)⟩ ≥ 0. (48)
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Since 𝜃 is monotone, we have

1

𝜏
𝑛

⟨𝑦 − 𝑧
𝑛
, 𝑧
𝑛
− (𝑢
𝑛
− 𝜏
𝑛
A𝑢
𝑛
)⟩ ≥ 𝜃 (𝑦, 𝑧

𝑛
) , ∀𝑦 ∈ C.

(49)

Hence,

⟨𝑦 − 𝑧
𝑛
𝑖

,
𝑧
𝑛
𝑖

− 𝑢
𝑛
𝑖

𝜏
𝑛
𝑖

+ A𝑢
𝑛
𝑖

⟩ ≥ 𝜃 (𝑦, 𝑧
𝑛
𝑖

) , ∀𝑦 ∈ C. (50)

Let V
𝑡
= 𝑡𝑦 + (1 − 𝑡)𝑧, for all 𝑡 ∈ (0, 1] and 𝑦 ∈ 𝐶. We have

V
𝑡
∈ 𝐶. So, from (50) we have

⟨V
𝑡
− 𝑧
𝑛
𝑖

,AV
𝑡
⟩

≥ ⟨V
𝑡
− 𝑧
𝑛
𝑖

,AV
𝑡
⟩ − ⟨V

𝑡
− 𝑧
𝑛
𝑖

,
𝑧
𝑛
𝑖

− 𝑢
𝑛
𝑖

𝜏
𝑛
𝑖

+ A𝑢
𝑛
𝑖

⟩

+ 𝜃 (V
𝑡
, 𝑧
𝑛
𝑖

)

= ⟨V
𝑡
− 𝑧
𝑛
𝑖

,AV
𝑡
− A𝑧
𝑛
𝑖

⟩ + ⟨V
𝑡
− 𝑧
𝑛
𝑖

,A𝑧
𝑛
𝑖

− A𝑢
𝑛
𝑖

⟩

− ⟨V
𝑡
− 𝑧
𝑛
𝑖

,
𝑧
𝑛
𝑖

− 𝑢
𝑛
𝑖

𝜏
𝑛
𝑖

⟩ + 𝜃 (V
𝑡
, 𝑧
𝑛
𝑖

) .

(51)

Note that ‖A𝑧
𝑛
𝑖

− A𝑢
𝑛
𝑖

‖ ≤ (1/𝜂)‖𝑧
𝑛
𝑖

− 𝑢
𝑛
𝑖

‖ → 0. Further,
from monotonicity of A, we have ⟨V

𝑡
− 𝑧
𝑛
𝑖

,AV
𝑡
− A𝑧
𝑛
𝑖

⟩ ≥ 0.
Letting 𝑖 → ∞ in (51), we have ⟨V

𝑡
− 𝑧,AV

𝑡
⟩ ≥ 𝜃(V

𝑡
, 𝑧). This

together with (C1) and (C4) implies that

0 = 𝜃 (V
𝑡
, V
𝑡
) ≤ 𝑡𝜃 (V

𝑡
, 𝑦) + (1 − 𝑡) 𝜃 (V

𝑡
, 𝑧)

≤ 𝑡𝜃 (V
𝑡
, 𝑦) + (1 − 𝑡) ⟨V

𝑡
− 𝑧,AV

𝑡
⟩

= 𝑡𝜃 (V
𝑡
, 𝑦) + (1 − 𝑡) 𝑡 ⟨𝑦 − 𝑧,AV

𝑡
⟩

(52)

and hence 0 ≤ 𝜃(V
𝑡
, 𝑦)+(1−𝑡)⟨AV

𝑡
, 𝑦−𝑧⟩. Letting 𝑡 → 0, we

have 0 ≤ 𝜃(𝑧, 𝑦)+ ⟨𝑦−𝑧,A𝑧⟩. This implies that 𝑧 ∈ 𝐸𝑃(𝜃,A).
Next, we prove 𝑧 ∈ 𝑉𝐼(B, 𝜙,C). Set

𝑅V = {
BV + NC (V) , V ∈ C,

0, V ∉ C.
(53)

It is well known that 𝑅 is maximal 𝜙-monotone. Let (V, 𝑤) ∈

𝐺(𝑅) (the graph of 𝑅). Since 𝑤 − BV ∈ NC(V) and 𝑥
𝑛
∈ C,

we have ⟨𝜙(V) − 𝜙(𝑥
𝑛
), 𝑤 − BV⟩ ≥ 0. Noting that 𝑢

𝑛
=

projC[𝜙(𝑥𝑛) − 𝜛
𝑛
B𝑥
𝑛
], we get

⟨𝜙 (V) − 𝑢
𝑛
, 𝑢
𝑛
− [𝜙 (𝑥

𝑛
) − 𝜛
𝑛
B𝑥
𝑛
]⟩ ≥ 0. (54)

It follows that

⟨𝜙 (V) − 𝑢
𝑛
,
𝑢
𝑛
− 𝜙 (𝑥

𝑛
)

𝜛
𝑛

+ B𝑥
𝑛
⟩ ≥ 0. (55)

Then,

⟨𝜙 (V) − 𝜙 (𝑥
𝑛
𝑖

) , 𝑤⟩

≥ ⟨𝜙 (V) − 𝜙 (𝑥
𝑛
𝑖

) ,BV⟩

≥ ⟨𝜙 (V) − 𝜙 (𝑥
𝑛
𝑖

) ,BV⟩ −⟨𝜙 (V) − 𝑢
𝑛
𝑖

,
𝑢
𝑛
𝑖

− 𝜙 (𝑥
𝑛
𝑖

)

𝜛
𝑛
𝑖

⟩

− ⟨𝜙 (V) − 𝑢
𝑛
𝑖

,B𝑥
𝑛
𝑖

⟩

= ⟨𝜙 (V) − 𝜙 (𝑥
𝑛
𝑖

) ,BV − B𝑥
𝑛
𝑖

⟩ + ⟨𝜙 (V) − 𝜙 (𝑥
𝑛
𝑖

) ,B𝑥
𝑛
𝑖

⟩

−⟨𝜙 (V) − 𝑢
𝑛
𝑖

,
𝑢
𝑛
𝑖

− 𝜙 (𝑥
𝑛
𝑖

)

𝜛
𝑛
𝑖

⟩− ⟨𝜙 (V) − 𝑢
𝑛
𝑖

,B𝑥
𝑛
𝑖

⟩

≥ −⟨𝜙 (V) − 𝑢
𝑛
𝑖

,
𝑢
𝑛
𝑖

− 𝜙 (𝑥
𝑛
𝑖

)

𝜛
𝑛
𝑖

⟩− ⟨𝜙 (𝑥
𝑛
𝑖

) − 𝑢
𝑛
𝑖

,B𝑥
𝑛
𝑖

⟩ .

(56)

Since ‖𝜙(𝑥
𝑛
𝑖

) − 𝑢
𝑛
𝑖

‖ → 0 and 𝜙(𝑥
𝑛
𝑖

) ⇀ 𝜙(𝑧), we deduce that
⟨𝜙(V)−𝜙(𝑧), 𝑤⟩ ≥ 0 by taking 𝑖 → ∞ in (56).Thus, 𝑧 ∈ 𝑅

−1
0

by themaximal 𝜙-monotonicity of𝑅. Hence, 𝑧 ∈ 𝑉𝐼(B, 𝜙,C).
Therefore, 𝑧 ∈ Δ. From (47), we obtain

lim sup
𝑛→∞

⟨𝜍󰜚 (𝑥
∗
) − 𝜙 (𝑥

∗
) , 𝑢
𝑛
− 𝜙 (𝑥

∗
)⟩

= lim
𝑖→∞

⟨𝜍󰜚 (𝑥
∗
) − 𝜙 (𝑥

∗
) , 𝜙 (𝑥

𝑛
𝑖

) − 𝜙 (𝑥
∗
)⟩

= ⟨𝜍󰜚 (𝑥
∗
) − 𝜙 (𝑥

∗
) , 𝜙 (𝑧) − 𝜙 (𝑥

∗
)⟩ ≤ 0.

(57)

Set 𝑦
𝑛
= projC[𝜁𝑛𝜍󰜚(𝑥𝑛) + (1 − 𝜁

𝑛
)𝑧
𝑛
], for all 𝑛 ≥ 0. Then, we

have

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝜙(𝑥
∗
)
󵄩󵄩󵄩󵄩
2

≤ ⟨𝜁
𝑛
𝜍󰜚 (𝑥
𝑛
) + (1 − 𝜁

𝑛
) 𝑧
𝑛
− 𝜙 (𝑥

∗
) , 𝑦
𝑛
− 𝜙 (𝑥

∗
)⟩

≤ 𝜁
𝑛
𝜍 ⟨󰜚 (𝑥

𝑛
) − 󰜚 (𝑥

∗
) , 𝑦
𝑛
− 𝜙 (𝑥

∗
)⟩

+ 𝜁
𝑛
⟨𝜍󰜚 (𝑥

∗
) − 𝜙 (𝑥

∗
) , 𝑦
𝑛
− 𝜙 (𝑥

∗
)⟩

+ (1 − 𝜁
𝑛
) ⟨𝑧
𝑛
− 𝜙 (𝑥

∗
) , 𝑦
𝑛
− 𝜙 (𝑥

∗
)⟩

≤
𝜁
𝑛
𝐿𝜍

]
󵄩󵄩󵄩󵄩𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

∗
)
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝜙 (𝑥

∗
)
󵄩󵄩󵄩󵄩

+ 𝜁
𝑛
⟨𝜍󰜚 (𝑥

∗
) − 𝜙 (𝑥

∗
) , 𝑦
𝑛
− 𝜙 (𝑥

∗
)⟩

+ (1 − 𝜁
𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝜙 (𝑥

∗
)
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝜙 (𝑥

∗
)
󵄩󵄩󵄩󵄩
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≤ 𝜁
𝑛
(
𝜍𝐿

]
)
󵄩󵄩󵄩󵄩𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

∗
)
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝜙 (𝑥

∗
)
󵄩󵄩󵄩󵄩

+ 𝜁
𝑛
⟨𝜍󰜚 (𝑥

∗
) − 𝜙 (𝑥

∗
) , 𝑦
𝑛
− 𝜙 (𝑥

∗
)⟩

+ (1 − 𝜁
𝑛
)
󵄩󵄩󵄩󵄩𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

∗
)
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝜙 (𝑥

∗
)
󵄩󵄩󵄩󵄩

= [1 − (1 −
𝐿𝜍

]
) 𝜁
𝑛
]
󵄩󵄩󵄩󵄩𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

∗
)
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝜙 (𝑥

∗
)
󵄩󵄩󵄩󵄩

+ 𝜁
𝑛
⟨𝜍󰜚 (𝑥

∗
) − 𝜙 (𝑥

∗
) , 𝑦
𝑛
− 𝜙 (𝑥

∗
)⟩

=
1 − (1 − 𝐿𝜍/]) 𝜁

𝑛

2

󵄩󵄩󵄩󵄩𝜙(𝑥𝑛) − 𝜙(𝑥
∗
)
󵄩󵄩󵄩󵄩
2

+
1

2

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝜙(𝑥
∗
)
󵄩󵄩󵄩󵄩
2

+ 𝜁
𝑛
⟨𝜍󰜚 (𝑥

∗
) − 𝜙 (𝑥

∗
) , 𝑦
𝑛
− 𝜙 (𝑥

#
)⟩ .

(58)

It follows that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝜙 (𝑥
∗
)
󵄩󵄩󵄩󵄩
2

≤ [1 − (1 −
𝐿𝜍

]
) 𝜁
𝑛
]
󵄩󵄩󵄩󵄩𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

∗
)
󵄩󵄩󵄩󵄩
2

+ 2𝜁
𝑛
⟨𝜍󰜚 (𝑥

∗
) − 𝜙 (𝑥

∗
) , 𝑦
𝑛
− 𝜙 (𝑥

∗
)⟩ .

(59)

Therefore,

󵄩󵄩󵄩󵄩𝜙(𝑥𝑛+1) − 𝜙(𝑥
∗
)
󵄩󵄩󵄩󵄩
2

≤ 𝜂
𝑛

󵄩󵄩󵄩󵄩𝜙(𝑥𝑛) − 𝜙(𝑥
∗
)
󵄩󵄩󵄩󵄩
2

+ (1 − 𝜂
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝜙(𝑥

∗
)
󵄩󵄩󵄩󵄩
2

≤ 𝜂
𝑛

󵄩󵄩󵄩󵄩𝜙 (𝑥
𝑛
) − 𝜙 (𝑥

∗
)
󵄩󵄩󵄩󵄩
2

+ (1 − 𝜂
𝑛
) [1 − (1 −

𝜍𝐿

]
) 𝜁
𝑛
]
󵄩󵄩󵄩󵄩𝜙(𝑥𝑛) − 𝜙(𝑥

∗
)
󵄩󵄩󵄩󵄩
2

+ 2 (1 − 𝜂
𝑛
) 𝜁
𝑛
⟨𝜍󰜚 (𝑥

∗
) − 𝜙 (𝑥

∗
) , 𝑦
𝑛
− 𝜙 (𝑥

∗
)⟩

= [1 − (1 −
𝜍𝐿

]
) (1 − 𝜂

𝑛
) 𝜁
𝑛
]
󵄩󵄩󵄩󵄩𝜙(𝑥𝑛) − 𝜙(𝑥

∗
)
󵄩󵄩󵄩󵄩
2

+ 2 (1 − 𝜂
𝑛
) 𝜁
𝑛
⟨𝜍󰜚 (𝑥

∗
) − 𝜙 (𝑥

∗
) , 𝑦
𝑛
− 𝜙 (𝑥

∗
)⟩

= [1 − (1 −
𝜍𝐿

]
) (1 − 𝜂

𝑛
) 𝜁
𝑛
]
󵄩󵄩󵄩󵄩𝜙(𝑥𝑛) − 𝜙(𝑥

∗
)
󵄩󵄩󵄩󵄩
2

+ (1 −
𝜍𝐿

]
) (1 − 𝜂

𝑛
) 𝜁
𝑛

× (
2

1 − 𝜍𝐿/]
⟨𝜍󰜚 (𝑥

∗
) − 𝜙 (𝑥

∗
) , 𝑦
𝑛
− 𝜙 (𝑥

∗
)⟩)

= (1 − ]
𝑛
)
󵄩󵄩󵄩󵄩𝜙(𝑥𝑛) − 𝜙(𝑥

∗
)
󵄩󵄩󵄩󵄩
2

+ 𝜍
𝑛
]
𝑛
,

(60)

where ]
𝑛

= (1 − 𝜍𝐿/])(1 − 𝜂
𝑛
)𝜁
𝑛
and 𝜍
𝑛

= (2/(1 − 𝜍𝐿/]))
⟨𝜍󰜚(𝑥
∗
) − 𝜙(𝑥

∗
), 𝑦
𝑛
− 𝜙(𝑥
∗
)⟩. It is easily seen that∑

𝑛
]
𝑛
= ∞.

Since
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩

≤ 𝜁
𝑛

󵄩󵄩󵄩󵄩𝜍𝜙 (𝑥
𝑛
) − 𝑧
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩

󳨀→ 0

(61)

and by lim sup
𝑛→∞

⟨𝜍󰜚(𝑥
∗
) − 𝜙(𝑥

∗
), 𝑢
𝑛
− 𝜙(𝑥

∗
)⟩ ≤ 0, we

get lim sup
𝑛→∞

𝜍
𝑛
≤ 0. We can therefore apply Lemma 3 to

conclude that 𝜙(𝑥
𝑛
) → 𝜙(𝑥

∗
) and 𝑥

𝑛
→ 𝑥
∗. This completes

the proof.
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Metody, vol. 12, no. 4, pp. 747–756, 1976.

[6] R. Glowinski, Numerical Methods for Nonlinear Variational
Problems, Springer, New York, NY, USA, 1984.

[7] A. N. Iusem, “An iterative algorithm for the variational inequal-
ity problem,” Computational and Applied Mathematics, vol. 13,
no. 2, pp. 103–114, 1994.

[8] M. A. Noor, “Some developments in general variational
inequalities,” Applied Mathematics and Computation, vol. 152,
no. 1, pp. 199–277, 2004.

[9] F. Facchinei and J.-S. Pang, Finite-Dimensional Variational
Inequalities and ComplementarityProblems, Volume 1, Springer
Series in Operations Research, Springer, New York, NY, USA,
2003.

[10] F. Facchinei and J.-S. Pang, Finite-Dimensional Variational
Inequalities and Complementarity Problems, Volume 2, Springer
Series in Operations Research, Springer, New York, NY, USA,
2003.

[11] H. K. Xu and T. H. Kim, “Convergence of hybrid steepest-
descent methods for variational inequalities,” Journal of Opti-
mization Theory and Applications, vol. 119, no. 1, pp. 185–201,
2003.

[12] J. C. Yao, “Variational inequalities with generalized monotone
operators,” Mathematics of Operations Research, vol. 19, no. 3,
pp. 691–705, 1994.

[13] L.-C. Zeng and J.-C. Yao, “Strong convergence theorem by an
extragradient method for fixed point problems and variational



Journal of Applied Mathematics 9

inequality problems,” Taiwanese Journal of Mathematics, vol. 10,
no. 5, pp. 1293–1303, 2006.

[14] L.-C. Ceng, S. Al-Homidan, Q. H. Ansari, and J.-C. Yao, “An
iterative scheme for equilibrium problems and fixed point
problems of strict pseudo-contraction mappings,” Journal of
Computational and Applied Mathematics, vol. 223, no. 2, pp.
967–974, 2009.

[15] M. A. Noor, “New approximation schemes for general vari-
ational inequalities,” Journal of Mathematical Analysis and
Applications, vol. 251, no. 1, pp. 217–229, 2000.

[16] R. Glowinski and P. Le Tallec, Augmented Lagrangian and
Operator-Splitting Methods in Nonlinear Mechanics, vol. 9 of
SIAM Studies in Applied Mathematics, SIAM, Philadelphia, Pa,
USA, 1989.

[17] S. Haubruge, V. H. Nguyen, and J. J. Strodiot, “Convergence
analysis and applications of the Glowinski-Le Tallec splitting
method for finding a zero of the sum of twomaximal monotone
operators,” Journal of OptimizationTheory andApplications, vol.
97, no. 3, pp. 645–673, 1998.

[18] Y. Censor and T. Elfving, “A multiprojection algorithm using
Bregman projections in a product space,”Numerical Algorithms,
vol. 8, no. 2–4, pp. 221–239, 1994.

[19] C. Byrne, “Iterative oblique projection onto convex sets and the
split feasibility problem,” Inverse Problems, vol. 18, no. 2, pp. 441–
453, 2002.

[20] H.-K. Xu, “Iterative methods for the split feasibility problem in
infinite-dimensional Hilbert spaces,” Inverse Problems, vol. 26,
no. 10, Article ID 105018, 17 pages, 2010.

[21] T. Suzuki, “Strong convergence theorems for infinite families of
nonexpansive mappings in general Banach spaces,” Fixed Point
Theory and Applications, no. 1, pp. 103–123, 2005.

[22] H.-K. Xu, “Iterative algorithms for nonlinear operators,” Journal
of the London Mathematical Society, vol. 66, no. 1, pp. 240–256,
2002.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


