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This paper makes an attempt to highlight a differential algebraic model in order to investigate the dynamical behavior of a prey-
predator system due to the variation of economic interest of harvesting. In this regard, it is observed that the model exhibits a
singularity induced bifurcation when economic profit is zero. For the purpose of stabilizing the proposed model at the positive
equilibrium, a state feedback controller is therefore designed. Finally, some numerical simulations are carried out to show the
consistency with theoretical analysis and to illustrate the effectiveness of the proposed controller.

1. Introduction and Model Description

Biological resources in the prey-predator ecosystem are
commercially harvested and sold with the aim of achieving
economic interest. For this reason, harvesting plays an impor-
tant role in the study of biological resources. Furthermore,
the harvest effort is usually influenced by the variation of
economic interest of harvesting. To formulate a biological
economic system from an economic point of view and
to investigate the dynamical behavior of the model, many
scientists use differential-algebraic equations.The differential
equations investigate the dynamics of prey and predators and
the algebraic equation studies the harvest effort on prey from
an economic perspective.

Differential-algebraic system has been applied widely
in power system, aerospace engineering, chemical process,
social economic systems, biological systems, network anal-
ysis, and so on. With the help of the differential algebraic
model for power systems and bifurcation theory, the complex
dynamical behavior of power systems, specially the bifurca-
tion phenomena which can reveal instability mechanisms of
power systems, has been extensively studied by Marszalek
and Trzaska [1], Ayasun et al. [2], Yue and Schlueter [3], and
others. Again, the application of differential algebraic model
has an immense impact on the analysis of biological system.

I am aware that harvesting has a strong impact on the
dynamics of populations. Depending on the applied harvest-
ing strategy, the long run stationary density of a population
may be significantly smaller than the long run stationary
density of a population without harvesting. Harvesting can
lead to the incorporation of a positive extinction probability,
even if in the absence of harvesting, a population can be
free from extinction risk. If a population is subjected to
a positive extinction rate, then harvesting can drive the
population density to a dangerously low level at which
extinction becomes sure no matter how the harvest affects
the population afterwards. Some works on predator-prey
species with harvesting can be found in Das et al. [4], Kar
et al. [5], Clark [6], and Song and Chen [7]. Kar and Pahari
[8], Kar and Ghosh [9], and Kumar et al. [10] have studied
the dynamics in prey-predator models with harvesting and
have obtained complex dynamics behavior, such as stability
of equilibria, Hopf bifurcation, limit cycle, and heteroclinic
bifurcation. Zhang and Q.-L. Zhang [11] systematically stud-
ied a hybrid predator prey economic model, which is for-
mulated by differential-difference-algebraic equations. They
proved that this model exhibits two bifurcations phenomena
at the intersampling instants. Kar and Chakraborty [12] have
discussed a bioeconomicmodel with harvesting and removed
the singularity induced bifurcation as well as the instability
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behavior towards the positive economic profit by means of
feedback control theory.

However, in this context of the above studies, this paper
tries to examine the dynamical behavior of a biological
economic prey predator model where the prey population is
harvested using differential algebraic equation and bifurca-
tion theory. I consider the model with zero economic profit,
and singularity induced bifurcation is obtained at the interior
equilibrium of the model. To reduce the singularity induced
bifurcation, a state feedback controller is designed.

In this paper, I develop a two-species predator-prey
model. I consider a logistic growth function of the prey and
a Holling type III response function. Thus the growth rate of
the prey is formulated as

𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝑘
) −

𝛼𝑥
2
𝑦

𝑎 + 𝑥2
, (1)

where 𝑥 and 𝑦 represent the prey and predator populations,
respectively, at time 𝑡, 𝑘 is the carrying capacity of the prey,
𝑟 is the intrinsic growth rate of the prey, 𝛼 is the predation
coefficient, and 𝑎 is the half saturation constant.

The growth rate of the predator population is taken in the
following form:

𝑑𝑦

𝑑𝑡
= −𝑑𝑦 +

𝛼𝛽𝑥
2
𝑦

𝑎 + 𝑥2
− 𝛾𝑦
2
, (2)

where 𝛽 is the conversion factor (I assume that 𝛽 < 1,
since the whole biomass of the prey is not transferred to the
biomass of the predator), 𝑑 is the death rate of predator, and 𝛾
is the coefficient of intraspecific competition of the predator
population. Here 𝑟, 𝛼, 𝛽, 𝑘, 𝑑, 𝑎, 𝛾 are positive constants.

For considering the exploited prey system, I introduce a
scaled harvesting effort 𝐸 for the prey and then the equations
governing my model become

𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝑘
) −

𝛼𝑥
2
𝑦

𝑎 + 𝑥2
− 𝑞𝐸𝑥,

𝑑𝑦

𝑑𝑡
= −𝑑𝑦 +

𝛼𝛽𝑥
2
𝑦

𝑎 + 𝑥2
− 𝛾𝑦
2
.

(3)

For system (3), the supply amount of harvested prey into
the market is 𝑞𝐸𝑥 [6], where 𝑞 is the catchability coefficient
of the prey population. Simultaneously, an algebraic equation
is also developed by considering the economic interest of
harvesting according to Gordon’s economic theory of a
common property resource [13]. He established the economic
interest of the yield of harvest effort as net economic revenue
is equal to total revenue (TR) − total cost (TC). In my
problem, total revenue (TR) and total cost (TC) in system (3)
are given by TR = 𝑝𝑞𝐸𝑥 and TC = 𝑐𝐸.

Since the net economic revenue (V) = TR–TC; therefore,

V = (𝑝𝑞𝑥 − 𝑐) 𝐸, (4)

where 𝑝 is the price per unit harvested biomass, 𝑐 is the cost
per unit harvest effort, and V is the economics interest of
harvesting.

Based on (3) and (4), a differential algebraic system
consisting of two differential equations and one algebraic
equation is established as

𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝑘
) −

𝛼𝑥
2
𝑦

𝑎 + 𝑥2
− 𝑞𝐸𝑥,

𝑑𝑦

𝑑𝑡
= −𝑑𝑦 +

𝛼𝛽𝑥
2
𝑦

𝑎 + 𝑥2
− 𝛾𝑦
2
,

0 = (𝑝𝑞𝑥 − 𝑐) 𝐸 − V.

(5)

The advantage of the differential algebraic system is that
it offers a simpler (than ordinary differential systems) way
to study the dynamical behaviour of the system due to the
variation of economic interest of harvesting.

The differential-algebraic model (5) can be expressed in
the following form:

𝐴
∙

𝐻 (𝑡) = 𝐺 (𝑥 (𝑡) , 𝑦 (𝑡) , 𝐸 (𝑡)) , (6)

where

𝐻(𝑡) = (𝑥 (𝑡) , 𝑦 (𝑡) , 𝐸 (𝑡))
𝑇

, 𝐴 = [

[

1 0 0

0 1 0

0 0 0

]

]

,

𝐺 (𝑥 (𝑡) , 𝑦 (𝑡) , 𝐸 (𝑡)) =

[
[
[
[
[
[
[

[

𝑟𝑥(1 −
𝑥

𝑘
) −

𝛼𝑥
2
𝑦

𝑎 + 𝑥2
− 𝑞𝐸𝑥

−𝑑𝑦 +
𝛼𝛽𝑥
2
𝑦

𝑎 + 𝑥2
− 𝛾𝑦
2

(𝑝𝑞𝑥 − 𝑐) 𝐸 − V

]
]
]
]
]
]
]

]

.

(7)

2. The Model with Zero Economic Profit

When the economic profit is zero, system (5) takes the
following form:

𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝑘
) −

𝛼𝑥
2
𝑦

𝑎 + 𝑥2
− 𝑞𝐸𝑥,

𝑑𝑦

𝑑𝑡
= −𝑑𝑦 +

𝛼𝛽𝑥
2
𝑦

𝑎 + 𝑥2
− 𝛾𝑦
2
,

0 = (𝑝𝑞𝑥 − 𝑐) 𝐸.

(8)

2.1. The Interior Equilibrium: Existence. The interior equilib-
rium𝑃

∗
(𝑥
∗
, 𝑦
∗
, 𝐸
∗
) exists provided that 𝑐2𝛼𝛽 > 𝑑(𝑐2+𝑎𝑝2𝑞2)

and

𝑟𝑘𝑝𝑞𝛾(𝑐
2
+ 𝑎𝑝
2
𝑞
2
)
2

+ 𝑘𝑐𝑑𝛼𝑝
2
𝑞
2
(𝑐
2
+ 𝑎𝑝
2
𝑞
2
)

> 𝑐𝑟𝛾(𝑐
2
+ 𝑎𝑝
2
𝑞
2
)
2

+ 𝑘𝛼
2
𝑐
3
𝑝
2
𝑞
2
𝛽,

(9)

where

𝑥
∗
=
𝑐

𝑝𝑞
,

𝑦
∗
=
1

𝛾
(−𝑑 +

𝑐
2
𝛼𝛽

𝑐2 + 𝑎𝑝2𝑞2
) ,
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𝐸
∗
= (𝑟𝛾𝑘𝑝𝑞(𝑎𝑝

2
𝑞
2
+ 𝑐
2
)
2

+ 𝑘𝑐𝛼𝑑𝑝
2
𝑞
2
(𝑐
2
+ 𝑎𝑝
2
𝑞
2
)

−𝑐𝑟𝛾(𝑎𝑝
2
𝑞
2
+ 𝑐
2
)
2

− 𝑘𝛼
2
𝑐
3
𝑝
2
𝑞
2
𝛽)

× (𝑝𝑞
2
𝛾𝑘(𝑎𝑝

2
𝑞
2
+ 𝑐
2
)
2

)
−1

.

(10)

The Jacobian matrix for the differential algebraic equa-
tions (DAE’s) (8) at an arbitrary point is given by

𝑀= 𝐷
𝑋
𝑓 − 𝐷

𝐸
𝑓(𝐷
𝐸
𝑔)
−1

𝐷
𝑋
𝑔

=

[
[
[
[

[

𝑟 −
2𝑥𝑟

𝑘
−

2𝑎𝛼𝑥𝑦

(𝑎 + 𝑥2)
2
− 𝑞𝐸 +

𝑝𝑞
2
𝑥𝐸

𝑝𝑞𝑥 − 𝑐
−
𝛼𝑥
2

𝑎 + 𝑥2

2𝑎𝛼𝛽𝑥𝑦

(𝑎 + 𝑥2)
2

𝛼𝛽𝑥
2

𝑎 + 𝑥2
− 𝑑 − 2𝑦𝛾

]
]
]
]

]

.

(11)

2.2. Singular Point and Singularity Induced Bifurcation in a
Differential Algebraic Equations (DAEs) System. The DAEs
system [14] can be put in the following form:

𝑥̇ = 𝑓 (𝑥, 𝑦, 𝜇) , 𝑓 : R
𝑛+𝑚+𝑙

󳨀→ R
𝑛
, (12a)

0 = 𝑔 (𝑥, 𝑦, 𝜇) , 𝑔 : R
𝑛+𝑚+𝑙

󳨀→ R
𝑚
, (12b)

where 𝑥 ∈ 𝑋 ⊂ R𝑛, 𝑦 ∈ 𝑌̃ ⊂ R𝑚, 𝜇 ∈ Λ ⊂ R𝑙 with 𝑛,𝑚, and
𝑙 which are all positive integers. In this particular section, 𝑥
is the dynamic state vector whose time evaluation is directly
connected by the equation (12a), 𝑦 is the instantaneous state
vector which satisfies the constraint equation (12b), and the
parameter set 𝜇 defines a specific system configuration and
operating condition.

Then according to Venkatasubramanian et al. [15], denote
the set of all equilibria of the DAEs system (12a)-(12b) to be
EQ and the set of all stable equilibria OP as

EQ = {(𝑥, 𝑦, 𝜇) ∈ 𝑋 × 𝑌̃ × Λ : 𝑓 (𝑥, 𝑦, 𝜇) = 0,

𝑔 (𝑥, 𝑦, 𝜇) = 0} ,

OP = {(𝑥, 𝑦, 𝜇) ∈ 𝐸𝑄 : Det (𝐷
𝑦
𝑔) ̸= 0,

Re (𝜆 (𝐽
𝑛
)) < 0} ,

(13)

where 𝜆(𝐽
𝑛
) is the set of all eigenvalues corresponding to the

Jacobian matrix 𝐽
𝑛
= 𝐷
𝑥
𝑓 − 𝐷

𝑦
𝑓(𝐷
𝑦
𝑔)
−1
𝐷
𝑥
𝑔 of the system

(12a)-(12b). Also denote the singular surface 𝑆 = {(𝑥, 𝑦, 𝜇) ∈
𝑋 × 𝑌̃ × Λ : 𝑔(𝑥, 𝑦, 𝜇) = 0, Δ(𝑥, 𝑦, 𝜇) := Det(𝐷

𝑦
𝑔) = 0}, and

corresponding point on 𝑆 is known as singular point which
plays an important role in differential algebraic system. In a
DAEs system the singularity induced bifurcation (SIB) occurs
if equilibrium crosses the singular surface 𝑆 at bifurcation
point. Trajectories cross the singularity in a finite time with
an infinite speed and the system may change its stability due
to an eigenvalue diverging to infinity.This type of bifurcation
can be analyzed with the help of the following theorem.

Theorem 1 (singularity induced bifurcation theorem). Sup-
pose that the system (12a)-(12b) satisfies the following condi-
tions at the singular equilibrium (𝑥

0
, 𝑦
0
, 𝜇
0
).

SIB1: 𝐷
𝑦
𝑔 has a simple zero eigenvalue and

trace (𝐷
𝑦
𝑓(adj(𝐷

𝑦
𝑔))𝐷
𝑥
𝑔) is nonzero.

SIB2: (𝐷𝑥𝑓 𝐷𝑦𝑓
𝐷
𝑥
𝑔 𝐷
𝑦
𝑔
) is nonsingular.

SIB3: (
𝐷
𝑥
𝑓 𝐷
𝑦
𝑓 𝐷
𝜇
𝑓

𝐷
𝑥
𝑔 𝐷
𝑦
𝑔 𝐷
𝜇
𝑔

𝐷
𝑥
Δ 𝐷
𝑦
Δ 𝐷
𝜇
Δ

) is also nonsingular.

Then according to Venkatasubramanian et al. [15], there
exists a smooth curve of the equilibrium in R𝑛+𝑚+𝑙 which
passes through (𝑥

0
, 𝑦
0
, 𝜇
0
) and is transversal to the singu-

lar surface at (𝑥
0
, 𝑦
0
, 𝜇
0
). When 𝜇 increases through 𝜇

0
,

one eigenvalue of the Jacobian matrix 𝐽
𝑛

= 𝐷
𝑥
𝑓 −

𝐷
𝑦
𝑓(𝐷
𝑦
𝑔)
−1
𝐷
𝑥
𝑔 of the system (12a)-(12b) moves from 𝐶

−

to 𝐶+ if 𝑀/𝑁 > 0 (resp., from 𝐶
+ to 𝐶− if 𝑀/𝑁 < 0)

along the real axis by diverging through infinity. The rest
of the (𝑛 − 1) eigenvalues remain bounded and stay away
from the origin. The constants 𝑀 and 𝑁 can be computed
by evaluating the following:

𝑀 = −trace (𝐷
𝑦
𝑓 (adj (𝐷

𝑦
𝑔))𝐷

𝑥
𝑔) ,

𝑁 = 𝐷
𝜇
Δ − (𝐷𝑥Δ 𝐷

𝑦
Δ)(

𝐷
𝑥
𝑓 𝐷
𝑦
𝑓

𝐷
𝑥
𝑔 𝐷
𝑦
𝑔
)

−1

(
𝐷
𝜇
𝑓

𝐷
𝜇
𝑔
) .

(14)

Theorem 2. The differential-algebraic model (5) has a singu-
larity induced bifurcation at the interior equilibrium 𝑃

∗, and
the economic parameter V = 0 (V is the economic interest
of harvesting) is a bifurcation value. Furthermore, a stability
switch occurs as V increases through 0.

Proof. Let

𝑓 (𝑋, 𝐸, V) =
[
[
[

[

𝑟𝑥 (1 −
𝑥

𝑘
) −

𝛼𝑥
2
𝑦

𝑎 + 𝑥2
− 𝑞𝐸𝑥

−𝑑𝑦 +
𝛼𝛽𝑥
2
𝑦

𝑎 + 𝑥2
− 𝛾𝑦
2

]
]
]

]

,

𝑔 (𝑋, 𝐸, V) = 𝐸 (𝑝𝑞𝑥 − 𝑐) − V,

(15)

where𝑋 = (𝑥, 𝑦)
𝑇 and V is a bifurcation parameter.

It can be calculated that

trace (𝐷
𝐸
𝑓adj (𝐷

𝐸
𝑔)𝐷
𝑋
𝑔)
󵄨󵄨󵄨󵄨𝑃∗ = −𝑞𝑐𝐸

∗
̸= 0. (16)

Furthermore, it can also be calculated that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐷
𝑋
𝑓 𝐷
𝐸
𝑓

𝐷
𝑋
𝑔 𝐷
𝐸
𝑔

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑃∗
= −𝑝𝑞

2
𝛾𝑥
∗
𝑦
∗
𝐸
∗
̸= 0. (17)

According to the part A of Venkatasubramanian et al. [15],
Δ(𝑋, 𝐸, V) can be defined as follows:

Δ (𝑋, 𝐸, V) = det (𝐷
𝐸
𝑔) = 𝑝𝑞𝑥 − 𝑐. (18)

Now,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐷
𝑋
𝑓 𝐷
𝐸
𝑓 𝐷V𝑓

𝐷
𝑋
𝑔 𝐷
𝐸
𝑔 𝐷V𝑔

𝐷
𝑋
Δ 𝐷
𝐸
Δ 𝐷VΔ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑃∗

= −𝑝𝑞
2
𝛾𝑥
∗
𝑦
∗
̸= 0. (19)
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Based on the above analysis, three items can be obtained
as follows.

(i) 𝐷
𝐸
𝑔(𝑋, 𝐸, V)|

𝑃
∗ has an algebraically simple zero

eigenvalue and trace (𝐷
𝐸
𝑓adj(𝐷

𝐸
𝑔)𝐷
𝑋
𝑔)|
𝑃
∗ ̸= 0.

(ii)

[
𝐷
𝑋
𝑓 𝐷
𝐸
𝑓

𝐷
𝑋
𝑔 𝐷
𝐸
𝑔
] (20)

is nonsingular at 𝑃∗.

(iii) It can be shown that

[

[

𝐷
𝑋
𝑓 𝐷
𝐸
𝑓 𝐷V𝑓

𝐷
𝑋
𝑔 𝐷
𝐸
𝑔 𝐷V𝑔

𝐷
𝑋
Δ 𝐷
𝐸
Δ 𝐷VΔ

]

]

(21)

is nonsingular at 𝑃∗.

It is observed from (i) to (iii) that all the conditions
for singularity induced bifurcation (Venkatasubramanian et
al. [15]) are satisfied. Hence the differential-algebraic model
system (5) has a singularity induced bifurcation at the positive
equilibrium 𝑃

∗ and the bifurcation value is V = 0. Again it is
noted that

𝑀
1
= −trace (𝐷

𝐸
𝑓adj (𝐷

𝐸
𝑔)𝐷
𝑋
𝑔)
󵄨󵄨󵄨󵄨𝑃∗ = 𝑞𝑐𝐸

∗

𝑁
1
= [𝐷VΔ − [𝐷𝑋Δ 𝐷

𝐸
Δ] [

𝐷
𝑋
𝑓 𝐷
𝐸
𝑓

𝐷
𝑋
𝑔 𝐷
𝐸
𝑔
]

−1

[
𝐷V𝑓

𝐷V𝑔
]]

𝑃
∗

=
1

𝐸∗

(22)

𝑀
1

𝑁
1

= 𝑞𝑐(𝐸
∗
)
2

> 0. (23)

The inequality (23) satisfies Theorem 3 in Venkatasub-
ramanian et al. [15]. According to Theorem 3 [15] when V
increases through 0, one eigenvalue (denoted by 𝜆

1
) of the

differential-algebraic model (5) moves from 𝐶
− to 𝐶

+ along
the real axis by diverging through infinity. Consequently, the
movement behavior of this eigenvalue influences the stability
of the differential-algebraic model (5).

Other eigenvalues of the differential-algebraic model (5)
at 𝑃∗ can be calculated as follows. The Jacobian of the
differential-algebraic model (5) evaluated at 𝑃∗ takes the
following form:

𝐽
𝑃
∗ =

[
[
[
[
[
[
[

[

𝑟 −
2𝑥
∗
𝑟

𝑘
−

2𝑎𝛼𝑥
∗
𝑦
∗

(𝑎 + (𝑥∗)
2
)
2
− 𝑞𝐸
∗
−
𝛼(𝑥
∗
)
2

𝑎 + (𝑥∗)
2
−𝑞𝑥
∗

2𝑎𝛼𝛽𝑥
∗
𝑦
∗

(𝑎 + (𝑥∗)
2
)
2

−𝛾𝑦
∗

0

𝑝𝑞𝐸
∗

0 0

]
]
]
]
]
]
]

]

.

(24)

Table 1: Signs of real parts of eigenvalues of model (5) at 𝑃∗.

Re 𝜆
1

Re 𝜆
2

V < 0 − −

V > 0 + −

According to the leading matrix 𝐴 in the model (6) and
𝐽
𝑃
∗ , I obtain the characteristic equation of the differential-

algebraic model (5) at 𝑃∗ as det(𝜆𝐴 − 𝐽
𝑃
∗) = 0, which

can be expressed as follows: 𝜆 + 𝛾𝑦∗ = 0. Consequently,
it can calculate that another eigenvalue of the differential-
algebraic model (5) at 𝑃∗ is 𝜆

2
= −𝛾𝑦

∗. It shows that the
eigenvalue 𝜆

2
is negative. And hence the eigenvalue 𝜆

2
is

continuous, nonzero, and cannot jump from one half-open
complex plane to another as V increases through 0.Therefore
they are continuous and bounded in the 𝐶− half plane as V
increases through 0 and their movement behaviors has no
influence on the stability of the differential-algebraic model
(5) at the positive equilibrium 𝑃

∗.
Table 1 shows the change in the sings of the real parts

of the eigenvalues 𝜆
1
and 𝜆

2
due to variation of economics

interest of harvest effort.
According to Table 1 and the stability theory, it can be

concluded that the differential-algebraic model (5) is stable
at 𝑃∗ as V < 0 and it is unstable at 𝑃∗ as V > 0.
Consequently, a stability switch occurs as V increases through
0. This completes the proof.

3. State Feedback Control for Singularity
Induced Bifurcation

In consequence to the above theorem, it is clear that the
differential algebraic model (5) becomes unstable when the
economic interest of harvesting is considered to be positive.
A state feedback controller is designed to eliminate the
singularity induced bifurcation and stabilize the differential-
algebraic model (5) at the interior equilibrium 𝑃

∗ of the
model (8).

According to the leading matrix

𝐴 = [

[

1 0 0

0 1 0

0 0 0

]

]

(25)

in the model and 𝐽
𝑃
∗ in (24), it can be calculated that rank

(𝐽
𝑃
∗ , 𝐴𝐽
𝑃
∗ , 𝐴
2
𝐽
𝑃
∗) = 3. By using Theorem 2-2.1 in Dai [16],

it is shown that the differential-algebraic model (5) is locally
controllable at 𝑃∗. Consequently, a state feedback controller
can be applied to stabilize the differential-algebraic model (5)
at the interior equilibrium 𝑃

∗ of the model (5).
By using the Theorem 3-1.2 in Dai [16], a state feedback

controller 𝑢 = 𝑠 (𝐸 − 𝐸
∗
) (𝑠 is a feedback gain and 𝐸∗ is

the component of the interior equilibrium 𝑃
∗) can be applied

to stabilize the differential-algebraic model (5) at the interior
equilibrium 𝑃

∗.
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Apply the controller 𝑢 = 𝑠 (𝐸 − 𝐸∗) into the differential-
algebraic model (5) and then a controlled differential-
algebraic model is as follows:

𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝑘
) −

𝛼𝑥
2
𝑦

𝑎 + 𝑥2
− 𝑞𝐸𝑥,

𝑑𝑦

𝑑𝑡
= −𝑑𝑦 +

𝛼𝛽𝑥
2
𝑦

𝑎 + 𝑥2
− 𝛾𝑦
2
,

0 = (𝑝𝑞𝑥 − 𝑐) 𝐸 + 𝑠 (𝐸 − 𝐸
∗
) − V.

(26)

Theorem 3. If the feedback gain 𝑠 satisfies the inequality

𝑠 > max
{

{

{

((𝑎 + (𝑥
∗
)
2

)
2

𝑝𝑞
2
𝑥
∗
𝐸
∗
𝑘)

× (𝑦
∗
𝑘𝛾(𝑎 + (𝑥

∗
)
2

)
2

+ 𝑞𝐸
∗
𝑘(𝑎 + (𝑥

∗
)
2

)
2

+ 2𝑥
∗
𝛾(𝑎 + (𝑥

∗
)
2

)
2

+ 2𝑎𝑘𝛼𝑥
∗
𝑦
∗

−𝑟𝑘(𝑎 + (𝑥
∗
)
2

)
2

)

−1

,

𝑝𝑞
2
𝛾𝐸
∗
(𝑎 + (𝑥

∗
)
2

)
3

2𝑎𝛼2𝛽(𝑥∗)
2

}

}

}

,

(27)

then the differential-algebraic model (26) is stable at 𝑃∗ of the
model (8).

Proof. The Jacobian of the differential-algebraic model (26)
evaluated at the interior equilibrium 𝑃

∗ takes the following
form:

𝐽
∧

𝑃
∗

=

[
[
[
[
[
[
[

[

𝑟 −
2𝑥
∗
𝑟

𝑘
−

2𝑎𝛼𝑥
∗
𝑦
∗

(𝑎 + (𝑥∗)
2
)
2
− 𝑞𝐸
∗
−
𝛼(𝑥
∗
)
2

𝑎 + (𝑥∗)
2
−𝑞𝑥
∗

2𝑎𝛼𝛽𝑥
∗
𝑦
∗

(𝑎 + (𝑥∗)
2
)
2

−𝛾𝑦
∗

0

𝑝𝑞𝐸
∗

0 𝑠

]
]
]
]
]
]
]

]

.

(28)

The characteristic equation of the matrix 𝐽∧
𝑃
∗ is given by

𝜆
∧
2

+ Γ
1
𝜆
∧
+ Γ
2
= 0, (29)

where

Γ
1
=
2𝑥
∗
𝑟

𝑘
− 𝑟 + 𝛾𝑦

∗
+ 𝑞𝐸
∗
+

2𝑎𝛼𝑥
∗
𝑦
∗

(𝑎 + (𝑥∗)
2
)
2
−
𝑝𝑞
2
𝑥
∗
𝐸
∗

𝑠
,

Γ
2
=
2𝑎𝛼
2
𝛽(𝑥
∗
)
3

𝑦
∗

(𝑎 + (𝑥∗)
2
)
3
−
𝑝𝑞
2
𝛾𝑥
∗
𝑦
∗
𝐸
∗

𝑠
.

(30)

By using the Routh-Hurwitz criteria (Kot, [17]), it can be
concluded that the model (26) is stable at the equilibrium 𝑃

∗,
of the system (8), if the feedback gain 𝑠 satisfies the following
condition:

𝑠 > max
{

{

{

(𝑎 + (𝑥
∗
)
2

)
2

𝑝𝑞
2
𝑥
∗
𝐸
∗
𝑘

× (𝑦
∗
𝑘𝛾(𝑎 + (𝑥

∗
)
2

)
2

+ 𝑞𝐸
∗
𝑘 (𝑎 + (𝑥

∗
)
2

)
2

+ 2𝑥
∗
𝛾(𝑎 + (𝑥

∗
)
2

)
2

+ 2𝑎𝑘𝛼𝑥
∗
𝑦
∗

−𝑟𝑘(𝑎 + (𝑥
∗
)
2

)
2

)

−1

,

𝑝𝑞
2
𝛾𝐸
∗
(𝑎 + (𝑥

∗
)
2

)
3

2𝑎𝛼2𝛽(𝑥∗)
2

}

}

}

.

(31)

Therefore, applying the feedback controller into the
model (5), the system can be stabilized around the interior
equilibrium and the impulsive phenomenon due to singular-
ity induced bifurcation can be eliminated. This elimination
of singularity induced bifurcation implies that the ecological
balance in the prey-predator system is restored.

4. Numerical Simulation

With the help ofMatlab 7.0, andMathematica 5.2, a numerical
simulation is provided to substantiate the theoretical result
which has been established in the previous sections of this
paper. The parameters values are set in appropriate units as
follows: 𝑟 = 1.5, 𝑘 = 10, 𝑞 = 1.1, 𝛽 = 0.2, 𝑑 = 0.002, 𝛾 = 0.03,
𝑝 = 1.8, 𝑐 = 1.6, 𝑎 = 1.0, and 𝛼 = 0.9. By virtue of these
given parameters, the differential-algebraic model (5) takes
the following form:

𝑑𝑥

𝑑𝑡
= 1.5𝑥 (1 −

𝑥

10
) −

0.9𝑥
2
𝑦

1 + 𝑥2
− 1.1𝐸𝑥,

𝑑𝑦

𝑑𝑡
= −0.002𝑦 +

0.18𝑥
2
𝑦

1 + 𝑥2
− 0.03𝑦

2
,

0 = (1.98𝑥 − 1.6) 𝐸 − V.

(32)

When economic interest is zero (i.e., V = 0), the
system (32) has a positive equilibrium𝑃

∗
(0.808081, 2.303557,

0.332077). When V = −0.0002, the eigenvalues are −0.0692,
−973.5813 and then they become −0.0691, 967.2611 when
V = 0.0002. It is obvious that one eigenvalue remains almost
constant and another one moves from 𝐶

− to 𝐶
+ along the

real axis by diverging through∞.
A state feedback controller 𝑢 = 𝑠 (𝐸 − 0.332077) can

be applied to stabilize the differential-algebraic model (32)
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Figure 1: Variation of prey and predator populations with the
increasing time when V = 0 and 𝑠 = 2.

at 𝑃∗, and then the differential-algebraic model (32) with the
state feedback controller takes the following form:

𝑑𝑥

𝑑𝑡
= 1.5𝑥 (1 −

𝑥

10
) −

0.9𝑥
2
𝑦

1 + 𝑥2
− 1.1𝐸𝑥,

𝑑𝑦

𝑑𝑡
= −0.002𝑦 +

0.18𝑥
2
𝑦

1 + 𝑥2
− 0.03 𝑦

2
,

0 = (1.98𝑥 − 1.6) 𝐸 + 𝑠 (𝐸 − 0.332077) − V.

(33)

By using Theorem 3, if the feedback gain 𝑠 satisfies 𝑠 >
1.44998, then the differential-algebraic model (33) is stable at
𝑃
∗ and the singularity induced bifurcation of the differential-

algebraic model (32) is also eliminated. Now considering the
feedback gain 𝑠 = 2, which is greater than 1.44998, I find
that an interior equilibriumof the differential algebraicmodel
(33) is (0.808079, 2.303551, 0.332081), when V = 0, and the
eigenvalues are −0.0691, −169298.8247, and consequently the
system is stable (see Figure 1). Also when 𝑠 = 2 and V =

0.0002, an interior equilibrium of the differential algebraic
model (33) becomes (0.808011, 2.303309, 0.332203) and the
eigenvalues are −0.0691, −4222.0930, and consequently the
system is stable (see Figure 2) in this case also.

5. Concluding Remarks

In this paper, I proposed a harvested differential-algebraic
prey-predator model, which is governed by two differential
equations and an algebraic equation. The differential equa-
tions investigate the dynamics of prey and predator and
the algebraic equation studies the harvest effort on prey
from an economic perspective. Dynamical behavior of the
model is investigated due to the variation of the economic
interest of harvesting. It is found that singularity induced
bifurcation takes place when the net economic revenue is
zero. In consequence to the aforesaid bifurcation, an impul-
sive phenomenon occurs and the system becomes unstable
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Figure 2: Variation of prey and predator populations with the
increasing time when V = 0.0002 and 𝑠 = 2.

around the interior equilibrium.A state feedback controller is
designed to eliminate the singularity induced bifurcation and
stabilize the differential-algebraic model around the interior
equilibrium. Numerical simulation is used to show the
effectiveness of the state feedback controller. The biological
meaning of the proposed controller is that enhancing the
harvest effort on preys can not only prevent the stability
switch of the prey-predator model, but also drive the model
to a stable equilibrium.

However the model and its dynamical behavior are stud-
ied mainly on the deterministic framework. In this regard, I
can say that it will be more realistic to consider themodel in a
stochastic environment due to either ecological or economic
fluctuations. This needs further future work in this context.
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