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Prior knowledge, such as wind speed probability distribution based on historical data and the wind speed fluctuation between the
maximal value and the minimal value in a certain period of time, provides much more information about the wind speed, so it
is necessary to incorporate it into the wind speed prediction. First, a method of estimating wind speed probability distribution
based on historical data is proposed based on Bernoulli’s law of large numbers. Second, in order to describe the wind speed
fluctuation between the maximal value and the minimal value in a certain period of time, the probability distribution estimated
by the proposed method is incorporated into the training data and the testing data. Third, a support vector regression model for
wind speed prediction is proposed based on standard support vector regression. At last, experiments predicting the wind speed in
a certain wind farm show that the proposed method is feasible and effective and the model’s running time and prediction errors
can meet the needs of wind speed prediction.

1. Introduction

Wind power is a clean, renewable energy that will play an
increasingly important role in the future electricity supply [1].
Unfortunately, due to the stochastic and nonstationary nature
of wind, the wind power is variable and uncontrollable. It
is difficult to maintain the balance between the supply and
the demand of electricity, which is required by the electricity
system [2]. Wind speed prediction is a key point in the
management of wind farms because it is directly related to
the power produced by each of the farm’s turbines, so it is
usually the base of wind power forecasts, and it is necessary
to increase the accuracy of the wind speed prediction for the
effective use of wind energy.

At present, there are mainly two kinds of wind speed
prediction methods. One is based on the physical model,
and the other is based on historical data. The prediction
methods based on physical model often use the numerical
weather prediction (NWP) data for wind speed prediction
[3, 4]. Wind speed prediction methods based on NWP do

not focus on the speed of a farm’s turbines but on the speed
of a region. Thus, it needs to solve the problem of how the
wind speed of a region is mapped to the wind speed of
a certain wind generator. Wind speed prediction methods
based on historical data predict the wind speed by using
correlations among the initial data. In 2008, Louka et al. [5]
improved wind speed forecasts for wind power prediction
using Kalman filtering. In 2012, Cao et al. [6] presented a
comparative analysis of the wind speed prediction accuracy
of univariate and multivariate ARIMA models with their
recurrent neural network counterparts. In 2013, Woods et al.
[7] developed a method to produce synthetic time series of
wind power at several locations based on a measured time
series of wind speed from a reference site, and so on.

In the 1990s, Vapnik et al. [8, 9] proposed support vector
machines (SVMs), including support vector classifications
(SVCs) and support vector regressions (SVRs). SVMs focus
on the statistical learning problems for small size samples
by solving a convex quadratic optimization problem and
can solve the local minimization problem which cannot
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be avoided by the neural network algorithm. SVMs use
a kernel function to map the data in original space to a
high dimensional feature space and then solve the nonlinear
decision problem in high dimensional space. Thus, SVMs
can successfully solve the problem of dimension disaster
and have good generalization ability. However, the standard
SVMs focus on historical data and cannot incorporate prior
knowledge into learning process, which may causes the gen-
eralization ability of the standard SVMs to decrease. There-
fore, in 2009, Guan et al. [10] proposed a modified method
that incorporated prior knowledge into cancer classification
based on gene expression data to improve accuracy. In 2011,
Zhang et al. [11] proposed a fully Bayesian methodology
for generalized kernel mixed models, which are extensions
of generalized linear mixed models in the feature space
induced by a reproducing kernel. In 2012, Liu and Xue [12]
focused on designing a new class of kernels to incorporate
the prior information into the training process of support
vector regressions. Currently, SVMs have received extensive
attention and are attracting more and more scholars to study
from different views [13–22].

In 2011, Zhou et al. [23] presented a systematic study on
fine tuning of LS-SVMmodel parameters for one-step ahead
wind speed prediction, and Ortiz-Garćıa et al. [24] proposed
an improvement to an existing wind speed prediction system
using banks of regression support vector machines for a final
regression step in the prediction system.

However, for the problem of wind speed prediction
in practice, there is much prior knowledge. For example,
the wind speed has a certain probability distribution in a
season or in a day, and the probability distribution can be
estimated with historical wind speed data. As the probability
distribution can provide much more information about the
wind speed, it is necessary to incorporate it into the wind
speed prediction. Also, in a wind farm, the output wind speed
V at a fixed time 𝑡 is the mean value V of many measured
values V𝑘 (𝑘 = 0, 1, . . . , 𝑙) during a certain period of time
Δ𝑡. Assume that Vmax = max𝑘{V𝑘} and Vmin = min𝑘{V𝑘},
then the larger the Vmax − Vmin is, the more the fluctuation
of wind speed during the period of time Δ𝑡 is. Conversely,
the smaller the Vmax − Vmin is, the less the fluctuation of
wind speed during the period of time Δ𝑡 is. Nevertheless,
the mean value V does not provide this prior knowledge at
all. Therefore, in order to decrease the wind speed prediction
errors, it is necessary to find a way to incorporate this
prior knowledge in the wind speed prediction. However,
the present methods for wind speed prediction often used
the historical wind speed data directly to predict the wind
speed, instead of dredging information from the data, and the
prediction errors are difficult to decrease. Therefore, in order
to decrease the prediction errors of the wind speed at a fixed
time, the probability distribution of historical wind speed
data is estimated and incorporated into the training data and
testing data to provide the information about the wind speed
fluctuation.Then a support vector regression model for wind
speed prediction is proposed combined with the standard
SVR.

This paper is structured as follows. Section 2 is the prelim-
inaries. Section 3 is the method of estimating the probability

distribution of the historical wind speed data. Section 4 is
to incorporate the prior knowledge about the wind speed
fluctuation into the training data and testing data and then
establish the 𝜀-support vector regression method for wind
speed prediction incorporating probability prior knowledge
(PPK-𝜀-SVR). Section 5 includes two experiments with the
historical wind speed data coming fromawind farm inGansu
province, and Section 6 draws the conclusions.

2. Preliminaries

In this section, we briefly review some relevant knowledge of
probability theory and the standard support vector regression
often used in applications.

Let (Ω,F) be a measurable space, 𝑃 a function defined
on F, and 0 ≤ 𝑃(𝐴) ≤ 1 for any 𝐴 ∈ F. We call 𝑃(𝐴)
the probability of event 𝐴 occurring, and 𝑃(𝐴) indicates
the possibility of event 𝐴 occurring. Assume that 𝑋(𝜔) is a
random variable on Ω, 𝐹(𝑥) = 𝑃{𝑋(𝜔) < 𝑥} (𝑥 ∈ 𝑅) is the
distribution function, 𝐸(𝑋) is the expectation, and 𝐷(𝑋) is
the variance of random variable𝑋, respectively.

Definition 1 (see [25]). Let 𝐹(𝑥) be the distribution function
of random variable 𝑋(𝜔). If there exists a nonnegative and
integrable function 𝑓(𝑥) satisfying

𝐹 (𝑥) = 𝑃 {𝑋 < 𝑥} = ∫

𝑥

−∞

𝑓 (𝑡) 𝑑𝑡, ∀𝑥 ∈ 𝑅, (1)

then we call 𝑓(𝑥) the probability density of continuous
random variable𝑋(𝜔).

Definition 2 (see [25]). Let {𝑋𝑛} be a sequence of random
variables. {𝑋𝑛} is said to be independent if for any finite
random variables𝑋1, 𝑋2, . . . , 𝑋𝑘 (𝑘 ≤ 𝑛) are independent.

Definition 3 (see [25]). Let the sequence of random variables
{𝑋𝑛} be independent. {𝑋𝑛} is said to be independent and
identically distributed if they have the same distribution
function 𝐹(𝑥).

Definition 4 (see [25]). Let {𝑋𝑛} be a sequence of random
variables and let 𝑎 be a constant. If, for any 𝜀 > 0, we have

lim
𝑛→+∞

𝑃 {
󵄨󵄨󵄨󵄨
𝑋𝑛 − 𝑎

󵄨󵄨󵄨󵄨
≥ 𝜀} = 0 (2)

or

lim
𝑛→+∞

𝑃 {
󵄨󵄨󵄨󵄨
𝑋𝑛 − 𝑎

󵄨󵄨󵄨󵄨
< 𝜀} = 1, (3)

then the sequence {𝑋𝑛} is said to converge in probability to 𝑎.
Denoted by𝑋𝑛

𝑃

󳨀→ 𝑎.

Theorem 5 (Bernoulli’s law of large numbers [25]). Let 𝑛𝐴 be
the number of event 𝐴 occurring in 𝑛 independent duplicate
experiments, and let 𝑝 be the probability of event 𝐴 occurring.
Then, for any 𝜀 > 0, we have

lim
𝑛→+∞

𝑃{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛𝐴

𝑛
− 𝑝

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< 𝜀} = 1; (4)
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that is,

𝑛𝐴

𝑛

𝑃

󳨀→ 𝑝. (5)

Remark 6. Bernoulli’s law of large numbers proves the fre-
quency stability in theory. In other words, the frequency 𝑛𝐴/𝑛
converges in probability to 𝑝. Then for a sufficiently large n,
the frequency 𝑛𝐴/𝑛 almost equals the probability 𝑝. Hence, if
the number of experiments is very large, the frequency 𝑛𝐴/𝑛
can be treated as the probability 𝑝 in practice.

2.1. Regression Problem. Suppose that

𝑇 = {(𝑥1, 𝑦1) , (𝑥2, 𝑦2) , . . . , (𝑥𝑙, 𝑦𝑙)} (6)

is a given training set, where 𝑥𝑖 ∈ 𝑅
𝑛
, 𝑦𝑖 ∈ 𝑅, 𝑖 = 1, 2, . . . , 𝑙.

The regression problem is to find a real valued function 𝑦 =

𝑔(𝑥) on 𝑅
𝑛 according to data (6) to predict the output 𝑦 for

any given input 𝑥.

Remark 7. For the above regression problem, if the real valued
function 𝑦 = 𝑔(𝑥) is linear, then we call it a linear repression
problem. If the real valued function 𝑦 = 𝑔(𝑥) is nonlinear,
then we call it a nonlinear repression problem.

2.2. 𝜀-Support Vector Regression. Support vector regression
(SVR) differs from conventional regression in that it maps
the training data (6) into a high dimensional reproducing
kernel Hilbert space. In 𝜀-SVR, the goal is to find a function
𝑦 = 𝑓(𝑥) which has at most 𝜀 deviation from the actually
obtained targets 𝑦𝑖 for all the training data and at the same
time as flat as possible. And 𝜀-SVR uses an 𝜀-insensitive loss
function

󵄨󵄨󵄨󵄨
𝜉𝜀
󵄨󵄨󵄨󵄨
= {

0, if 󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
< 𝜀

󵄨󵄨󵄨󵄨
𝜉
󵄨󵄨󵄨󵄨
− 𝜀, otherwise

(7)

to solve the optimal problem

min
𝜔,𝑏,𝜉,𝜉∗

1

2
‖𝜔‖
2
+ 𝐶

𝑙

∑

𝑖=1

(𝜉𝑖 + 𝜉
∗

𝑖
)

s.t. 𝑦𝑖 − 𝑓 (𝑥𝑖) ≤ 𝜀 + 𝜉𝑖,

𝑓 (𝑥𝑖) − 𝑦𝑖 ≤ 𝜀 + 𝜉
∗

𝑖
,

𝜉𝑖, 𝜉
∗

𝑖
≥ 0, 𝑖 = 1, . . . , 𝑙,

(8)

where𝑓(𝑥𝑖) = 𝜔
𝑇
𝜙(𝑥𝑖)+𝑏 and data (6) aremapped to a higher

dimensional characteristic space by the function 𝜙(𝑥) and the
constant 𝐶 > 0 determines the tradeoff between the flatness
of 𝑓(𝑥) and the amount up to which deviations larger than 𝜀

are tolerated. Similar to support vector classification, 𝜔 may
be a huge vector variable, and then we solve the dual problem

min
𝛼(∗)∈𝑅2𝑙

1

2

𝑙

∑

𝑖,𝑗=1

(𝛼
∗

𝑖
− 𝛼𝑖) (𝛼

∗

𝑗
− 𝛼𝑗)𝐾 (𝑥𝑖, 𝑥𝑗)

+ 𝜀

𝑙

∑

𝑖=1

(𝛼
∗

𝑖
+ 𝛼𝑖) −

𝑙

∑

𝑖=1

𝑦𝑖 (𝛼
∗

𝑖
− 𝛼𝑖)

s.t.
𝑙

∑

𝑖=1

(𝛼𝑖 − 𝛼
∗

𝑖
) = 0,

0 ≤ 𝛼
(∗)

𝑖
≤ 𝐶, 𝑖 = 1, . . . , 𝑙,

(9)

where𝐾(𝑥𝑖, 𝑥𝑗) = 𝜙(𝑥𝑖)
𝑇
⋅ 𝜙(𝑥𝑗) is a kernel function.

As a result, SVR has a sparse representation of solutions
and hence is relatively fast in training and testing. SVR is
the most common application form of SVM and has been
popular for regression and function estimation problems in
the past decades.

3. Method of Estimating the Probability
Distribution of Historical Wind Speed Data

In practical problems, there are a lot of historical wind speed
data. In order to dredge more information from them, in
this part, we will give a method to estimate the probability
distribution of historical wind speed data.

3.1. Method. Assume that 𝑓(𝑥) in Figure 1 is the prob-
ability density of independent and identically distributed
random variables 𝑋𝑘 (𝑘 = 1, 2, . . . , 𝑙) and the number
and the frequency of 𝑋𝑘 falling into interval [𝑥𝑖−1, 𝑥𝑖) (𝑖 =
1, 2, . . . , 𝑛, 𝑛 ≤ 𝑙) are 𝑢𝑖 and 𝑢𝑖/𝑙, respectively. By Definition 1,
we can obtain that the probability 𝑝𝑖 (namely, the area of
trapezoid with curved edge𝐴𝐵𝐶𝐷) of𝑋𝑘 falling into interval
[𝑥𝑖−1, 𝑥𝑖) is

𝑝𝑖 = ∫

𝑥
𝑖

𝑥
𝑖−1

𝑓 (𝑥) 𝑑𝑥. (10)

ByTheorem 5, we have

𝑝𝑖 ≈
𝑢𝑖

𝑙
, 𝑖 = 1, 2, . . . , 𝑛. (11)

With the infinitesimal method, the area of trapezoid with
curved edge 𝐴𝐵𝐶𝐷 can be approximately substituted by the
area of trapezoid 𝐴𝐵𝐶𝐷, namely,

∫

𝑥
𝑖

𝑥
𝑖−1

𝑓 (𝑥) 𝑑𝑥 ≈
1

2
[𝑓 (𝑥𝑖−1) + 𝑓 (𝑥𝑖)] (𝑥𝑖 − 𝑥𝑖−1) . (12)

By formulas (10), (11), and (12) we have

𝑓 (𝑥𝑖−1) + 𝑓 (𝑥𝑖) ≈
2𝑝𝑖

𝑥𝑖 − 𝑥𝑖−1

≈
2𝑢𝑖

𝑙 (𝑥𝑖 − 𝑥𝑖−1)
. (13)
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Figure 1: The probability density function.

Similarly, for 𝑓(𝑥𝑖−1), 𝑓(𝑥𝑖) and 𝑓(𝑥𝑖+1), we have

𝑓 (𝑥𝑖) + 𝑓 (𝑥𝑖+1) ≈
2𝑢𝑖+1

𝑙 (𝑥𝑖+1 − 𝑥𝑖)
,

𝑓 (𝑥𝑖−1) + 𝑓 (𝑥𝑖+1) ≈
2 (𝑢𝑖+1 + 𝑢𝑖)

𝑙 (𝑥𝑖+1 − 𝑥𝑖−1)
.

(14)

From formulas (13) and (14) we can obtain that

𝑓 (𝑥𝑖) ≈
1

𝑙
(

𝑢𝑖+1

𝑥𝑖+1 − 𝑥𝑖

−
𝑢𝑖+1 + 𝑢𝑖

𝑥𝑖+1 − 𝑥𝑖−1

+
𝑢𝑖

𝑥𝑖 − 𝑥𝑖−1

) ,

𝑖 = 1, 2, . . . , 𝑛.

(15)

3.2. Algorithm. Suppose that V(𝑡) is the wind speed at a fixed
point 𝐴. Then V(𝑡) can be seen as a random variable defined
on time set 𝑇. The 𝑙 samples data V(𝑡𝑘) (𝑘 = 1, 2, . . . , 𝑙) can be
seen as a sequence of sample data coming from 𝑙 independent
random variables 𝑋𝑘 (𝑘 = 1, 2, . . . , 𝑙). Supposing that the
probability density function of wind speed V(𝑡) is 𝑓(𝑥), then
the steps of estimating the probability density 𝑓(𝑥) are as
follows.

Step 1. Denote 𝑥0 = min𝑘{V(𝑡𝑘)}, 𝑥𝑛 = max𝑘{V(𝑡𝑘)}. Insert
𝑛 − 1 points 𝑥𝑗 (𝑗 = 1, 2, . . . , 𝑛 − 1) between 𝑥0 and 𝑥𝑛

equidistantly, and interval [𝑥0, 𝑥𝑛] is divided into 𝑛 intervals
[𝑥𝑖−1, 𝑥𝑖) (𝑖 = 1, 2, . . . , 𝑛) with the same length.

Step 2. Count the number 𝑢𝑖 (𝑖 = 1, 2, . . . , 𝑛) of samples
V(𝑡𝑘) (𝑘 = 1, 2, . . . , 𝑙) falling into interval [𝑥𝑖−1, 𝑥𝑖), and we
have ∑

𝑛

𝑖=1
𝑢𝑖 = 𝑙. By formula (11), the probability 𝑝𝑖 of

samples V(𝑡𝑘) falling into interval [𝑥𝑖−1, 𝑥𝑖) is 𝑝𝑖 ≈ 𝑢𝑖/𝑛 (𝑖 =

1, 2, . . . , 𝑛).

Step 3. Calculate 𝑓(𝑥𝑖) (𝑖 = 1, 2, . . . , 𝑛) with formula (15).

Step 4. Connecting the points (𝑥𝑖, 𝑓(𝑥𝑖)) in turnwith smooth
curves, the probability density 𝑓(𝑥) of wind speed sample
data V(𝑡𝑘) (𝑘 = 1, 2, . . . , 𝑛) can be obtained.

3.3. Experiments. In order to verify the effectiveness of the
above method, in this subsection, sample data coming from
normal distribution and exponential distribution are used to
make experiments, respectively.

Experiment 1. Suppose that 𝑋 is a standard normal random
variable; then its probability density is

𝑓 (𝑥) =
1

√2𝜋

exp[−𝑥
2

2
] , −∞ < 𝑥 < +∞, (16)

and the graph of 𝑓(𝑥) is shown in Figure (10).
Suppose that the sample data

𝑥1, 𝑥2, . . . , 𝑥10000 (17)

are independent and identically distributed coming from
the probability density 𝑓(𝑥) and 𝑥𝑖 ∈ [−3, 3] (𝑖 =

1, 2, . . . , 10000). Insert 99 points in interval [−3, 3] equidis-
tantly, and interval [−3, 3] is divided into 𝑛 = 100 small
intervals with the same length. With the above proposed
method, we can obtain function 𝑔(𝑥) shown in Figure 2
which is the estimation of the standard normal density 𝑓(𝑥).

Experiment 2. Supposing that𝑋 is a random variable follow-
ing an exponential distribution, then the probability density
is

𝑓 (𝑥) =

{

{

{

1

2
exp [−𝑥

2
] , 𝑥 > 0,

0, 𝑥 ≤ 0,

(18)

and the graph of 𝑓(𝑥) is shown in Figure 3. With the
similar steps in the above experiment, suppose that the
sample data 𝑥1, 𝑥2, . . . , 𝑥10000 are independent and identically
distributed coming from the probability density𝑓(𝑥) and 𝑥𝑖 ∈
[0, 10] (𝑖 = 1, 2, . . . , 10000). Insert 99 points in interval [0, 10]
equidistantly, and interval [0, 10] is divided into 𝑛 = 100

small intervals with the same length. With the proposed
method above, we can obtain function 𝑔(𝑥) which is the
estimation of exponential density 𝑓(𝑥) (see Figure 3).

3.4. Results Analysis. From Figure 2 we can see that the
estimation density 𝑔(𝑥) obtained with the sample data is not
as smooth as the standard normal density𝑓(𝑥), but the rough
shapes of the two functions are almost the same. And from
Figure 3 the similar conclusions can be drawn. That is to say,
the method of estimating the probability density based on
Bernoulli’s law of large numbers and infinitesimal method is
effective, and it lays a foundation for establishing the PPK-𝜀-
SVR.

4. Support Vector Regression Method
Incorporating Probability Prior Knowledge

In this section, we aim to predict the wind speed V(𝑡) at a fixed
point 𝐴.

4.1. Incorporating the Prior Knowledge about the Wind Speed
Fluctuation into the Training Data and Testing Data. Sup-
posed that 𝑓(𝑥) is the probability density estimated with the
above method, 𝑡0 is the initial time, and V0 is the wind speed
at 𝑡0, denoted by (𝑡0, V0). In practice, the wind speed at a fixed
point 𝐴 is often measured many times 𝑡0𝑘 (𝑘 = 1, 2, . . . , 𝑙) for
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every certain period of time Δ𝑡 (where 𝑡0 < 𝑡01 < ⋅ ⋅ ⋅ < 𝑡0𝑙 ≤

𝑡0 + Δ𝑡), and the mean value V = (1/𝑙) ∑
𝑙

𝑘=1
V0𝑘 is output as

the predicted wind speed at the fixed point𝐴. In other words,
the wind speed V1 at 𝑡1 = 𝑡0 + Δ𝑡 is the mean value V of the
measured values V0𝑘 from 𝑡0 to 𝑡1, denoted by (𝑡1, V1), where
V1 = V. Of course, the mean value V can represent the wind
speed V1 at 𝑡1 in a sense, but in some cases the mean value V
is quite different from V1. For example, if the measured wind
speed V0𝑘 (𝑘 = 1, 2, . . . , 𝑙) is the same value during a certain
period of time Δ𝑡, then “the mean value V is the wind speed
V1” holds with a high probability. Conversely, if the measured
wind speed V0𝑘 fluctuates wildly during a certain period of
time Δ𝑡, then “the mean value V is the wind speed V1” holds
with a very low probability.

Hence, in order to incorporate this prior knowledge into
the wind speed prediction, the training datum (𝑡1, V1) is
converted into (𝑡1, 1 − 𝑃1, V1), where

𝑃1 = 𝑃 {Vmin ≤ V1 ≤ Vmax} = ∫

Vmax

Vmin

𝑓 (𝑥) 𝑑𝑥, (19)

Vmin = min
𝑘

{V0𝑘} , Vmax = max
𝑘

{V0𝑘} . (20)

In fact, from formulas (19) and (20) we can see that the
larger the Vmax − Vmin is, the larger the 𝑃1 is and, furthermore,
the smaller the 1 − 𝑃1 is. That is to say, the possibility of
“wind speed at 𝑡1 is V1” is very small. On the other hand, the
large Vmax − Vmin illustrates that the wind speed from 𝑡0 to
𝑡1 fluctuates wildly and “the mean value V is the wind speed
V1” holds with a low probability (namely, the possibility of
“wind speed at 𝑡1 is V1” is very small), which is in accord
with the information provided by 1−𝑃1.Thus, the probability
1 − 𝑃1 provides the fluctuation about the wind speed during
a certain period of time Δ𝑡. Therefore, datum (𝑡1, 1 − 𝑃1, V1)
contains the prior knowledge provided by the historical data.

Let 𝑡𝑖 (𝑖 = 1, 2, . . . , 𝑙) be the 𝑙 times at a fixed point 𝐴, and
let

𝑇 = {(𝑡1, 1 − 𝑃1, V1) , (𝑡2, 1 − 𝑃2, V2) , . . . , (𝑡𝑙, 1 − 𝑃𝑙, V𝑙)} (21)

be a training set. Denote 𝑥𝑖 = (𝑡𝑖, 1−𝑃𝑖); then training set (21)
can be rewritten by

𝑇 = {(𝑥1, V1) , (𝑥2, V2) , . . . , (𝑥𝑙, V𝑙)} , (22)

where 𝑥𝑖 ∈ 𝑅 × [0, 1], V𝑖 ∈ [0, +∞), 𝑖 = 1, 2, . . . , 𝑙. The
problem of wind speed prediction is to find a real valued
function V = 𝑔(𝑥) on 𝑅 × [0, 1] according to training set (22)
to predict the wind speed V for any given input 𝑥.

4.2. 𝜀-Support Vector Regression Method for Wind Speed
Prediction Incorporating Probability Prior Knowledge. For the
above problem of wind speed prediction, 𝜀-support vector re-
gression method incorporating probability prior knowledge
(PPK-𝜀-SVR) can be constructed as follows.

Step 1. Obtain the training set

𝑇 = {(𝑥1, V1) , (𝑥2, V2) , . . . , (𝑥𝑙, V𝑙)} , (23)

where 𝑥𝑖 ∈ 𝑅 × [0, 1], V𝑖 ∈ [0, +∞), 𝑖 = 1, 2, . . . , 𝑙.

Step 2. Select a proper kernel function 𝐾(𝑥, 𝑥
󸀠
), 𝜀 > 0 and

punishment parameter 𝐶 > 0.
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Step 3. Constructing and solving the convex quadratic pro-
gramming problems:

min
𝛼(∗)∈𝑅2𝑙

1

2

𝑙

∑

𝑖,𝑗=1

(𝛼
∗

𝑖
− 𝛼𝑖) (𝛼

∗

𝑗
− 𝛼𝑗)𝐾 (𝑥𝑖, 𝑥𝑗)

+ 𝜀

𝑙

∑

𝑖=1

(𝛼
∗

𝑖
+ 𝛼𝑖) −

𝑙

∑

𝑖=1

V𝑖 (𝛼
∗

𝑖
− 𝛼𝑖) ,

s.t.
𝑙

∑

𝑖=1

(𝛼𝑖 − 𝛼
∗

𝑖
) = 0,

0 ≤ 𝛼
(∗)

𝑖
≤ 𝐶, 𝑖 = 1, . . . , 𝑙,

(24)

we can obtain the optimal solution

𝛼
(∗)

= (𝛼1, 𝛼
∗

1
, . . . , 𝛼𝑙, 𝛼

∗

𝑙
)
𝑇
. (25)

Step 4. Choose the component 𝛼𝑗 or 𝛼
∗

𝑘
of 𝛼(∗) in interval

(0, 𝐶). If 𝛼𝑗 is chosen, then

𝑏 = V𝑖 −
𝑙

∑

𝑖=1

(𝛼
∗

𝑖
− 𝛼𝑖)𝐾 (𝑥𝑖, 𝑥𝑗) + 𝜀. (26)

If 𝛼∗
𝑘
is chosen, then

𝑏 = V𝑘 −
𝑙

∑

𝑖=1

(𝛼
∗

𝑖
− 𝛼𝑖)𝐾 (𝑥𝑖, 𝑥𝑘) − 𝜀. (27)

Step 5. Construct the decision function with 𝑏

V = 𝑔 (𝑥) =

𝑙

∑

𝑖=1

(𝛼
∗

𝑖
− 𝛼𝑖)𝐾 (𝑥𝑖, 𝑥) + 𝑏. (28)

Remark 8. Solving regression problems with support vector
regression, the kernel function can be selected according to
prior knowledge, such as the characteristics of the problem, or
the training set. More details about selecting kernel function
with prior knowledge will be investigated in another paper.

5. Experiments

In this part, we take a wind farm in Gansu province as an
example. For a fixed point 𝐴, in order to predict the wind
speed V(𝑡) (m/s) at 𝑡 (Hours), we recorded the wind speed
from November 2006 to April 2008 and found that the wind
speed had a periodicity with the change of seasons, months,
or days. Therefore, the probability distribution 𝑃 of wind
speed in the period of the previous year (month or day)
can be incorporated into the wind speed prediction of the
corresponding period in this year (month or day). In this
wind farm, the wind speed V is output every ten minutes, so
there are 144 sets of data in a day andmore than four thousand
sets of data in a month. As SVR focuses on the statistical
learning problems for small size samples and the wind speed
had a periodicity with the change of days, the experiment
is aimed at the short-term wind speed prediction, and we
choose 144 sets of data to carry out the experiment. Here,
without loss of generality, we take the wind speed prediction
on 1 April 2008 as an example.
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Figure 4: Probability density of wind speed data on 1 April 2008.

5.1. Estimation of the Probability Density of Historical Wind
SpeedData. Supposed (𝑡𝑖, V𝑖) (𝑖 = 1, 2, . . . , 144) indicates that
the wind speed at time 𝑡𝑖 is V𝑖. Wind speed was measured
ten times V(𝑡𝑖𝑘) (𝑘 = 1, 2, . . . , 10) during every ten minutes,
and the mean value V𝑖 = (1/10)∑

10

𝑘=1
V(𝑡𝑖𝑘) is output as the

wind speed V𝑖+1 at time 𝑡𝑖 + 1/6. By the proposed method in
Section 3, the probability density 𝑓(𝑥) of the wind speed data
on 1 April 2008 was estimated and the graph of 𝑓(𝑥) is shown
in Figure 4.

5.2. Incorporating the Prior Knowledge about the Wind Speed
Fluctuation into the Training Data and Testing Data. Denote
that Vmax

𝑖
= max𝑘{V(𝑡𝑖𝑘)} and Vmin

𝑖
= min𝑘{V(𝑡𝑖𝑘)}. By the

estimated probability density 𝑓(𝑥) of the wind speed data on
1 April 2008 and formula (19), the probability 𝑃𝑖 = 𝑃{Vmin

𝑖
≤

V𝑖 ≤ Vmax
𝑖

} can be calculated. The wind speed sample data on
1 April 2008 are

(𝑡1, V1) , (𝑡2, V2) , . . . , (𝑡144, V144) , (29)

and data (29) are converted into

(𝑥1, V1) , (𝑥2, V2) , . . . , (𝑥144, V144) (30)

by the method in Section 4.1, where 𝑥𝑖 = (𝑡𝑖, 1 − 𝑃𝑖) (𝑖 =

1, . . . , 144). And the data (𝑥1, V1), (𝑥2, V2), . . . , (𝑥143, V143) in
data (30) is the training data to train a model to predict the
wind speed V144 for the given 𝑥144.

Similarly, if we want to predict the wind speed V󸀠
1
for the

given 𝑥
󸀠

1
on 2 April 2008, we can estimate the probability

density of wind speed (𝑡𝑖, V𝑖) (𝑖 = 2, 3, . . . , 144) on 1 April
2008 and use the data (𝑥𝑖, V𝑖) (𝑖 = 2, 3, . . . , 144) as the training
data.

5.3. 𝜀-Support Vector Regression Method for Wind Speed
Prediction Incorporating Probability Prior Knowledge. In the
experiment, a grid search method based on 5-fold cross-
validation is chosen to determine model parameters, where
𝜎 ∈ {2

−10
, 2
−9
, . . . , 2

1
}, 𝐶 ∈ {2

−6
, 2
−5
, . . . , 2

6
}, and the kernel
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Figure 5: Initial wind speeds and predicted wind speeds with PPK-𝜀-SVR.

function is the radial basis function (RBF). In order to predict
the wind speed V144 for the given 𝑥144 with training data
(𝑥1, V1), (𝑥2, V2), . . . , (𝑥143, V143) in data (30), we make experi-
ment with PPK-𝜀-SVR and standard 𝜀-SVR, respectively; the
results are shown in Tables 1 and 2, respectively. The wind
speeds of training data, normalized wind speeds of testing
data, and wind speeds of testing data with PPK-𝜀-SVR are
shown in Figures 5(a), 5(b), and 5(c), respectively. The wind
speeds of training data, normalized wind speeds of testing
data, and wind speeds of testing data with standard 𝜀-SVR
are shown in Figures 6(a), 6(b), and 6(c), respectively.

Similar to the steps of predicting wind speed V144 for
the given 𝑥144, we make experiment 50 times to predict the
wind speed V𝑗 for the given 𝑥𝑗 (𝑗 = 1, 2, . . . , 50) (namely,

the former 50 wind speeds monitored on 2 April 2008), the
average mean squared errors are shown in Table 3, and the
numbers after ± are the standard deviations.

5.4. Result Analysis. From Tables 1 and 2, we can see that the
mean squared errors of training data and testing data with
PPK-𝜀-SVR are all smaller than the corresponding ones with
standard 𝜀-SVR. Comparing Figure 5(a) with Figure 6(a) and
Figure 5(c) with Figure 6(c), we can find that the predicted
wind speeds of training data and testing data with PPK-𝜀-
SVR are more close to the initial wind speeds than those
with standard 𝜀-SVR. This illustrates that the prediction
error of PPK-𝜀-SVR is smaller than that of standard 𝜀-
SVR in predicting the wind speed V144 for the given 𝑥144.
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Figure 6: Initial wind speeds and predicted wind speeds with standard 𝜀-SVR.

Table 1: Experiment results with PPK-𝜀-SVR.

Data Number in the data set 𝜀 𝜎 𝐶 Mean squared errors
Training data 143 0.01 0.25 8.00 0.0217
Testing data 1 0.0035

Table 2: Experiment results with standard 𝜀-SVR.

Data Number in the data set 𝜀 𝜎 𝐶 Mean squared errors
Training data 143 0.01 0.25 4.00 0.0307
Testing data 1 0.0747
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Table 3: Average mean squared errors.

Methods Experiment times Average mean squared errors
PPK-𝜀-SVR 50 0.0304 ± 0.0367

Standard 𝜀-SVR 50 0.0402 ± 0.0408

From Figure 5(b) we can obtain that the difference between
normalized initial wind speed and normalized predicted
wind speed is 0.766 − 0.707 = 0.059 which is equal to the
square root of mean squared error 0.0035 in Table 1, which
shows the effectiveness of the PPK-𝜀-SVR.

From Table 3, we can see that the average mean squared
error (namely, the average prediction error) of PPK-𝜀-SVR
is smaller than that of standard 𝜀-SVR, which illustrates that
PPK-𝜀-SVR method is more accurate than standard 𝜀-SVR.
What is more, the standard deviation of PPK-𝜀-SVR is also
smaller than that of standard 𝜀-SVR, which illustrates that
the PPK-𝜀-SVR is more stable than the standard 𝜀-SVR. And
also the running time of PPK-𝜀-SVR is less than one minute,
which shows that the model’s running time can meet the
needs of wind speed prediction in application.

6. Conclusions

In this paper, a method of estimating the probability density
of historical wind speed data is proposed, and the estimated
probability density is used to describe the wind speed fluctu-
ation between the maximal value and the minimal value in
a certain period of time. Then the prior knowledge provided
by historical wind speed data is incorporated into the training
data and the testing data. Then, based on standard 𝜀-SVR, a
kind of support vector regression for wind speed prediction
incorporating probability prior knowledge is proposed. The
comparing experiments show that the proposed PPK-𝜀-SVR
is feasible and effective and the model’s running time can
meet the needs of wind speed prediction in application. And,
how to incorporate prior knowledge into selecting the kernel
function to decrease the prediction error further is our future
study.
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