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A finite difference method for analyzing 2D nonlinear sloshing waves in a tank has been developed based on the potential flow
theory. After 𝜎-transformation, the free surface is predicted by the kinematic condition, and nonlinear terms are approximated;
the governing equation and boundary conditions are discretized to linear equations in the iterative process of time. Simulations of
standing waves and sloshing in horizontally excited tanks are presented. The results are compared with analytical and numerical
solutions in other literatures, which demonstrate the effectiveness and accuracy of this numericalmethod.Thebeating phenomenon
of sloshing in the tank with different aspect ratios is studied. The relationship between sloshing force and aspect ratio under the
same external excitation is also discussed.

1. Introduction

Sloshing is a liquid vibration phenomenon caused by the
movement of the tank.When the liquid cargo is in transit, the
sloshing would affect stability of the system severely, leading
to damage or fatigue of the structure. So it is necessary to
diminish the impact of sloshing and avoid large amplitude
resonance. Sloshing has been studied for many years by
analytical, numerical, and experimental methods. In many
early studies, the analyticalmethodwas dominant. Abramson
[1] used potential theory to study the linear sloshing of
small amplitude. His work was systematic and influential.
Considering the importance of nonlinear effects in the
sloshing response, Faltinsen [2] analyzed nonlinear sloshing
by perturbation theory. Later, numerical simulation of large
amplitude sloshing has been a hot topic in research. Compli-
cated 2D or 3D models have been calculated, and fully non-
linear theory has been developed to get the accurate solutions
of sloshing. Faltinsen [3] presented a nonlinear numerical
method of 2D sloshing in tanks. Nakayama and Washizu
[4] adopted the boundary element method to analyze the
sloshing in a tank which is subjected to pitching oscillation.
Wu et al. [5] calculated sloshing waves in a 3D tank by using
a finite element method based on fully nonlinear potential
theory. Chen and Nokes [6] simulated complete 2D sloshing

motion by a finite difference method. The primitive 2D
Navier-Stokes equations are solved, and both the nonlinear
free surface condition and fluid viscosity are considered.
Afterwards, Wu and Chen [7] simulated fluid sloshing in
a 3D tank with the six degrees of freedom by this time-
independent finite difference method. Kim [8] employed
SOLA scheme to solve Navier-Stokes equations and assumed
the free surface profile to be a single-valued function. He
used this method to simulate sloshing flows in 2D and
3D containers. Celebi and Akyildiz [9] calculated nonlinear
viscous liquid sloshing in a partially filled rectangular tank.
They used finite difference method to solve equations, and
the free surface was captured by VOF technique. Wang and
Khoo [10] considered 2D nonlinear sloshing under random
excitation by the finite element method. Sriram et al. [11]
studied random sloshing under both horizontal and vertical
excitation. In the aspect of theory, Faltinsen et al. [12, 13]
developed the infinite dimensional modal analysis technique
to describe nonlinear sloshing of incompressible fluid, where
the free surface motion was expanded in generalized Fourier
series; Wu [14] analyzed second-order resonance of sloshing.
Their conclusions were discussed in many other research
articles (Hill [15], Frandsen [16], Firouz-Abadi et al. [17], etc.).

It is difficult to solve the sloshing equations with nonlin-
ear free surface boundary conditions because free surface is
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alwaysmoving in the sloshing process. Some special methods
are used to treat the moving boundary of free surface,
such as VOF and ALE. Recently, 𝜎-transformation has been
employed in sloshing problems. It is an efficient space
transformationmethod, especially suitable for equationswith
curved boundary. The basic idea of 𝜎-transformation is to
introduce a new stretching variable in the vertical direction,
which transforms the computational domain into a regular
shape. Chern et al. [18] and Frandsen et al. [16, 19] used 𝜎-
transformation to map the liquid domain onto rectangular
region and then calculated horizontally and vertically forced
sloshing problems in tanks. Turnbull et al. [20] simulated
several 2D free surface wave motions by 𝜎-transformed
finite element model. According to Frandsen’s analysis, 𝜎-
transformation has two major advantages in simulating free
surface flows: remeshing due to the moving free surface is
avoided and free surface smoothing is often not required.
The disadvantage of it is that it is a unique transformation
and restricts the wave shape to be nonoverturning. In this
paper, a new numerical method is proposed based on 𝜎-
transformation. In the iterative process of time, a forecast
scheme is used to estimate the free surface boundary, and
some nonlinear terms are approximated. Then the governing
equation and boundary conditions are linearized and solved
by finite differencemethod. Inmany numericalmethods, free
surface is often updated directly by explicit schemes, such
as Adams-Bashforth or Runge Kutta methods, while in this
method, a predictor-corrector scheme of free surface is used.
The free surface is first predicted before the iteration, so the
fluid boundary is more precise for the numerical simulation;
after the governing equation and boundary conditions are
solved, the free surface is updated by the solutions. Because of
the predictive step of free surface, it is reasonable to consider
high accuracy is one of the advantages of this method. Fur-
thermore, semi-implicit Crank-Nicolsen scheme is employed
to discretize linear terms in free surface boundary conditions,
so this method has better numerical stability than explicit
schemes. Nonlinear sloshing in fixed and horizontally excited
rectangular tanks has been simulated by this numerical
method. The results are compared with analytical solutions
or other numerical results, which prove the efficiency of this
method. The limitation of this numerical method is also
described.

Many researches have focused on sloshing phenomenon
in a fixed aspect ratio by different excitations. In fact, the
aspect ratio is always changed in the process of storage
or transportation of liquid cargo. So it is necessary to
investigate the influence of aspect ratio on liquid sloshing.
Chen and Chiang [21] analyzed the effect of fluid depth on
nonlinear characteristics of sloshing. In this paper, beating
phenomenon of sloshing in different aspect ratios is consid-
ered. The shape of the tank is unchangeable, but the depths
of liquid are set to be many different values. Under the same
external excitation, the vibrations of free surface and sloshing
forces acting on the walls are calculated and analyzed.
The natural frequency of sloshing is affected by different
aspect ratios, whichmay change the whole sloshing situation.
The effect of nonlinear factor on sloshing force is also
discussed.
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Figure 1: 2D sloshing model.

2. Mathematical Model

The fluid is assumed to be incompressible, irrotational, and
inviscid water, so the potential flow theory is employed to
describe the sloshing in tanks. Surface tension is neglected.
The free surface is assumed to never become overturned
or broken during the sloshing process. 𝑏 and 𝑑 are the
length and the width of the rectangular tank, respectively.
ℎ is the still water depth. Two Cartesian coordinate systems
are introduced in Figure 1. One is the inertial Cartesian
coordinate system (𝑋, 𝑍) fixed in space; 𝑥-axis is horizontal
and 𝑧-axis is vertical. The other is the moving coordinate
system (𝑥, 𝑧) connected to the tank, with the origin at the
intersection of undisturbed free surface and the left wall
of the tank. The tank is expected to have a translational
oscillation along the 𝑥-axis, so there is no flow along the
width direction of the tank, which means the sloshing of
liquid is only 2D nonlinear motion in coordinate systems.
The displacement of the tank is expressed as 𝑋(𝑡). Being
considered in moving coordinate system (𝑥, 𝑧) fixed to the
tank, the sloshing equations can be gotten as
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Equation (1) is the continuity equation of ideal fluid; 𝜑
denotes velocity potential. Equations (2) and (3) are rigid
wall boundary conditions.They indicate that the components
of the fluid relative velocity normal to the walls are equal
to zero. Equations (4) and (5) are boundary conditions
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of the free surface. One is the kinematic condition; the
other is the dynamic condition. 𝜉(𝑥, 𝑡) is the free surface
elevation deviating the undisturbed water level in themoving
coordinate system (𝑥, 𝑧). 𝑔 denotes acceleration of gravity. If
(1)–(5) are solved, the pressure in the fluid can be calculated
by the incompressible Bernoulli equation:

−
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where 𝑝 is the pressure and 𝜌 is the density of fluid. The
sloshing force is determined by integrating the liquid pressure
over the tank wall area. Because the tank is moving along
the 𝑥-axis and the sloshing models are 2D cases, only 𝑥
components of sloshing force would have great influence on
the dynamics of the tank. In this paper, the sloshing force
acting on the left and right walls is considered.

3. Numerical Process

According to Frandsen [16], 𝜎-transformation method is
used:

𝜎 =
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, Φ (𝑥, 𝜎, 𝑡) = 𝜑 (𝑥, 𝑧, 𝑡) . (7)

A new variable 𝜎 is introduced. The derivatives of the
potential function 𝜑(𝑥, 𝑧, 𝑡) with respect to 𝑥, 𝑧, and 𝑡 are
transformed into derivatives ofΦ(𝑥, 𝜎, 𝑡).The first derivatives
of 𝜑 can be expressed as
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Similarly, it is not difficult to obtain the second derivatives of
𝜑(𝑥, 𝑧, 𝑡). Then (1)–(5) can be transformed by using variable
substitution:

𝜕
2
Φ

𝜕𝑥
2
−

2𝜎

ℎ + 𝜉

𝜕𝜉

𝜕𝑥

𝜕
2
Φ

𝜕𝑥𝜕𝜎

+ [

2𝜎

(ℎ + 𝜉)
2
(

𝜕𝜉

𝜕𝑥

)

2

−

𝜎

ℎ + 𝜉

𝜕
2
𝜉

𝜕𝑥
2
]

𝜕Φ

𝜕𝜎

+ [(

𝜎

ℎ + 𝜉

𝜕𝜉

𝜕𝑥

)

2

+

1

(ℎ + 𝜉)
2
]

𝜕
2
Φ

𝜕𝜎
2
= 0,

(9)

𝜕Φ

𝜕𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥=0,𝑏

− (

𝜎

ℎ + 𝜉

𝜕Φ

𝜕𝜎

𝜕𝜉

𝜕𝑥

)

𝑥=0,𝑏

= 0, (10)

𝜕Φ

𝜕𝜎

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜎=0

= 0, (11)

𝜕𝜉

𝜕𝑡

=

1

ℎ + 𝜉

𝜕Φ

𝜕𝜎

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜎=1

−

𝜕𝜉

𝜕𝑥

(

𝜕Φ

𝜕𝑥

−

1

ℎ + 𝜉

𝜕Φ

𝜕𝜎

𝜕𝜉

𝜕𝑥

)

𝜎=1

, (12)

(

𝜕Φ

𝜕𝑡

−

1

ℎ + 𝜉

𝜕Φ

𝜕𝜎

𝜕𝜉

𝜕𝑡

)

𝜎=1

= −𝑔𝜉 − 𝑥𝑋
󸀠󸀠
(𝑡)

−

1

2

[(

𝜕Φ

𝜕𝑥

−

1

ℎ + 𝜉

𝜕Φ

𝜕𝜎

𝜕𝜉

𝜕𝑥

)

2

+ (

1

ℎ + 𝜉

𝜕Φ

𝜕𝜎

)

2

]

𝜎=1

.

(13)

The fluid domain of (1) is 0 < 𝑥 < 𝑏,−ℎ < 𝑧 < 𝜉(𝑥, 𝑡). After 𝜎-
transformation, it has changed into a fixed rectangular area:
0 < 𝑥 < 𝑏, 0 < 𝜎 < 1.

A finite difference method has been developed to solve
(9)–(13). Δ𝑡 is set to be the step size of time. In the iterative
process of time, assuming that the values of velocity potential
functionΦ and the free surface function 𝜉 are known at time
𝑘Δ𝑡, that is, on 𝑘 time step, the aim is to obtain the values
of the two functions on 𝑘 + 1 time step. Some difficulties are
encountered in the numerical algorithm. First, the governing
equation cannot be solved directly on 𝑘+ 1 time step because
free surface 𝜉, which is unknown at that time, is a boundary
curve of the governing equation. Second, there are nonlinear
terms existing in free surface boundary conditions.

For the first problem, a prediction method has been
introduced. Considering (9)–(11) on 𝑘 + 1 time step, 𝜉 should
have been assigned to the value on 𝑘 + 1 time step, but it
is unknown. On the other hand, (9) on 𝑘 + 1 time step was
transformed from

{
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𝜉 does not appear in the governing equation; it is only a
boundary curve. An explicit scheme of (4) can be adopted to
make prediction of 𝜉𝑘+1 and then substitute it into (14). So the
four boundary curves of (14) are determined, which means
that there is only one unknown quantity 𝜑𝑘+1 in (14).

This idea should be implemented in (9)–(11). Because the
computational domain is transformed, an explicit scheme of
(12) is used to make prediction of 𝜉𝑘+1:
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𝜉

𝑘+1

denotes the prediction value. Substitute it into (9) and
(10) on 𝑘+1 time step; then onlyΦ𝑘+1 is the unknownquantity
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in the two equations. Equation (11) does not have 𝜉, so there
is no need to do so. These three equations are discretized as
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For the second problem, an approximate method has
been introduced. Consider two boundary conditions (12) and
(13) on 𝑘 + 1/2 time step; they are complicated nonlinear
equations. For example,

𝜕𝜉

𝜕𝑥

(

𝜕Φ

𝜕𝑥

−

1

ℎ + 𝜉

𝜕Φ

𝜕𝜎

𝜕𝜉

𝜕𝑥

)

𝜎=1

(19)

is a nonlinear term; it should have been assigned to the value
on 𝑘 + 1/2 time step in the calculation process, but here it
is assigned to the value on 𝑘 time step as an approximation.
Other nonlinear terms are dealt with by the same method.
Linear terms in equations are discretized by Crank-Nicolson
scheme, where 𝜉𝑘+1 and Φ𝑘+1 (𝜎 = 1) are set to be unknown
quantities. It is noteworthy that 𝜉𝑘+1 is set to be the unknown
quantity in (12) and (13), so as to update the free surface
when the equations are solved. Overall, these two boundary
conditions are discretized as
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Semi-implicit scheme equations of 𝜉𝑘+1 andΦ𝑘+1 (𝜎 = 1)
have been derived. Moreover, (16)–(21) can be discretized in
space and solved by finite difference method. The solution
𝜉
𝑘+1 will be taken as the corrected value of 𝜉 on 𝑘 + 1 time
step.
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When the values of 𝜉 and Φ are solved, it is not difficult to
discretize (22). In the numerical simulation, sloshing force on
the left and right walls can be expressed as
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The resultant sloshing force acting on the tank is

𝐹 = 𝐹
𝑅
− 𝐹
𝐿
. (24)

4. Numerical Results

Some examples of nonlinear sloshing are simulated by this
numerical method. They have been investigated by other
researchers using various numerical and analytical methods,
and many discussions and conclusions have been derived.

A rectangular tank model is established. The natural
frequencies of linear transverse sloshing along 𝑥-axis are
(Faltinsen [2])

𝜔
𝑛
= √𝑔

𝑛𝜋

𝑏

tanh 𝑛𝜋ℎ
𝑏

, 𝑛 = 1, 2, 3, . . . . (25)

4.1. Standing Waves. The tank is fixed, so the moving coor-
dinate system (𝑥, 𝑧) coincides with the inertial coordinate
system (𝑋, 𝑍). The initial conditions are described as

𝜉 (𝑥, 0) = 𝑎 cos(𝑛𝜋
𝑏

) , 𝜑 (𝑥, 𝑧, 0) = 0. (26)

𝑎 is the amplitude of the initial wave profile, which influences
the nonlinearity of the sloshing. 𝑛 indicates themodenumber.
The convergence of this numerical simulation is investigated.
In the tank, 𝑏, 𝑑, and ℎ are set to be 2m, 1m, and 1m,
respectively. 𝑎 is set to be 0.2m; 𝑛 takes value of 1. The
first natural frequency of the sloshing is 𝜔

1
= 3.76 rad/s.

Figure 2(a) shows the time history of the free surface at the
left wall with different meshes, but the time step sizes are
the same (0.005 s). Figure 2(b) shows the time history where
the meshes are the same (40 × 40) but the time step sizes
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Figure 2: Time history of free surface elevation for different meshes and time step sizes.
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(d) Sloshing force on the right wall

Figure 3: Standing wave (𝑛 = 1).
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Figure 4: Standing wave (𝑛 = 3).

are different. The time and the vibration displacement in the
figures are dealt with by dimensionless method:

𝜉
󸀠
=

𝜉

𝑎

, 𝑡
󸀠
= 𝜔
1
𝑡. (27)

It is found that the results from these meshes and time
step sizes are in good agreement, so in this example, a mesh
distribution of 40 × 40 and time step size of 0.005 s ensure a
reasonable converged solution.

Nonlinear sloshing equations of standing waves can be
solved by perturbation techniques. First, nondimensional
variables are introduced to the equations. Then, 𝜖 = 𝑎𝜔

2

𝑛
/𝑔

is chosen as the characteristic small parameter. Approximate
linear equations are derived by small parameter expansion,
and approximate analytical solutions can be obtained. The
second-order approximate analytical free surface elevation
for the 𝑛th sloshing mode is prescribed as (Frandsen [16])

𝜉 (𝑥, 𝑡) = 𝑎 ( cos (𝜔
𝑛
𝑡) cos (𝑘

𝑛
𝑥)

+ 𝜖 (𝐴
𝑛
+ 𝐵
𝑛
cos (2𝜔

𝑛
𝑡)

+𝐶
𝑛
cos (𝜔

2𝑛
𝑡)) cos (2𝑘

𝑛
𝑥)) ,

(28)

where

𝑘
𝑛
=

𝑛𝜋

𝑏

, 𝜔
2𝑛
= √𝑔2𝑘

𝑛
tanh (2𝑘

𝑛
ℎ),

𝐴
𝑛
=

𝜔
4

𝑛
+ 𝑔
2
𝑘
2

𝑛

8𝜔
4

𝑛

𝐵
𝑛
=

3𝜔
4

𝑛
− 𝑔
2
𝑘
2

𝑛

8𝜔
4

𝑛

−

3

2

𝜔
4

𝑛
− 𝑔
2
𝑘
2

𝑛

𝜔
2

𝑛
(4𝜔
2

𝑛
− 𝜔
2

2𝑛
)

,

𝐶
𝑛
=

𝜔
2

𝑛
𝜔
2

2𝑛
− 𝜔
4

𝑛
− 3𝑔
2
𝑘
2

𝑛

2𝜔
2

𝑛
(4𝜔
2

𝑛
− 𝜔
2

2𝑛
)

.

(29)

Figure 3(a) shows the time history of the free surface
elevation for 𝑛 = 1 at the leftwall by the twomethods: numer-
ical solution by the finite difference method proposed in this
paper and second-order approximate analytical solution by
perturbation method. Initially, good agreement between the
two results is achieved, but the phase difference between them
increases with time. This phenomenon has been noticed and
discussed by many researchers (Chern et al. [18], Frandsen
[16]). The conclusion is that the second-order analytical
solution is not very accurate for large amplitude sloshing.
Figure 3(b) displays numerical wave profiles for nearly half
a period from dimensionless time 𝜔

1
𝑡 = 31.8 to 𝜔

1
𝑡 =

34.6. Stationary point does not exist, and nonlinearity is
obvious. Figures 3(c) and 3(d) provide the sloshing forces
on the left wall and right wall, respectively (the forces are
also nondimensionalized). It shows that slight double peaks
appear in the time history.This has also been observed byWu
et al. [5].

The standing wave of 𝑛 = 3 is also calculated. The initial
conditions are set to be

𝜉 (𝑥, 0) = 0.06 cos(3𝜋
𝑏

) , 𝜑 (𝑥, 𝑧, 0) = 0. (30)

Figure 4(a) shows the comparison of numerical solutions
and approximate analytical solutions. Figure 4(b) shows
numerical wave profiles for nearly half a period. Phase
difference and nonlinearity are also observed.

4.2. Sloshing Caused by Horizontal Excitations. The tank
is assumed to take the horizontal oscillation; the external
excitation acting on the tank is defined as harmonic motion:

𝑋 (𝑡) = 𝑎
ℎ
cos (𝜔

ℎ
𝑡) . (31)

𝑎
ℎ
and 𝜔

ℎ
are the amplitude and angular frequency of the

excited motion.The fluid is assumed to be stationary at 𝑡 = 0.
Then, in the moving coordinate system, the initial conditions
are described as

𝜉 (𝑥, 0) = 0, 𝜑 (𝑥, 𝑧, 0) = −𝑥𝑋
󸀠
(𝑡) = 0. (32)
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Figure 5: Comparison of free surface elevation at the left wall.
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Figure 6: Free surface elevation at the left wall (resonance phenomenon).
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Figure 7: Resultant sloshing force (resonance phenomenon).

In order to verify the precision of this numerical method
for the sloshing models in horizontally moving tanks, two
examples are calculated and compared with the solutions of
Frandsen [16]: (1) 𝜔

ℎ
= 0.7𝜔

1
, 𝜖
ℎ
= 0.036; (2) 𝜔

ℎ
= 1.3𝜔

1
,

𝜖
ℎ
= 0.072. The grid size of the numerical method is 40 × 40

and the time step size is 0.006 s. Figure 5(a) shows that the two
simulations are in close agreement. In the second example,
the nonlinear effect is strong, so there is a little difference
between the two solutions in Figure 5(b). Nevertheless,
nonlinear characteristics of sloshing are captured by the two
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Figure 8: Free surface elevation at the left wall of the maximum 𝑎
ℎ
(ℎ/𝑏 = 1/2).
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Figure 9: Free surface elevation at the left wall of the maximum 𝑎
ℎ
(ℎ/𝑏 = 1/8).
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Figure 10: The function graph of the first natural frequency against
aspect ratio.

numerical methods, such as the higher peaks and the less
deep troughs.

4.2.1. Resonance Phenomenon. Two situations of resonance
are considered: the first resonance mode and the third
resonance mode. The external excitations of the tank are
described as 𝑋

1
(𝑡) = 0.007 cos(𝜔

1
𝑡), 𝑋
2
(𝑡) = 0.007 cos(𝜔

3
𝑡).

The amplitudes are the same, but the excited frequencies

are different. The time histories of free surface elevation at
the left wall and the resultant sloshing forces are calculated.
Figure 6(a) shows that the sloshing of the first resonance
mode is violate; the amplitude of the vibration is increasing.
Figure 6(b) shows that the amplitude of the third resonance
mode is much smaller than that of the first resonance mode.
In Figure 7, it can be concluded that the resultant sloshing
force of the third resonance mode is trivial compared with
the force of the first resonance mode. In fact, the first natural
frequency of sloshing is the most influential of all the natural
frequencies.

4.2.2. The Limitation of the Numerical Method. The present
numerical method is employed to simulate nonlinear slosh-
ing in moving tanks. If the nonlinearity is quite strong, this
methodmay lose its effectiveness. Two excitation frequencies
are considered in the simulations. One is 𝜔

ℎ
= 0.85𝜔

1
; the

other is 𝜔
ℎ
= 0.95𝜔

1
, which indicates near resonant sloshing

situation. Different excitation amplitudes 𝑎
ℎ
and aspect ratios

ℎ/𝑏 are tested, and the limitation of the convergence of this
numerical method is found out.

First, the aspect ratio is set to be ℎ/𝑏 = 1/2, just as
before. Excitation amplitude is increased in the numerical
simulation, and the sloshing becomesmore andmore violent.
For 𝜔

ℎ
= 0.85𝜔

1
, if the excitation amplitude is 𝑎

ℎ
= 0.06m,
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(d) Aspect ratio ℎ/𝑏 = 1.25

Figure 11: Free surface elevation at the left wall (low-frequency excitation).

the simulation is divergent after several times of iteration; if
𝑎
ℎ
= 0.05m, the simulation lasts for a long time. So it is

considered that the limitation of 𝑎
ℎ
for nonresonant sloshing

is 0.05m. For 𝜔
ℎ
= 0.95𝜔

1
, the excitation amplitude is much

smaller. The maximum limit of 𝑎
ℎ
is estimated to be 0.012m.

The time histories of free surface elevation at the left wall in
the limit cases are shown in Figure 8.

Then the aspect ratio is changed by decreasing the still
water depth ℎ. For the aspect ratio ℎ/𝑏 = 1/8, the numerical
method still works, with a mesh size of 80 × 20. If the aspect
ratio is less than 1/8, the simulation is divergent. As a result,
the minimum limit of aspect ratio ℎ/𝑏 is considered to be
1/8. In this critical aspect ratio situation, for 𝜔

ℎ
= 0.95𝜔

1
,

the maximum limit of excitation amplitude 𝑎
ℎ
is still 0.012m,

while for 𝜔
ℎ
= 0.85𝜔

1
, the maximum limit of 𝑎

ℎ
is 0.03m.

Figure 9 shows the time histories of free surface elevation in
the limit cases in this critical aspect ratio. The phenomena of
beating and resonance are very obscure; it can be concluded
that the sloshing in low aspect ratio is quite different from the
one in normal aspect ratio.

4.2.3. Beating Phenomenon in Different Aspect Ratios. Slosh-
ing in a fixed aspect ratio has been studied in many articles.
However, little work has been done to analyze the response of
liquid sloshing in different aspect ratios by the same external

excitation. When the external excitation is close to the first
natural frequency of sloshing, the beating phenomenon can
be observed. The study here is intended to investigate the
effect of different aspect ratios on beating phenomenon and
sloshing force.

In the numerical examples calculated before, the length
and width of the tank are set to be 2m and 1m; the still water
depth is 1m. The first natural frequency of sloshing is 𝜔

1
=

3.76 rad/s. The aspect ratio is ℎ/𝑏 = 1/2. Now the length 𝑏
and the width 𝑑 of the tank are fixed, and the aspect ratio is
changed by changing the still water depth ℎ.The former water
depth and natural frequency are set to be the characteristic
quantity: ℎ∗ = 1m, 𝜔∗

1
= 3.76 rad/s.

The relationship between aspect ratio and the first natural
frequency must be considered. From (25), it is easy to get the
graph of the natural frequency as a function of aspect ratio.
Figure 10 indicates that the slope of the function curve is steep
when the aspect ratio is small; if the aspect ratio is greater than
0.6, the function curve is nearly horizontal.

Under the same external excitation, the sloshing forces
of beating are affected by three factors: proximity of exci-
tation frequency to the natural frequency, liquid mass, and
nonlinearity of sloshing. When the aspect ratio of the liquid
changes, these three factors would change along with it. In
order to discuss the effect of aspect ratio, two horizontal
oscillations of the tank are studied. First, the tank is subjected
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Figure 12: Resultant sloshing forces (low-frequency excitation).
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Figure 13: Tendency of amplitude of sloshing force (low-frequency
excitation).

to a low-frequency excitation. The movement of the tank is
described as 𝑎

ℎ
= 0.03m, 𝜔

ℎ
= 3.4 rad/s. Figure 10 suggests

that if the aspect ratio is 0.3, the corresponding natural
frequency is 3.4 rad/s. Our aim is to analyze the influence of
this low-frequency excitation on the high aspect ratio slosh-
ing system. Figure 11 shows the time histories of free surface

elevation at the left wall in four different aspect ratios, where
the parameters are nondimensionalized:

𝑡
󸀠
= 𝜔
ℎ
𝑡, 𝜉

󸀠
=

𝜉

𝑎
ℎ

. (33)

The amplitude of free surface elevation is quite large in
Figure 11(a), which shows strong nonlinearity of sloshing,
while in Figures 11(b), 11(c), and 11(d), the amplitudes are
nearly the same, smaller than the amplitude in Figure 11(a),
so the nonlinear effects are weaker in these three sloshing
situations.

Figure 12 shows the time histories of resultant sloshing
force acting on the tank (the forces are also nondimensional-
ized: 𝐹󸀠 = 𝐹/𝜌𝑔𝑏𝑑ℎ∗). The amplitudes of the sloshing force
are extracted in Figure 12. In order to study the effect of
nonlinear factor, linear sloshing models by Abramson [1] are
calculated under the same condition to make comparisons.
The relationship between the amplitude of sloshing force and
aspect ratio is shown in Figure 13. It is obvious that both
linear and nonlinear results have the same trend: decreasing
first and then increasing. On the one hand, the rise of the
aspect ratio increases the natural frequency, which makes
the sloshing far from resonance and reduces sloshing forces.
On the other hand, the rise of the aspect ratio increases the
mass of the liquid, thereby increasing the sloshing forces.
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Figure 14: Free surface elevation at the left wall (high-frequency excitation).

For the sloshing in aspect ratio ℎ/𝑏 = 0.5, the excitation
frequency is close to the natural frequency. If aspect ratio
is increased, the factor of reducing sloshing force is more
dominant. However, for the sloshing in high aspect ratios
ℎ/𝑏 > 0.75, the rise of aspect ratio brings about slight changes
in the natural frequency, so the factor of increasing sloshing
force is more dominant. Comparing nonlinear results with
linear ones in Figure 13, some conclusions are obtained. First,
the nonlinearity of sloshing always decreases sloshing force.
Second, to a certain extent, the difference between linear and
nonlinear amplitude reflects the effect of nonlinear factor
on sloshing force. For the sloshing in aspect ratio ℎ/𝑏 =

0.5, the difference is the largest, while for the other sloshing
situations, the differences are nearly the same. This result
accordswith the conclusion in Figure 11.Third, nonlinearity is
an important factor in large amplitude sloshing, which should
not be neglected.

Then, the tank is subjected to a high-frequency excitation.
The movement of the tank is described as 𝑎

ℎ
= 0.015m,

𝜔
ℎ
= 4 rad/s. Our aim is to analyze the influence of this

high-frequency excitation on the low aspect ratio sloshing
system. Figure 14 shows the time histories of free surface
elevation at the left wall in four different aspect ratios. As
the aspect ratio decreases, the amplitude and period of free
surface elevation are diminishing. For the sloshing in low
aspect ratios ℎ/𝑏 < 0.5, the reduction of aspect ratio brings

about significant changes in the natural frequency, so the
beating phenomenon has changed greatly even if the aspect
ratio is slightly decreased.The resultant sloshing forces acting
on the tank are also calculated. The relationship between the
amplitude of sloshing force and aspect ratio is showed in
Figure 15.The reduction of the aspect ratio makes the natural
frequency far from the excitation frequency; meanwhile, it
decreases the mass of the liquid in the tank. So both of the
factors reduce sloshing force. As the aspect ratio decreases,
the difference between linear and nonlinear amplitude of
sloshing force also decreases. The reason is that nonlinear
effects are becoming weaker, and the sloshing force itself is
also decreasing.

5. Conclusions

Anewfinite differencemethod based on the prediction of free
surface has been developed and used to simulate nonlinear
sloshing phenomenon in tanks by the potential flow theory.
After 𝜎-transformation, the fluid domain is transformed to a
rectangle, and a predictor-corrector scheme for free surface
is used in the iteration of time; then the governing equation
and boundary conditions are approximately linearized and
solved in every time step. The convergence of this method
is surveyed. The numerical examples of standing waves and
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Figure 15: Tendency of amplitude of sloshing force (high-frequency
excitation).

horizontally forced sloshing models have been calculated,
and good agreement between the numerical simulation and
results in other literatures has been obtained. This numerical
method is simple and easy in programming, with excellent
accuracy and stability, and can be extended to other sloshing
problems. The time histories of free surface elevation and
sloshing forces in the first and third resonance situation are
also presented and analyzed.

The beating phenomenon of sloshing in different aspect
ratios under the same excitation has been numerically simu-
lated by this method. The results show that the effect of the
aspect ratio on the sloshing force is complicated. For the low-
frequency excitation acting on the high aspect ratio models,
the rise of aspect ratio makes the sloshing far from resonance
and increases the liquid mass, so the sloshing force decreases
first and then increases. For the high-frequency excitation
acting on the low aspect ratio models, the reduction of aspect
ratiomakes the sloshing far from resonance and decreases the
liquid mass, so the sloshing force decreases all the way. Since
the first natural frequency of liquid sloshing in not a linear
function of aspect ratio, the change of aspect ratio produces
much stronger effect in low aspect ratio sloshing systems.
Moreover, nonlinearity of sloshing always decreases sloshing
force. The effect of nonlinear factor depends on the violence
of sloshing.
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