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We investigate Gevrey asymptotics for solutions to nonlinear parameter depending Cauchy problems with 27-periodic coefficients,
for initial data living in a space of quasiperiodic functions. By means of the Borel-Laplace summation procedure, we construct
sectorial holomorphic solutions which are shown to share the same formal power series as asymptotic expansion in the perturbation
parameter. We observe a small divisor phenomenon which emerges from the quasiperiodic nature of the solutions space and which
is the origin of the Gevrey type divergence of this formal series. Our result rests on the classical Ramis-Sibuya theorem which
asks to prove that the difference of any two neighboring constructed solutions satisfies some exponential decay. This is done by an
asymptotic study of a Dirichlet-like series whose exponents are positive real numbers which accumulate to the origin.

1. Introduction of the linear part and ¢(z, x, €) of the nonlinear part are 27-

. . . periodic Fourier series
We consider a family of nonlinear Cauchy problems of the

form

b (z,x,€) = Zbkﬁ (x,€) e,

k o

- Y haxerddhdtx, e . )
k=(sko.kky)es €] G(z,x,€) = ZCL/; (x,€) P

B=0

(e (tzat + t)r2 + (-0, +1)") X, (t, 2, %, €)

+ Z G (z,x,€) """ (X, (1,2, x, e))ll
=l )en

in the variable z with coefficients bk)/;(x, €), g p(x; €) in Ofx, €}
(which denotes the Banach space of bounded holomorphic
functions in (x, €) on some small polydisc D(0, p) x D(0, €)
centered at the origin in C* with supremum norm). We
assume that all Fourier coefficients b&ﬁ(x, €), g,p(x€) have
exponential decay in f3 (see (177), (178)). Hence, b (z, x, €) and

for given initial data

(aiX,) (t, z, 0, 6) = E‘i,j (t> Z, 6) 5
(2)

0<i<v-1, 0<j<S-1,

where € is a complex parameter, S, 1, 1, 13 are some positive
integers, < is a finite subset of N*, and ./ is a finite subset
of N that fulfills constraints (185). The coeflicients b.(z, x,€)

cL(z, x,€) define bounded holomorphic functions on H o X
D(0, p) x D(0, ¢;) where Hy = {z € C/|Im(2)| < p'} is some
strip of width 2p’ > 0.



The initial data are quasiperiodic in the variable z and are
constructed as follows:

exp (iz (lezo .ijj))

B it z,e) = Eip i(te) ,
(4)
where §, = 1 and &,,...,& are real algebraic numbers (for
some integer | > 1) such that the family {1,&,,...,&} is Z-

linearly independent and where the coefﬁcients & Borsfs ](t €)
are bounded holomorphic functions on 7 x &, where 7 isa
fixed open bounded sector centered at 0 and E {&i}o<icr1
is a family of open bounded sectors centered at the origin and
whose union forms a covering of 7”\ {0}, where 7" denotes
some bounded neighborhood of 0. These functions (4) are
constructed in such a way that they define holomorphic
functions on 7 x H,; x & for some 0 < pr<p.

Recall that a function f : R — [E (where E denotes
some vector space) is said to be quasiperiodic with period w =
(wgs ..., wy) € R"!, for some integer I > 1, if there exists a
function F : R""! — [E such that, for all 0 < j < I, the partial
function x; — F(x,...,Xj,...,%;) is w;-periodic on R, for
all fixed x;, € R when k # ], which satlsl{es ft) =F(,...,t)
(see, e.g., [1] for a definition and properties of quasiperiodic
functions). In particular, one can check that functions (4) are
quasiperiodic with period w = (27, 27/&,, ..., 2n/§;) in the z
variable.

Our main purpose is the construction of actual holo-
morphic functions X;(t,z,x,€) to the problem (1), (2) on
the domains 7 x H; x D(0, p;) x &; for some small disc
D(0, p;) ¢ C and the analysis of their asymptotic expansions
as € tends to zero on &, for all 0 < i < v — 1. More precisely,
we can state our main result as follows.

Main Statement. We take a set of directions d; € R, 0 < i <
v — 1, such that d; # n((2k + 1)/r,), for 0 < k < r, — 1, which
are assumed to satisfy moreover

5 arg (e) +arg (t) € (d;, - 0,d; + 0) (5)
L)

foralle € &, allt € T, andall0 < i < v-1, for some fixed 0 >
7. We make the hypotheszs that the coefficients E; 5 s i(f,€)
of the initial data (4) can be expressed as Laplace transforms

_ 1 G
g (€)= L Vigp (1) e 0z
(6)
on I x & along the half-line L, = R erd, where

Vi Borosni (T e) is a family of holomorphic functzons which share
the exponentzal growth constraints (152) with respect to T, the
uniform bound estimates (161), and the analytic continuation
property (184).

Then, in Proposition 28, we construct a family of holomor-
phic and bounded functions

Y Xig,

Bor-Pr20

exp (iz (X B%)))

X;(t,z,x,€) = Bol B!
O. l.

B (t,x,€)

7)
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which are quasiperiodic with period w = (2m,2n/,,...,
2mn/&)) in the variable z and which solve the problem (1),
(2) on the products T x H, x D(0, p;) x &;, where p1 >
0 satisfies inequality (153) and for some small radius 0 <
p1 < p. Moreover, the differences X, ,(t, z, x,€) — X;(t, z, x, €)
satisfy the exponential decay (187) whose type depends on the
constants ty, t,, r; and on the degree h + 1 of any algebraic
number field Q(&) containing &,,...,&,.
In Theorem 32, we show the existence of a formal series

x@_zmazm (8)

k>0

whose coefficients H,(t,z,x) belong to the Banach space of
bounded holomorphic functions on I x H, x D(0, p;), which
formally solves (1) and is moreover the Gevrey asymptotic
expansion of order (hr, + r,)[r; of X; on &,. In other words,
there exist two constants C, M > 0 such that

N-1 k
€
sup X; (t z,x,€) - ZHk (t,z,x) —
tef/”,zer{ ,x€D(0,p;) k=0 k! 9)

< C]\/INZ\]!(hrlJrrz)/r3 |€|N
forall N > 1andalle € &,

Notice that the problem (1), (2) is singularly perturbed
with irregular singularity (in the sense of Mandai, [2]) with
respect to t at t = 0 provided that r, > r,. It is of Kowalevski
type if r, < r, (meaning that the hypotheses of the classical
Cauchy-Kowalevski theorem (see, e.g., [3], pp. 346-349) are
tulfilled for (1)) and of mixed type when r, and r, are equal.

In a recent work [4], we have considered singularly
perturbed nonlinear Cauchy problems of the form

" (20,)" (£°9,)" Bu; (t, 2, €)
(10)
=F(t,2,6,0,,0,)u; (t,z,€) + P(t,z,6,u; (t, 2, €))

which carry both an irregular singularity with respect to t at
t = 0 and a Fuchsian singularity (see [5] for a definition) with
respect to z at z = 0, for given initial data

(90u;) (£,0,€) = ¢, ; (t,€)

0<j<S-1,

(11)

0<i<v-1,

where F is some linear differential operator with polynomial
coefficients and P is some polynomial. The initial data
¢;,(t, €) were assumed to be holomorphic on products 7 x&.
Under suitable constraints on the shape of (10) and on the
initial data (11), we have shown the existence of a formal series
(e) = Yoo hxe"/k! with coefficients h, belonging to the
Banach space [ of bounded holomorphic functions on I x
D(0, 9) (for some § > 0) equipped with the supremum norm,
solution of (10), which is the Gevrey asymptotic expansion of
order (r; + r,)/r; of actual holomorphic solutions u; of (10),
(11) on &; as F-valued functions, forall 0 <i < v - 1.
Compared to this former result [4], the singularity nature
of (1) does not come from the divergence of the formal
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series. This divergence rather emerges from the quasiperiodic
structure of the solution space which produces a small divisor
problem (as we will see below) and its Gevrey type depends
not only on the type of space of our initial data but also on the
shape of (1). It is worth noticing that a similar phenomenon
has been observed in the paper [6] for the steady Swift-
Hohenberg equation

(1+AU(xp)—pU (x0) + U (x,4) =0, (12)
where the authors have constructed formal series solutions

Uxp) = vy U™ ', (13)

n>0

where the coefficients U™ (x) belong to some weighted
Sobolev space H*(T) (for well-chosen real number s > 0) of
quasiperiodic Fourier expansions in x € R? of the form

U™ (0 = ) U™, (19)
kel

where I' = {2?:1 mjkj/(ml, cMg) € N2} with k]. =
(cos(2m((j — 1)/Q)),sin(2((j — 1)/Q))) is the so-called
quasilattice in R? for some integer Q > 8. They have shown
that this formal series (13) is actually at most of Gevrey
order 4/ (for a suitable integer | depending on Q) as series
in the Hilbert space H*(T). Their main purpose was actually
to use this result in order to construct approximate smooth
quasiperiodic solutions of (12) up to an exponential small
order by means of truncated Laplace transforms.

In a more general setting, the Cauchy problem (1), (2)
we consider in this work comes within the framework of
asymptotic analysis of solutions to differential equations or to
partial differential equations with periodic or quasiperiodic
coeflicients which is a domain of intense research in these last
years.

In the category of differential equations most of the results
concern nonlinear equations of the form

K
Y a () 0u(t,e) = F (u(t,€), t,e), (15)
k=0

where the forcing term F contains periodic or quasiperiodic
coefficients. These statements deal with the construction of
formal solutions u(t,e) = Z;%O u,(t)el which are called
Lindstedt series in the literature. For convergence properties
of these series, we quote the seminal work [7] and the
overview [8], and for Borel resummation procedures applied
more recently, we mention [9]. For applications in KAM
theory for nearly integrable finitely dimensional Hamiltonian
systems, we may refer to [10, 11].

In the context of partial differential equations, for exis-
tence results of quasiperiodic solutions to general families of
nonlinear PDE containing a small real parameter, we indicate
[12] and for the construction of periodic solutions to abstract
second order nonlinear equations, we notice [13]. Concerning
KAM theory results in the context of PDE such as small
nonlinear perturbations of wave equations or Schrédinger
equations we mention the fundamental works [14-16].

Now, we explain our main result and the principal
arguments needed in its proof. The first step consists (as
in [4]) of transforming (1) by means of the linear map
T — T/e"/™ into an auxiliary regularly perturbed nonlinear
equation (149). The drawback of this transformation is the
appearance of poles in the coeflicients of this new equation
with respect to € at 0.

The approach we follow is the same as in our previous
works [4,17] and is based on a Borel resummation procedure
applied to formal expansions of the form

Y (T, z, x,¢€)
. I
- > 7, (T,e) exp (iz (Zjoo Byé;))
- B 1...31 1’
Ez(ﬁowwﬁbﬁlﬂ)ENHz ﬁO' ﬁl' ﬁl+1‘
(16)
where ?ﬂ(T, €) = Ym0 Xm,ﬁ(e)Tm/m! are formal series in

T, which formally solves the auxiliary equation (149) for
well-chosen initial data (165). It is worth pointing out that
this resummation method known as x-summability already
enjoys a large success in the study of Gevrey asymptotics
for analytic solutions to linear and nonlinear differential
equations with irregular singularity; see, for instance, [18-24].
We show that the formal Borel transform of Y (T, z, x, €) with
respect to T' given by

V (1,2, x,€)

= Z Vﬁ (T, 6)
B=Bor i) N

exp (iz (le:O ﬁJE])) xPin
Bo!--- B! B!’
17)

where Vﬁ(r, €) = Y50 Xm,ﬁ(e)‘rm/ (m!)?%, formally solves a

nonlinear convolution integrodifferential Cauchy problem
with rational coefficients in 7 and is holomorphic with respect
to x near the origin and with respect to z in some strip and
meromorphic in € with a pole at 0; see (171), (172).

For appropriate initial data satisfying conditions (152),
(184), and (161), we show (in Proposition 20) that the formal
series V (7, z, x, €) actually defines a holomorphic function V,
on the product U; x Hp x D(0, p;) x D(0,€) \ {0}, for some

0 < p <p,0< p < pandwhere U, is some unbounded
open sector with small aperture and with bisecting direction
d; (as described above in the main statement). The functions
V, have exponential growth rate with respect to (7, €) meaning
that there exist two constants C, K > 0 such that

sup |V (r.z,x,¢)] < CMITV

ZGHP{ ,x€D(0,p;) (18)

forall 7 € U, € € D(0,¢,) \ {0}. Moreover, we show that,
forall B = (Bys---> B Brey) € N2, the formal series \7!3('[, €)
actually define holomorphic functions V; 4(7,€) on domains

(U; u D(0, Pﬁ)) x D(0,¢,) \ {0}, where pl;is a Riemann type

hr,

sequence of the form R/(1 + |B]) /" for some constant



R > 0, which tends to 0 as |S] = Zl“ B; tends to infinity, and

share the same exponential growth rate, namely, that there
exist constants C > 0, K > 0, M > 0 with

sup | ,;(T,e)’ < CKZBig 1. B, 1MV
zer;,xeD ,01)

(19)

forall 7 € U, e € D(0,¢y) \ {0}. We point out that the
occurrence of a radius of convergence shrinking to zero for
the coefficients V ,p near the origin of the Borel transform is

due to the presence of a small divisor phenomenon in the
convolution Cauchy problem (171), (172) mentioned above.
In our previous study [4], a similar outcome was caused by a
leading term in the main equation (10) containing a Fuchsian
operator (z0,)". In this analysis, the denominators arise from
the function space where the solutions are found, especially
from their Fourier exponents le;lo B;€; which may tend to
zero but not faster than a Riemann type sequence as follows
from Lemma 13.

In order to get the estimates described above, we use a
majorizing technique described in Propositions 17, 18, and
19 which reduces the investigation for bounds (19) to the
study of a Cauchy-Kowalevski type problem (114), (115) in
several complex variables for which local analytic solutions
are found in Section 2.1; see Proposition 5. On the way we
make use of estimates in weighted Banach spaces introduced
in Section 2.2; see Propositions 9, 10, and 12 and Corollary 11,
which are very much like those already seen in the work [4].

In the next step, for given suitable initial data (150)
satistying (158), we construct actual solutions

Yvi (T7 Z, X, 6)
. 1
_ Y Y, o (T,¢) exp (iz (Zjoo Bj€;)) i
- LB AT ...
Ez([;()w-)ﬁl:ﬁlﬂ)ENHZ - ﬁ()' ﬁl' ﬁl+1!
(20)

of (149), where each function Y; g(T,€) can be written as a

Laplace transform of the function V,

along a half-line L, =R, eV ¢ U, U {0}. For each € € &,
the function T n—> Y; ﬁ(T €) is bounded and holomorphlc

»ﬁ(T €) with respect to 7

on a sector U; . with aperture larger than 7z, with bisecting

direction y, and with radius ' |e|"*'™ for some constant i’ > 0.
In Proposition 23, we show that the function Y; itself turns out
to define a holomorphic function on U; . x H,» x D(0, p;) for
some 0 < p; < p and where p| > 0 satlsﬁes (153).

We observe that, forall 0 < i <

< v — 1, the functions X;
defined as

X; (t,z,x,€) = ( sty 2 x, e) (21)

actually solve our initial Cauchy problem (1), (2) on the
products I x Hy x D(0, p;) X &; and bear representation
(7) as a qua31per10d1c function whose Fourier coefficients
decay exponentially in 8. It is worthy to mention that spaces

of quasiperiodic Fourier series with exponential decay were
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also recently used in [25] in order to find global in time and
quasiperiodic in space solutions to the KdV equation.

In Proposition 28, we show moreover that the difference
of two neighboring solutions X;,,; and X; has exponentially
small bounds of order r;/(hr, + r,), uniformly in (t,z, x),
as € tends to 0 on &;,; N &;. We observe that for each
B € N"? the difference X, 1,8 — Xjp for the Fourier coef-

ficients has exponential decay of order r;/r, but its type is
proportional to Pg and therefore tends to 0 as ﬁ tends to

infinity. This small denominator phenomenon is the reason
for the decreasement of the order r;/r, to r3/(hry + r,). As
in our previous study [4], the bulk of the proof rests on a
thorough estimation of a Dirichlet like series of the form

Yioe VEV Gk for0 < a < 1and a7 > 0 withe > 0
small. This kind of series appears in the context of almost
periodic functions introduced by H. Bohr; see, for instance,
the textbook [26]. These estimates (187) are crucial in order
to apply a cohomological criterion known in the literature as
the Ramis-Sibuya theorem (Theorem RS) which leads to the
main result of this paper, namely, the existence of a formal
series

k

X(tz.x€) = Y He— o (22)
k=0

with coeflicients H,, in the Banach space of holomorphic and
bounded functions on F x H o X D(0, p;), which formally
solves (1) and which is, moreover, the Gevrey asymptotic
expansion of order (hr, + r,)/r; of the functions X; on &,
forall0<i<v-1.

The layout of the paper reads as follows.

Section 2.1 is dedicated to the study of a version of the
Cauchy-Kowalevski theorem for nonlinear PDEs in analytic
spaces of functions with precise control on the domain of
existence of their solutions in terms of norm estimates of
the initial data. In Section 2.2 we establish some continuity
properties of several integrodifferential and multiplication
operators acting on weighted Banach spaces of holomorphic
functions. These results are applied in Section 2.3 when
looking for global solutions with growth constraint at infinity
for a parameter depending nonlinear convolution differential
Cauchy problem with singular coefficients.

We recall briefly the classical theory concerning the
Borel-Laplace transform and we show some commutation
formulas with multiplication and integrodifferential opera-
tors in Section 3.1; then we center our attention on finding
solutions of an auxiliary nonlinear Cauchy problem obtained
by the linear change of variable T — T/€¢" from our main
Cauchy problem in Section 3.2. The link between this Cauchy
problem and the one solved in Section 2.3 is performed by
means of Borel-Laplace transforms on the corresponding
solutions.

In Section 4.1, we construct actual holomorphic solutions
X;; 0 < i < v -1, of our initial problem and we show
exponential decay of the difference of any two of these
solutions with respect to € on the intersection of their domain
of definition, uniformly in the other variables. Finally, in
Section 4.2, we conclude with the main result of the work,
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that is, the existence of a formal power series with coefficients
in an appropriate Banach space, which asymptotically repre-
sents the functions X; with a precise control on the Gevrey
order on the sectors &;, forall0 <i <v-1.

2. A Global Cauchy Problem in Holomorphic
and Quasiperiodic Function Spaces

2.1. A Cauchy-Kowalevski Theorem in Several Variables. In
this section, we recall the well-known Cauchy-Kowalevski
theorem in some spaces of analytic functions for which
the size of the domain of existence of the solution can be
controlled in terms of some supremum norm of the initial
data.

The next Banach spaces are natural extensions to the
several variables cases of the spaces used in [27].

Definition 1. Let > 1 be some integer. Let Z,. .. Z,,X >0
be positive real numbers. We denote by G(Z, ..., Z;, X) the
space of formal series
7Po . P xcBia
U(Zgp. ' Z)X) = Z uﬁ%
E:(ﬁo ..... ﬁbﬁlﬂ)ENHz - ﬁO' ”'ﬁl‘ﬁlJrl'
(23)
that belong to C[[Z,, ..., Z;, X]] such that
v (Zys-... 2 %)z, .25

' zgo Zﬁz Xﬁm (24)

= Z 'ué (Zl+1 ﬁj)

PB=(Bos--s BisBrer) N2

is finite. One can show that G(Z,, ..., Z;, X) equipped with
the norm | - || 7,7, ATe Banach spaces.

In the next two lemmas we show continuity properties
for some linear integrodifferential operators acting on the
aforementioned Banach spaces.

Lemma 2. Let hy,...,h, h,, € N with
!
iy 2 Y hy. (25)
=0

Then, for any given Z,, ... ,Z,X > 0, the operator 82 e

a;lla;(h’“ is a bounded linear map from G(Zy, ..., Z;, X) into
itself. Moreover,
h hy ~hy
"azll +- 030y U (Zgs 5 Z, X)"%...,ZX)
h B (26)
o I_h+l
< Zo 0"'Z I ”U --"ZZ’X)"(ZO ,,,,, Z,,X)

forallU(Zy, ..., 7, X) € G(Zy, ..., Z;, X).

Proof. Let U(Z,, ..., Z;,X) € G(Z,, ...
By definition, we can write

,Z,?) of form (23).

||ah0 . hz a—thU (Z RAR X)"(Z,,__.,Zj)

= Z ( (le=0 Bi+hj+ B - hm)!
BossBpsPra 20 (Zlﬂ ﬁ])

R ——hy—]
- Z, °...Z, th’“> (27)

. |Uﬁ0+h0’---’ﬁl+hl’ﬁl+l_hl+1
1
(Zj:o Bj+hj+ P - hl+1)!

. Z§O+h0 o Zlﬁﬁhzyﬁm—hm'

From (25), we have
(Xm0 Bj + 1y + By =iy )!
(X8

, Bo hys Briis by, = 0. Estimate (26) follows.
O

<1 (28)

for all B, hy, ...

Lemma 3. Let hy,...,h;, hy,; € N. Let, forall 0 < j < 1,0 <
2} < 2(; and0 < X' < X' be positive real numbers. Then,
there exists C, > 0 (depending on hy, ..., hy,,, XX, Z?,Z;
for 0 < j <) such that

"8;‘; o agzal;(MU (Zos. Z”X)"(Z;,...,E},?)
@)@ )
MU (Zos o 26 X 0 250
for allU(Zq, ..., 2, X) € GZgy..., Zy, X0).
Proof. Let U(Z,,...,Z;,X) € G(Zg,...,z),io) be of form

(23). By definition, we can write

| - %o U (Zos ... 21, X ||

a Z |”/30+h0 ,,,,, Birthy, Bty
- I+1
. )
Bos--sBpsBra1 20 (Zj=0 ﬁ] ])’

@) ) )

(ZZH /3 +h ) —1\Botho —1\ B+l
.<Wx(zo) "'(Zz)

] <X1>ﬁl+l+hl+l >

(30)



1 —0
Now, we take some real number 0 < § < 1 such that Z j < 6Z i

forall 0 < j <land X' <8X . We get the estimates

zlzlﬁ' i)t r—i Botho —1\Prth s —1\Prathig
| (z‘osf_‘i;)—i) @) @) (=)

I+1 I+1 (Z5%h) ; . (31)
(BneSn) s
i—0 =0

(Zo)ﬁo+h0 (EO)ﬁﬁhz (XO )ﬁz+1+hz+1
(z, - (Z

for all By, hys ..., By B My = 0. Since 0 < & < 1, we
know that, for any real number a > 0, there exists K5, > 0
depending on g, § such that

sup (n+a)” 8™ < Ky ,. (32)

n>0

Hence, we geta constant C, > 0 dependingonh,0 < j < I+1
and § with

li li oh) R—
ﬂj + hj O\&i=0 Pit2j=o
=0 o

(Zo)ﬁo*'ho (ZO)ﬁz‘rht (Xo>l;l+l+hl+l
(z, - (Z

<c, (Zg)ﬁo”m (Z?)ﬁﬁhz (?O)ﬁlﬂ*'hm

(33)

for all By, hgs ... B 1y, Brirs iy = 0. As a result, gathering
(30), (31), and (33), we get the lemma. O

Lemma 4. Let U (Zy,..., 2, X),Uy(Zgs ... Zp, X) € G(Zy,
..y 2, X). Then, the product U,U, belongs to G(Z,,...,
Z,, X). Moreover, we have

U, (Zy,..., 2, X) U, (Z,, ..., ZI’X)”(Z),...,ZX)

< "Ul (Z()s ceey Zl’ X)"(ZO ,,,,, Zl,i) (34)

. "U2 (Zos- s 2y, X)”(EO,,,,,Z,?) :

In other words, the space G(Z,, . . ., Z;, X) is a Banach algebra.

Proof. Let

ﬁﬂ l;l ﬁHl
ACI£LD ¢
Ui (Zp--nZpX) = Y up— !

g (35)
BosPisPre1=20 ; Bot -+ Byl Bras!
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belonging to G(Z,, ..., Z;, X) for j = 1,2. By definition, we
can write

Uy (Zgs.... 2, X) Uy (Zos .. 2y X)||(Z]MZ§)

Hl~+1

Z ( Z < ]:Oﬁj! 1 >
1+1 Q1y7l+1 2 I+1
Boefii20 \prsg2p0sjee \ 0B TS (X050 B;)!

)

Besides, using the identity (1 + x)z?:h Bi = Hljﬁ)(l + x)ﬁf and
the binomial formula, we get that

<

1 2
' |”<ﬁé ,,,,, BB B BB

) Zgo - .Zlﬁzyﬁm .
(36)

I+1 1+1
Hjioﬁj! < (2;;0/31')!
I+1 plyypi+1 27 — I+1 1 I+1
EOAITILA (25 ) (25 7))

(37)

for all integers ﬁ],ﬁ;,/}f > 0 such that ; = ﬁjl + ﬂ?, for 0 <
j < I+ 1. Therefore, inequality (34) follows from (36) and
37). O

In the next proposition, we state a version of the Cauchy-
Kowalevski theorem.

Proposition 5. Let D, (resp., &,) be a finite subset of
N2 (resp., N*Y) and let S > 1 be an integer such that, for all
(ko ki) € Dyand all (py, ..., p;) € D,, we have

S> kl+1>

=4 (38)
1
$= ) p;.
=0

Let D be a finite subset of N\ {0, 1}. Let M°, X, > 0 be given
real numbers and let Z(; > M°, 0 < j <1 be real numbers. Let

.....

=0 =0 =0

Tooy (Zore-nZ)) € G(ZO,...,Z,,X ) (39)
en(Zyp-. 2,X) €G(Zy.... 2, X")

for all (kys.... k1) € Dy, all (pg,....p;) € Dy, and allm €

D;. Forall 0 < j < § -1, we also choose ¢(Z,...,Z;) €
—0 —0 —0
G(Zy.... Z;, X ).
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We consider the following Cauchy problem:

XU (Zg-..» 21, X)
= Y A (Ze 2 X) 0 00N
k=(kgeokiki )€D,
U (Zgs.. > Zpy X)
+ Y f(Ze. 200
P=(por-sP)ED

(40)
for given initial data
(V) (Zgs..»21,0) = 9 (Zgs .1 Z1), 0<j<S-1.
(41)
Then, for given real numbers Z} >0,0<j< 1 withM <

ZJI < Z(J)., one can choose 0 < Xl < XO and § > 0 (which

—1 i
depend on ijorO < j<lonl|d(Z,... Zl,X)ll 7 PR

Z;,X)
Jork € Dy, on |l f(Zy,.... Z)l 020 forp € .@2, “and on

(ZoyrZ) X

lew(Zose s Zu X0l o550, form € D )such that if
0>+ %] >
lo; (ZO,...,ZZ)”( A <6 0<jsS-1, (42)

then the problem (40), (41) has a unique solution U(Z,, ...,
—1 —1 —

Z,X) € G(ZO,...,ZZ,XI). Moreovet, there exists a con-

stant C; > 0, depending on X, X, E?, Z} for 0 <

j < Lon |ldi(Z,,... ZI,X)II(?) ..... 25 for k € 2,, on

||fp(ZO, . )|| 72X Jor p € 2,, and on e, (Z,,...,
Zl,X)II(Z ..... 7% )form € D, such that
"U (ZO’ cees Zl’ X)“(Zl))m’zljl) < 8C3. (43)
Proof. We put
s-1 X/
w(zo,...,z,,x)=Zq)j(zo,...,zl)7 (44)
=0
and we consider the map A : C[[Z,,...,Z;,X]] — CI[[Z,,

.»Z;, X]] defined as
A(H(Zy...,

-3

k=(kqserrkp,k141) €Dy

Z1, X))

o akm =S

dk (ZO"‘ Zl’ X) ako *

"H(Zg..» 2y X)

)

k=(kg>....k1,k141) €2,

A (Zos - 21, X) 0 - O O

U)(ZO,...,ZI,X)

+ Z fp(ZO,...,

P=(porP)ED,

( Z en(Zosnes

meD,

2)0% 3
Z;, X)

: (a)‘(SH(ZO,...,ZZ,X)+w(Z0,...,Zl,X))m>.

(45)

Lemma 6. Let Zjl > 0,0 < j <, be real numbers such that

—1
M° < ZJ. < Z?.. Then, there exist 8 > 0, a real number 0 <

X' < X', and a constant K, > 0 (depending on Zl for

0 < j<Lonld(Zy-..s 2 )”(z 020 fork € 91,
on IIfP(ZO,.. Zl)"(z" ..... 725 forp € 92, and on e, (Z,,

Z,,X)||4 2% form € D3), such that if one puts R =
K,6,

(i) we have
A(Bg) € By, (46)

where By, is the closed ball of radius R, centered at 0 in
GZy.... 21, X);
(ii) for all H, H, € By,

1
|A(H,)-A (HZ)"(Z;W,ZI,XI) S 5 |5, - Hz”@é,...zl,il) :
(47)
Proof. We first show (i). We fix Ej > 0,0 < j <[ bereal

numbers such that M° < Z} < Z(J).. We also consider § > 0
for which (42) holds. Let R > 0 be of the form R = K,0 for
some constant K, > 0. We take H € B where By, is the closed

ball of radius R, centered at 0 in G(Zl), .. ,Zl ,Yl) for some

real number 0 < X' < X . From Lemmas 2 and 4, we get

“d& (ZO) ey Zl; X) a;:) e a;llaéc(lﬂ*s

- H(ZO,...,ZI,X)H(ZI

7 X

s "dk (Zos-. ’ZZ’X)||(23,...,Z1X])

@@ )



’ “H (Zos- 2, X)" X

(Z ,,,,, X))

< ||d@(Zo’~-->Zz>X)||<z° ..... 25

—1\ ko —1\ ki —1\S ki1
(@) (@) (X)) TR
(48)
Now, from Lemmas 3 and 4, we get a constant C, > 0

(depending on ky, .. ., k;, ?,YI,Z?,Z;, for 0 < j < 1) with

dk(ZO,...,Z,,X)(aZ ..agq,j)(zo, . zl)? S
X4
S“dg(zo’--~>ZI’X)“(2;,...2;,X‘> alz 25
1\ k 1\ k
C4(Z(l)> ! (Z;) IX||(P]~(ZO,...,Z1)|(ZO ..... Zoio)
Xq
S“dk(ZO,...,Zl, (4;’.“’41)70 q' (ZU Z’XO)
—1\ ko —1\ ki
-c4(zo) ~--(Z,) )
(49)

forall0 < j,g<S-1.
Using Leibniz formula, we deduce from Lemma 4 that

“fg(zo,...,zp)agz...ag
(en (Zop- s

.(a;(SH(ZO,...,ZZ,X)+w(Z0,...,Zl,X))m)”(Z1) ..... 23

<y ploopl

S Py pr0<he] Mo jem,0<nsi Ph,j!

- ||fg(zo,...,zp)]

P10
"0y e (Zgs -

Z,X)

-1 —=1=l1
(ZyZ) X )

—=1 =1 =1

' "ag;,o . ZorZ) X))

Z,X)|

JTI@% +-05) (05°H (Zos ... 24, X)
j=1

+ w(zo,...,z,,x))"(zl

nZy X
(50)

By Lemma 3, one also gets a constant C, ; > 0 (depending on
Pogr-eer P X X 22, Z, for 0 < j < ) with

e (o200

“ 0 ! e

<C41( 0) Poo ( )P"’ "em(zo""’ZI’X)”(ZO Z)XO)
(51)
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By Lemma 2, one finds

o230 H (2 ... 2 X)“@l,_jy)

<(Z) " (Z) (R P o
()™ (@) (7

Due to Lemma 3, we get a constant C, > 0 (depending on
=l =0 =1
po,j,...,pl)j,X_O,Xl,Zm,Zm for 0 < m <) such that

ZZ’X)"(Z ,,,,, 7 X)

(52)

"ag;,jmag,jw( ZZ’X)"(Z ..... 7,.X)
X1
<Z||ap0/ ap”(Pq ZO,“"ZI)"(Z(I) ..... Zl,il) q' - 21Xl)
1>

< C“Z( ) . ( ) " “9011 (Zo».- "’Z)”(?’,,..,?’X")

Xq
I q! (ZoyrZ) X))
S )
2 @ 725

(53)

Now, we can choose 0 < Xl < XO, d > 0 and the constant
K, > 0 (recall that R = K,;6) in such a way that

Y lde (..

k=(kgs....k11) €D,
—1\ ko —1
. ( Zo) . ( Z, )

. <(Xl)8kl“ K0+ Z C46>
4=0 (ZoyrZ) X))
DD

Z 0 ! '

P=(Porsp) €D, MED5 T p, =, 0<hs] Hoc jem,0<het Ph,j'

72 2% xCyy (Z(l)ypo,o (le>7pw

Zp X))

_kl

Xq
q'

|5 2o 20)

(ZgssZy, X7)
lew (Zo-- 20 X 2 25

X1
a

+C4zZ( 7)™ (7)o

—0  —=0—0
(ZgpZy X >

(54)
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Hence, gathering (48), (49), (50), (51), (52), (53), and (54)
yields inclusion (46).

We turn to the proof of (ii). As above, we fix Z; >0,0 <

j < 1, be real numbers such that M° < Z} < Z(;. We also
consider § > 0 for which (42) holds. Let R > 0 be of the
form R = K,6 for some constant K, > 0. We take H,, H, €
By where By is the closed ball of radius R, centered at 0 in
G(Zl), . ,Zl,yl) for some real number 0 < Yl < XO. From
Lemmas 2 and 4, we get that

||dk (ZO) ceey Zl) X) a;(:) e aglaf(lﬂ_s

(Hy (Zgp-» ZpyX) = H, (Zgs . .» Z1 X)) ||(Z))MZXI)

< |de (2., 21 X ||Z 2%
(Z) () (®)
NH (Zo - 20 X) = Hy (Zos s Z0 X 2 5

< ”dk (ZO’ ey Zl’ X)”(z;’wz)i(o)
(Y (Z)®)
\H, (Zg, ..., 2, X) = Hy (Zgs ..., Z;, X)||(Z)’.__Zjl) .

(55)

Using the identity b™ — a™ = (b — a) ¥, a*b™ " for any
complex numbers g, b and any 1nteger m > 2, we can write

— m
(0°H, (Zgs o n 21 X) + w(Zgs ..., 21, X))
0 H, (Zgy o s 2, X) + w0 (Zg ., 23, X)™
= (3°H, - 0:°H,) (56)

m—1
. Z (a;sz + w)s (a;le + w)m e
s=0
Using Leibniz formula, we deduce from Lemma 4 that

fp (Zos-e s Z1) 07 - 0leyy,

(Zgs-.» 21, X) (0°H, - 0 H,)

' mi (0:5H, +w) (3:5H, +w)"
< |

s=0

< Y b!

5.0 . =pr0shel o< ]sz,OshslPh

—1 =1l
ZgnZy X))

A .

X)

Po,o Pro
Y R AR

9
. ”agzl . agzl,l (a}}SHl _ a;(SHZ)“(ZI) ’’’’ lel)
. ago,z . aPl,z
(= a_s s a_s m—1-s
. Z(XH2+w)(XH1+w) o
s=0 (Zg»rZy X
(57)

By Lemma 3, one also gets a constant C, ; > 0 (depending on
—1 =0 =1
Pogr-or P X X 22, Z, for 0 < j < ) with

”ag;’o ~--ag’°em (ZO""’ZZ’ X)”(Z ..... z1 Y1)
<Cua(Z0) () T llen Ze 2o Ol
(58)
By Lemma 2, one finds
"821' apll (a Hy -0y 'H )” ZonZy X
< (2(1))*170,1 ._.(Z;)*Pu (_1) ||H1 H2|| . 21 2
(59)

Using again Leibniz formula and Lemma 4, we can write

o <28 (o + ) (01 + ) )

Zgpi2) X))
I... |
- Z Pop’ Pia
- . Al
Z;n:_]l phzj:phZ,OShslng]ém_l’()Shglph’z’f
1_[" aPoz; aPloJ (a H, +w “ e

ez

j=s+1

a"“’f ) (0°H, +w)

=1 =1

(ZgsenZy X )

(60)

By Lemmas 2 and 3, one finds a constant C, , > 0 (depending
—0 —1 —0 —
on po,z’j,...,pl,z’j,XO,Xl,Z].,Z; for 0 < j <) such that

||(a§‘;*2’f- ap“f)(a H +w ||

ZX)

(B s @
S I

forr=1,2.

-0  —0—0
ZgprZ) X
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. =l =0,
In the following, we choose 0 < X < X in order that
Y o 2o g 2
k=(kos...ski41) €D,

@) ()
N Z Z Z pot--pi!

A 1
P=(Porab) €, MED5 52 o T o<kl o jco0<n<i Ph, !

-”fg(ZO,...

..... o Z) %)
Ca(Z) " (Z) " Nen Zo o 20 oz
@) () (7
(S Dot pio!
=0y ph,zg}oh,z,oshsl I g jem-1,0shs Pra, it
()™ (7)™ () ke
i1
o3 () ()™
il )
m—1 —I\—Poa,; INPia —
T (@ () e
o (7)™ (7)™
5l
’’’’’ 2
(62)

Taking into account all inequalities (55), (56), (57), (58), (59),
(60), and (61) under constraint (62), we deduce (47).

Finally, for fixed real numbers 2} > 0,0 < j < such

that M° < Z; < Z(}, we choose 0 < X' < X_O, 6 > 0 and the
constant K, > 0 (recall that R = K,§) in such a way that both

constraints (54) and (62) hold. For these constants, the map
A satisfies both (46) and (47). O

We are in a position to give the proof of Proposition 5. Let
—1 —1
Z; > 0,0 < j <1, be real numbers such that M° < Z; < Z?;

we choose 0 < X' < fo, 6 > 0 and the constant K, > 0 as in
Lemma 6. We have put R = K.

Abstract and Applied Analysis

Zl ,Xl) equipped with the
1 isa Banach space, the closed ball (Bg, d)

From the fact that G(Zl), ..

norm | - ||Z 25

for the metric d(x y) ly— x|| —1 -1, is a complete metric

..... Z,.X)
space. From Lemma 6, the map A is a contraction from
(Bg, d) into itself. From the classical fixed point theorem, we
deduce that there exists a unique H¢(Z,, ..., Z;, X) € Bpsuch
that A(H f) =H

By construction and taking into account Lemma 2, the
formal series

Us (Zgs-., 21, X)
B (63)
=0y Hf (Zo

”"’Zl’ )+w(Z ZZ’X)

is a solution of the problem (40), (41). Moreover, Uf(ZO, -

7, X) € GZy..., Z),X ) and
”Uf (ZO’-"’ZPX)"(Z, ..... 7 X')
(64)
<o
) << ) @’ ,,,,, Z’i"))

which yields (43). Thus proof of Proposition 5 is complete.

2.2. Weighted Banach Spaces of Holomorphic Functions on
Sectors. We denote by D(0, r) the open disc centered at 0 with
radius # > 0in C. Let ¢, > 0 be a real number and let S; be
an unbounded sector in direction d € R centered at 0 in C.
By convention, these sectors do not contain the origin in C.
For any open set & ¢ C, we denote by O(2) the vector space
of holomorphic functions on 2. Let [ > 1 be an integer. For

all tuples B = (Bys ... Brs1) € N2, let pg = 0 be positive real
numbers such that Pg < P if | B'I > |B| (where by definition
1Bl = Zm B;)- We define Qp = D(0, pg) U Sy

Definition 7. Let b > 1 be a real number and let r,(f) =

T2 1/(n+1)" forall tuples B € N2, Lete € D(0,,)\{0} and
r,0 > 0 be real numbers. We denote by Ep 005 the vector

space of all functions v € @(Qﬁ) such that

v @ leara,

EE (65)
R

TGQE

is finite.

Remark 8. These norms are appropriate modifications of the
norms defined in 4, 17].

In the next proposition, we study some parameter
depending linear operators acting on the spaces E B0yt

Proposition 9. Let s;,k, > 0 be integers. Let B = (B, ...,
B €N B = (B

Bi1) € N2 Under the assumption
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that |B| > |Bl, the operator Tsla;k‘) defines a bounded linear
map from Eﬁ,e,o,r,ﬂﬁ into Eﬁ)e’a)r’%, for all e € D(0,¢,) \ {0}.

Moreover, one has

0, ko Vi (7,

Beor,Q

=1

= ||V§ (%) BeorQy

_1 s1t+kg
. |€|r(sl+k0) 3 1 b(si+ko) < (Sl tk()) € )
(00 (Gp) o

+ (|E| + 1)b(sl+k0+2)

. < (s; +ky+2)e! >Sl+ko+2>
o (18- 1#))
for all VE(T, €) € EE’E’U”’QE'
Proof. The proof follows the same lines of arguments as

Lemma 1 from [17]. By construction of the operator 0 % one
can write

10,V (1)

o (!

+

=% OJ
0 0

Jl Vé (hkl] . "th,e)

h, ---h Tz
-<1+_| il |€|2‘r‘1 ' >
ST

exp((cf/|€| Tb |hk0 th')
-hlr| /el

(67)

1+|hk0--

My, (hyso.s by ) dhy - dhy,

where My (h;,...,h _,) is a monic monomial for k, > 2,
while M, = 1, for all 7 € Q4. We deduce that

I -
o7 ) o e (B) 1
2
< e 14 (68)
E,e,a,r,QE |€|2r

cexp (% (1(5) - (8) )

forallT € Q 5 C QE' By definition of 3, one has

10,V (r, )| (

Vﬁ (1,€)

Bl Y s A

> (69)
- n:|g|+1(n+1)b (|§|+1)b

1

Now, we recall the classical estimates: for all integers m,, m, >
0,

supx™e ™ = <ﬂ> e ™ (70)
holds. Using (70), we deduce that

sy +ky+2
(|T|sl+k0+|r| - )exp< u <|ﬁ~| i >| |>
) (18] + 1)

stk
< le|r ko) b(51+ko (51 +ko) e
s (180 (S5

+ (|E| + 1)b(sl+k0+2)

. < (s +ky+2)e! >sl+k0+2>
o (18] - |8))

Taking into account (68), (69), and (71), we get (66). ]

(71)

In the next proposition, we study the convolution product
of functions in the spaces E B0y

Proposition 10. Let /3 (Bos-» BLy) € N*2 and [3 (B

S Bhy) €N Let B e N2 such that |B| = |B']+|B2. Then,
for any Vﬁ 1(1,€) € Eﬁ eary Vﬁ 2(T,€) € Eﬁ corg the
convolution product Vﬁ 1(1,€) * Vﬁ 2(7, €) belongs to Eﬁeg,Qﬁ

for all e € D(0,¢,) \ {0}. Moreover, there exists a universal
constant Cs > 0 such that

L Véx (1 - s,€) Véz (s,€)ds

B.e.o,r,Qp
- (72)
.
< Cs e “VEI (t, 6)" o "Vp Peonag
for all Vip (7, €) € Eg o0y Vp(re) € Ep eorQp

Proof. We mimic the proof of Lemma 3 in [17]. One can write

L VEI (t —s,€) Véz (s,€)ds

B T ~ |T—5|2>
= JO VEI (T -s,¢€) (1 + |€|2r
o
. eXp(—WTb (El) |T—S|) (73)
-V (s,€) Il exp | —— (ﬂz)l |
Ez 5 |€|27 P | |1‘rb P S

exp ((0/ le") (rb (El) T —s|+71, (EZ) |5|))ds
(1+ (1 =sP/1el)) (1+ (1s* /1))
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g N Qﬁz. We deduce that

forall‘reﬂﬁ cQ

L VEI (T —s,€) Véz (s,€)ds

<|vg @e Vg (o)

1 ’ 2
B &0 Qp 76,01, 2

B

| Jl Ielexp (altl/1el") (r, (B') (1 = h) + 1, (B*) )

o (1+ (1717 /1el) @ =h?) (1+ (Ie1* / el ) 1?)
(74)

forall 7 € Q. Since r, is increasing, one has

r, (gl)u —h)+1, (Ez)h <7 (;_;). (75)

Therefore,

|7I* o
(1 + e ) exp <_Wrb (E) |T|>
'Jl Ielexp (altl /1el’) (r, (B') (1 = h) + 1, (B*) h)
o (1+ (1217 /1el) @ =h?) (1+ (1717 / lel) 1)

1 (1+ (17 /1)) Il
<], (= (e /16 =) (1 (i /1) )

=J Izl lel)

(76)

forall T € Qg. Now, from [28], we know that there exists a
universal constant Cs > 0 such that

J (lel" 11, lel)

- <Cs (77)
le]

forall T € C, e € C*. We deduce that

up el 1eD _ (T (el I e

<C (78)
7eC |€|r 7eC |€| °

for all ¢ € C”. Finally, gathering (74), (76), and (78) yields
estimates (72). O

Corollary 11. Let I, > 0 be an integer. The operator a;l"
defines a bounded linear map from Ege g0, into itself, for all

€ € D(0,¢,) \ {0}. Moreover, there exists a constant Cg > 0
(depending on 1y, o) such that

< Ce lel™
E,e,a,r,ﬂé

3,V (r. €)

VE (T, €)

E,e,a,r,ﬂg (79)

for all VE(T) €) € Eg,e,o,r,oé .

Proof. We carry outa similar proofas in Corollary1from [17].
We denote by y¢ the function equal to 1 on C. By definition,

we put o' = xc and y&' means the convolution product

Abstract and Applied Analysis

of xc, [ — 1 times for [ > 2. By definition, we can write
8T_IOVE(T, €) = (XC(T))*IO *VE(T, €). From Proposition 10, there
exists a (universal) constant C5 > 0 such that

3,V (z.¢)|
T E(T 6) (E,e,a,r,ﬂé)

(80)

A ’

I I}
< CSO |€|TIO ||XC (T)H(Og,e,a,r,ﬁg) (ﬂ,e,a,r,Qﬁ)

where 0 = (0,...,0) € N2, By Definition 7 and using
formula (70), we have that

"XC (T)“(Q,e,a,r,ﬂg)
= su (1 + ﬂ)ex (—i |T|> <1+ (26—1)2
v\ e )P e ) e )
From estimates (80) and (81), we get inequality (79). O

The next proposition involves bound estimates for multi-
plication operators of bounded holomorphic functions.

Proposition 12. Let a(t,e) be a holomorphic function on
Qoxp0,e,)\ (0} Stch that there exists a constant M > 0 with
sup(r,e)eow(oﬁo)\m)Ia(‘r, €)| < M. Then, the multiplication by
a(t,€) is a bounded linear operator from Egeorqy, into itself,

forall e € D(0, €y) \ {0}. Moreover, the inequality

"a (1,€) VE (1,€)

<M ||Vﬁ (1,€) (82)
5 L4

PeorQ BeorQp

holds for all V(7. €) € Ep o0

Proof. The proof is a direct consequence of Definition 7 for
the norm | - [lg¢6,r,0,- O

2.3. A Global Cauchy Problem. We keep the same notations as
in the previous section. In the following, we introduce some
definitions. Let &/, be a finite subset of N’ and let &/, be a
finite subset of N*. Let I > 1 be an integer.

For all (ky,k;,k,) € o, we denote by Iy ; i) 2
finite subset of N*. For all (ky, k;,k,) € o}, all (s,,s,) €
Lk i k> and all integers By, B, > 0, we denote by
A, s, Kook deysBosfin, (7> €) sOme holomorphic function on Qq x
D(0,¢,) which satisfies the estimates: there exist constants
p.p >0, Qg s ok k, > 0 with

sup |a51)52’k0)k1:k2xﬁo’ﬁl+1 (r, 6)|
(T,e)EQgXD(O,eO)

83
e—P’ Po 1 B ( )
i _ | |
S Qg s, kooky ks 5 <2P> Bo!'Brt!
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for all (k,, k;,k,) € &, we consider the series

a(ko»kl’kz) (T’ Z> X, €)

= Z Z a51 5825k K5B05 B

(51552) €Ik ey ky) Po=0:B14120 (84)
eizﬁo xﬁl+l

:80! ﬁl+1!
which define holomorphic functions on Q x H, x D(0, p) x
D(0,€,) \ {0}, where H o 1s defined as the following strip in C:

C '
Hy = {z € m ()] <p ]» (85)

For all (Iy,];) € o,, we denote by J; ;) a finite subset of N.
For all m; € J ; and all integers f3, B;,; > 0, we denote
by e, 1.1,.8,8.,(T>€) some bounded holomorphic function
on Qy x D(0, €)) with the following estimates: there exists a
constant a,, ; ; > 0 such that

(1) T e 2

sup 'ocmplo’ll BoPrir (r, €)|
(T,e)eﬁng(O,eo)

'\ Bo B
e ( 1 I+1
< aml‘lo,ll (T) <£> ﬁO!/‘;l+l!

for all S, B, = 0.
For all (I;,1;) € o,, we consider the series

(86)

0((10)11) (T, zZ, X, 6)

= Z Z (xml’lﬂ’ll »BosBri (T’ 6) €

my€Jg 1) Bo20Pp4120

eizﬁo xﬁm (87)

mﬁlﬂ!

which define holomorphic functions on Qy x H,y x D(0, p) x
D(0,€) \ {0}.

Let] > 1 be an integer and let &, = 1 and &,,...,& be
real algebraic numbers such that the family {1,&,,...,§} is Z-
linearly independent (this means that each £ ; isareal root of a
polynomial P; € Z[X] and if there exist integers k, ..., k; €
Z such that k, + le=1 ki&; = 0,thenk; = 0for0 < j <
I). Due to the classical primitive element theorem of Artin,
we consider an algebraic number field K = Q(&) containing
the numbers ;, 1 < j < I and we denote by h + 1 > 1 its
degree (that is the dimension of the vector space Q(&) over

Q). The following lemma is a direct consequence of Theorem
11in [29].

—m,

Lemma 13. There exists a constant Cy ¢ > 0 (depending on

&, ..., &) such that, for any k = (ky,...,k;) € Viak \ {0}, the
inequality

ko + ki &y + - + kg

S CEI,...,EI > CEl:---’Ez (88)
(mao k)" (ol + -+ i)’

holds.

13

Example 14. Let & be an algebraic number. Assume that
the degree of Q(§) is h + 1. Then, the algebraic numbers
{LE,...,&" are Z-linearly independent and inequality (88)
above holds for & i = &,0< j < h. In that case, one recovers
Lemma 2.1 of [6].

Let S, 7,7, > 1 be integers. We put

Cﬁ/’z
pp = — (89)
S (2B Bu)™)

forall B = (Bys-..»B,) € N2 We consider an unbounded
sector S; C C centered at 0 such that

2k +1

T

arg (1) # m, 0<k<r,-1, (90)

for all 7 € S;. As in the previous section, we put Qg =
D(0, pg) U S, Forall0 < j < S—1, we choosea set of functions

\/(ﬂo,,,,,ﬁl,j)(‘[, 6) € E(ﬂo’-'"ﬁl’j)’e’g’r’Q(Bo,...,ﬁl,j) for all /30, . ’:Bl >0
and we consider the formal series

Vj (1,2,€)

exp (iz (X0 Bi5))) OV
AR

= Y Vigp) 56
Bos-s =0

forall0<j<S-1.
We consider the following Cauchy problem:

(77 + (=0, +1)") 3,V (1,2, x,€)

= Z a(ko;kl,kz) (T’ Z5 X, 6) a‘;ko ai’(l a)’zZV (T’ Z, X, 6)
(koskerokey Vet 92)

o)

(o)) eyl 22

-1 1
a1 (1:2,%,€) 0, ° (V (1,2, x,€) ",

where V*! = V and V*h, I, > 2, stands for the convolution
product of V applied I, — 1 times with respect to 7, for given
initial conditions

(2V)(1,2,0,€) =V, (T,2,€), 0<j<S—1.  (93)
In the sequel, we will need the next lemma.

Lemma 15. There exists a constant C, > 0 (depending on

,,,,,

1
7t (14 2o BE)
forallt € Qg

! hry
sC7<1+Z/3j> (94)
j=0

Bopursy Jorall B;>0,0< j<I+1.

.....

Proof. We put A = 1 + lezo B;€;- The following partial
fraction decomposition holds:

ry—1
1 _ z A (95)

" + AN P 2 IAl”l/”z eim((2k+1)/ry) ?
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where

le—in((2k+1)(r2—1)/rz)

Ak - E |A|r1_(71/7'z) (96)

forall 0 < k < r, — 1. Now, there exists some constant Cg > 0
(depending on S,;) such that

/1, ri/r,

ein((2k+1)/r2) > Cs

l

1+ Bi&;
=0

T—

1
1+ ) B
=0

(97)

forallT € Qg g5 .5 Indeed, from (88), we know that

! ri/r chin
1+ Zﬁjﬁj > %
=0 (14250 8y) (08)
o,

hry/
(1 +Z§+:h/3j+s) i

forall ;> 0,0 < j<I+1.Lett € D(0,pg, g3, +s) From
(98), we can write

/1,
h i
—e

T= (99)

1
1+ BiE;
=0

for some 0 < h < 1and 0 € [0, 27). Therefore,

/1,

T— ein((2k+1)/r2)

1
1+ ) BE)
=0

/1,
i0 i
—e —e

2

(@k+1)/ry) (100)

1
1+ ) BE;
=0

/1,

=

N | —

1
L+ BiE;
=0

Now, let T € S;. Forall k € {0,...,r, — 1}, we can write

/1,

ei(rr((2k+1)/r2)+sk)

T=s (101)

1
1+ ) B
j=0

where s > 0 and s, € R. By construction of S;, we have that
e’ # 1forall k € {0,...,r, — 1}. As a result, there exists

! "\ v (1,€)
r (BossPisPria+8) \ >
4| 1+ E Bi&;
( < j=0 ’ J) > ﬂo!"'ﬁl!ﬁlﬂ!

asl +S2:Ko:K1:k2, B >/311+1 (T’ 6)

Abstract and Applied Analysis

a constant Cy > 0 (depending on S;) with se’c — 1| > C,, for
all s > 0. Hence,

1/,
eiﬂ((2k+1)/r2)

1

L+ ) BE)
=0

T—

1/,

i(m((2k+1)[1y)+s) ein((2k+1)/r2) (102)

'se

1
1+ BjE;
j=0

r/r,

> C,

1
1+ Bi&;
j=0

As a consequence, we get that (97) holds. On the other hand,
from (88), we get that

h

1 (1+3508)) !
o= "
A" Ce,.t

(103)

for all ,Bj > 0,0 < j < I Gathering (95), (97), and (103), we
deduce that

| AL < 1
7,Cq |A"

|T — |A|/"2 in(@kt D)

AN
o
@)
[e]
Q|+~
=
Ire

—

+
DM~
R

~
5‘

forall 0 < k < r, — 1. The lemma follows. O

In the next proposition, we construct formal series
solutions of (92) and (93).

Proposition 16. Under the assumption that
S>k, (105)
for all (ky, ky, k,) € of,, there exists a formal series
V(1,z,x,€)

= Z Vg (7€)
B=(Bor-rfri) N2

exp (iz (lezo ﬁ]E])) P (106)
Pot--- B! Brir!

solution of (92) and (93), where the coefficients T — Vﬁ(‘r, €)

belong to the space O(Qp) for all B € N2 and satisfy the
following recursion formula:

=2 2 )

(kookysky) €9l (51,5) €Lk ey k) B +/§§ =B,
1
Bt Brai=Pin

Bo'Br!

—k ky
g0 (Vige oo, k) (156)) (s i B,
ﬂ(z)'ﬂl'ﬁl'ﬂlerl' 0 j=1 77
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O fo 5515657, (T>€) e
Yy oy S
(ool )€t 3,1, 22 me] 11y /361+ﬁ8+"'+/3<l)171=ﬁo 0 Ple1
Bl+-+B) =B 1<l
ﬁl:rll"'ﬁloﬂ""""'ﬁ;};l:ﬁlJrl
R (V(/;o ..... B )(T, e) ook V(;; ,,,,, g (T,€)>
X
Hl+10ﬁm[
(107)
b(s,+ky+2)
fgzoalé ‘f(i,{(.)}:,ﬁl_'_l > 0, all T € Q(ﬁo ..... BisPrai+S)? and all € € . Hzlﬁ s ((51 + ko + 2) e—l )51+k0+2
0 =1 o(S-k,)
Proof. By hypothesis, we know in particular that
V(B (7> €) belongs to O(Qg, 5, ) forany By,.... 4 > 0, z ki
all0 < j < S-1,andalle € D(0,¢,) \ {0}. Since QE’ C QE N Z[,’] 'g}'
when |8'| > |B| and using Lemma 15, one gets that the =
functions T +— Vj(1,€) which are defined by recursion hr
B ! 1
(107) actually belong to @(QE) for any E e N*2, for all + Z Z Cyo (1 + Z'BJ>
€ € D(0,¢) \ {0}. Direct computation by identification of ol el 0.l 22 1M€o 1) j=0
the powers of €, ...,¢™ and the powers of x shows that B .
the formal series (106) is solution of (92) and (93), if its Z mulohoBy By
. . . ~113-1]
coeflicients Vé(‘r, €) satisfy recursion (107). O e +ﬁ g, By B!
-1_
In the next proposition, we state norm inequalities for the Fysfi<Fy 7 Lsjsl
sequence Vﬁ ﬁ1+1+ﬁl+1+ +ﬁl+1 _ﬁlﬂ
B - |

Proposition17. WeconsiderthesequenceoffunctionsVlg(‘r,e) ch Ielr(l"”l_l)_ml j=0 Wgi,.., ﬁfﬂ)(e)
defined by recursion (107) for given initiql dataVig g »(T,€) 11 Hl]‘l:o 0! — ljﬂ!
defined above for all 3y,..., 5 > 0,0 < j < S— 1. Then, for all (108)

ﬁ e N*? andalle € D(0, eo) \ {0}, the function T — Vﬁ(r €)
belongs to Egeon, o We put wﬁ(e) ||Vﬁ(T, e)Ilﬁ corQy , for all

/3 e N2 and all € € D(0, €;) \ {0}. Then, the sequence wﬁ(e)
satisfies the following estimates. There exist constants C;y > 0
(depending onry, 1y, C¢, &> Sg) and Cyy > 0 (depending on
o) such that
Wigy,.iofrs +5) (€)
Bot- - BB

< ) 2

(kookeysky) €ty (51582) €1k ey ky)

! hry
Cyo <1 + Zﬁj>
=0

pogn PP

1 2
B tBii=Bi

Wgr ... +ks) (€) e[/ K052

B3B! BB,
b(s;+ko) 1\ Sitkg
g 0s) (k)"
=0 ! o (S-ky)

for all ﬁj >0,0< j<l+1,andalle € D(0,¢y) \ {0}, where

A s1,82,ko.ky »kzxﬁé ’ﬁllﬂ

= sup
(7,6)€QxD(0,6) \{0}

a51’52>k0’k1»k2’/3$’ﬁ11+1 (T, 6)| >
(109)

Bml ok ’.35‘ ’ﬁljrll

= sup

X Io s (7,¢€)
(Te)erxD(Oeo)\ | e ﬁo ﬁ“ |

Proof. We apply the norm || - Il BB +9)160:00 g1 O0

the left and right hand side of equality (107) and use Propo-
sitions 9, 10, and 12, Lemma 15, and Corollary 11 in order to
majorize the right hand side. Indeed, using Propositions 9,
10, and 12, Corollary 11, Lemma 15, and the estimates

1 ky 1 ky
(53001 <(s+Sokl) o
j=1 j=1
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we get a constant C; > 0 (depending on ry,1,,Cy,
such that

.....

1 a51>52:k0>k1’k2»/3(1>>/311 1 (T’ 6)

(14X, 88)" Rl

K
y 0 (Vi popiofit, +ky) (1:€)
B3B! BB,

k
l 1
k[ a2
(/30 + Zﬁjg j>
= (Bor->Bri>Pria+S)

hr,
! A
sl,sz,kg,kpkz’ﬁ(l)’ﬁllﬂ
<C | 1+ Zﬁ] TTY TR
Jj=0

0 Fl+1°

. Tsle S2

.w(ﬁﬁ,ﬁp- BB,y k2 (€)| |r(sl+ko)—52
Bo'Bit -+ BB !

b(s, +ko) s+
S5 0s) (e :
.+ - v
=0 g O(S_kZ)
b(sy+ky+2)
o (s) +ky+2)e!
+ Bi+S (L
(£ oF)

~<m+§@m0h

)sl+k0+2>

(111)

and using Propositions 10 and 12 and Corollary 11, we
obtain a universal constant C; > 0 and some constants
Ce¢ > 0 (depending on [y,0) and C;, > 0 (depending on

11,75, G, s> S4) such that
1 (xml’lo»lpﬁ&l:ﬁﬂll (T’ 6) efml
r -1
4 (143, BE)" BB

Hll_l HHI m|

m=0""j=0Fj (Bos+-sBisPra+S)
hr
I 'B .
sl By B
C |1+ Z[; Mol P
] -112-1
< j=0 ﬁO !ﬁl+1'
I,-1
C | |r(lo+11 1)-m,; = Ow(ﬁﬂ ﬁljﬂ (e)
6 1 j .
Hjl:o ol l+1'
(112)
O
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We define the following formal series:

Asl,sz,ko,kl,k2 (ZO’ X)

-3

BosPr4120
1, (Z, X)

A Zgu Xﬂlﬂ
s1,52.ko.k 1.k, 80,8141 ﬁO' ﬂl 1[ >
Y P

(113)

ml los

-3

ﬁo’ﬂlﬂ 20

Zgo Xﬁl+1
Bml,lo,lpﬁo;ﬁlﬂ ﬁ m

We consider the following Cauchy problem:

XU (Zgs...» Zpy X, €)

=y D c10<1+izjazj>hrl

(koskyky) et (51’52)EI(k0,k1 ) j=0

sy+k, b(s;+ko)
(51 + ko)e—l 115 1
. - Z.0 X0y +S
<< O'(S—kz) JZ:‘) ]Zj+ x t

+k +2 1\ S1tko+2
L (Girko+2)e )

o(S- kz)

! b(s;+ky+2)
<Z BZ + X0y + S> >
l 1
<§| j|ZjaZj>

ko)— k
. (eg(sﬁ' 0)=S2 Asl,sz’ko’kl’kz (ZO’ X) (aXZU) (Zo, eeey

! hr,
+ Z Z C10<1+szazj>

(Il €yl 22 my €]y 1) j=0

7, X, e))

o+l ! :
( +h=1)- mlCl‘lel 1011 (ZO’X) (U (ZO""’ZZ’X’E))I

(114)
for given initial data
) Zﬁo . Zﬁz
(0%V) (Zo>- - Z0.6) = Y ool () BTTRT Bl Bl
ﬁoZO»--:ﬂPO
0<j<S-1
(115)
forall e € D(0,¢,) \ {0}.
Proposition 18. Under the assumption that
S>ky+b(s;+ky+2) (116)
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for all (ky, ky, ky) € oy and all (s, s,) € Ly k k) there exists
a formal series

ﬂo ﬁl ﬁl+1
U(ZO,...,ZI,X,€)= Z U (G)W
E:(ﬁo ..... ﬁHI)ENHZ 1 1Pl+1°
117)

solution of (114) and (115), where the coefficients Up(e) satisfy
the following recursion: -

Ugy,...111+9) (€)
Bo! -+ B B!

=) 2

(kokerky) €8l (51582) €k ey ky)

! hr,
Cyo <1 + Zﬁj>
=0

)
B imfy B
ﬁllﬂ Jr:Blzﬂzﬁlﬂ

U(ﬁ(z)’ﬂl""’ﬁl’ﬁlz+1+k2) (6) r(s;+ko)—s,

B I

I+1 b(si+ko) —1\ Sitko
(s1+ko)e
'((;ﬁ“s> ( o (S-k,) )
141 b(s;+ky+2)
+ (Z/Sj + S>
j=0
(s; +ky+2)e! Sitkot2
. < o(S-k,) )
! ka
: <.Bo + Zﬁ] .fj|>
j=1
+ 2

I hry
Z Cho <1 + Zﬁ1>
(ool )€ty 22 my €]y, Jj=0

Z Bml ’IO’ZI >/3(;1 ’ﬁzjrll
-112-1
. - Bo B!
ey
04t B =B 1< <]
j j ST
, I -1
ﬁl+11+ﬁ10+1+”'+ﬁ1}rl =P

(118)

I-
Hj_olU(ﬁj ..... j (6)

. Cl1 er(lo+ll—1)—m1
l -1
1 =0 ﬁ l+1

11-0

forall B; >0,0< j<I+1,andalle € D(0,¢y) \ {0}.
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Proposition 19. Under assumption (116) with the additional
condition that

r(s;+ko) =,
(119)
r(lg+h-1)=2my, [} >2,
for all (ky, ki, ky) € oy, all (sy,s,) € Lk, k) and all (I, 1) €
Ay 1y 2 2andm, €], ; , the following inequalities hold:

wg (e) < UE (e) (120)
forall B e N2, all e € D(0,¢)) \ {0}.
Proof. By assumption (115), we know that
Ulhorofini) (€) = Wig..p,5) (€) (121)

forall0 < j < S—1all (By....5) € N"andall € €
D(0,¢,) \ {0}. Therefore, we get our result by using induction
from inequalities (108) and equalities (118). O

In the next proposition we give sufficient conditions
for the formal series solutions of the Cauchy problem (92),
(93) in order to define actual holomorphic functions with
exponential bound estimates.

Proposition 20. We make the assumption that (119) holds. We
also assume that

S>b(s +ko+2)+k,,

(122)
S>hr +b(s; +ky+2)+k +k,
for all (ky, ky, k) € oy and all (sy,s,) € Ly ke k,)-
We choose two real numbers p,, M° > 0 such that
M°>2(1+2) exp (p{ ml%x '€J|> (123)
j=

- =0
and we take X > 0 and Z;> M°, for 0 < j < 1. We assume
that the formal series

’Zl’e)z Z

Bor-Py20

Zﬁo . Zﬁz

;i (Zos--- Wigyupni) € BB

(124)

0<j<S-1,

,Z?,?) for all € € D(0,¢y) \ {0}
exists a constant Cq,j such that

< C,. As a consequence,
Pi

belong to G(zg,...
and that there

SUPeepe o1l 2, 20 x0)
the formal series (91) deﬁne holomorphic functions Vi(t,z,¢€)
on the product Sy x Hy x D(0, €,) \ {0} and satisfy the following

estimates: there exists a constant C, > 0 (depending on Co,» 1)
such that
-1
|
|€|2T

forall(t,z,¢€) € delef xD(0,€,) \ {0}, and all0 < j < S—1.

'VﬂﬁzeﬂgCu( xp(é%(@ﬂﬂ) (125)
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Then, there exists 8 > 0 (depending on M°, Z(;, §;1 for

. -0
0<j<LX,r,nCs &SehobS A ki (ZeyX)
Jor (ko kysky) € oy and (s, 8,) € L i k) and By, 1 1 (Zo, X)
f(;lr(lo,ll) € o5, my € J, 1)) such that if one assumes moreover
that

Hq)j (Zgs-es

for all e € D(0,¢,) \ {0}, the formal series (106), solution of
(92) and (93), defines a holomorphic function V(t,z, x,€) on
the product S x HP{ x D(0, p;) x D(0, €y) \ {0} for some p; > 0
and carries the next bound estimates: there exists a constant
C,3 > 0 (depending on the same as for & given above) with

LA 9 127
|eP’) exp(levc(b)hw) 127)

forall (1,z,x,€) € Sy x Hp{ x D(0, p;) x D(0, €,) \ {0}.

Z,,e)|| @75 <% 0sj<S-1, (126)

|V (1,2,x,€)| <Cj5 (1 +

Proof. Since ¢;(Zy,...,Z),€) belongs to G(Eg, . ,Z?,?),
we get a constant C;, > 0 (depending on C(p]_) such that

||V(ﬁo ~~~~~ Bu>j) (T’ 6)l (Bos-sPp )01 Q(/5() -By>7)

) Bo (128)
o) - (zl) (24)

for all By,...,5 = 0andall 0 < j < S - 1. From the
multinomial formula, we know that

(Z/%) <UD gyl

B; = 0. Therefore, from (128), we deduce that

(129)

for all S, ...,

-1
|z|*
Vigyapoi (56| < Cl4<1 e

exp<|| (Zﬂqu)hl) (130)

forall By,....,320,0<j<S-Lallte€ Qg 4 andall
€ € D(0,¢,) \ {0}. From assumption (123), we deduce that the
formal series (91) defines a holomorphic function V](‘r Z,€)
on the product S; x Hp x D(0,¢,) \ {0} and satisfies

|V, (r,2,¢)| < c14(1 + Il Il ) ex p(&((b) ITI)

< (I+1)exp (p{mafoO 'fq‘) >Zq0 B

M()

2

BorsPr=0

<2, (1 P I ) exp (SL @)1
e lel
(131)
forall (z,z,€) € S, pr{ xD(0,¢,) \ {0} andall0 < j < S-1.
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Under assumptions (119) and (122) together with (126), we
see that the hypotheses of Proposition 5 are fulfilled for the
Cauchy problem (114), (115). Therefore, we deduce that the
formal solution U(Z,, ..., Z;, X, €) of (114), (115) constructed
,Zl ,Xl) for

—1 —0 —1
some 0 < X < X and for some Zj > M?°. Moreover,

in Proposition 18 belongs to the space G(Zl), e

we get a constant C;; > 0 (depending on 29 Zl, ,|&;] for
0<j<l, X’ 101 C e Sa 1.050,8, Ay o ik i (Zo, X)

for (ky, k;,k,) € o, and (51,52) € L ke, ke and By, ;1 (Zg, X)
for (Iy, 1) € o5, my €], ;) such that

U (2,....2,, X, 6)”(?(1],-.211) < 8Cys (132)
for all e € D(0,¢,) \ {0}. In particular, we deduce that
Vg (©)
1 Bo 1 B B i (133)
<0Cs| = | | = (:) Bj
Z, 7, ) \X' =1
forall B, ..., Bi,; = 0. Gathering (120) and (133) yields
“VE (T’ 6) E,e,a,r,QE
(134)

Po B B [ 1+1
1 1 1
Z, Z X =0

forall B = (Bys...>B,) € N2, Again by the multinomial
formula, we have that

1+1
<Z'B )l <@+ 2)%b Bot -+ Brsa! (135)
for all S, ..., 8,1 = 0. Hence, from (134), we get that
‘Vﬁ(‘r e)‘ < 6C15<1 + || || ) ex| p<| | (,8) |T|)
(136)

<l+2>10ﬁj<l+2)/3’+1/3| ﬁ !
MO ? 0 """ Pl+1-

forall By,..., By 2 0,all T € Qp,and alle € D(0,¢,) \ {0}.
We deduce that the formal series (106) defines a holomorphic
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function V(7, z, x, €) on the product S; x HP{ x D(0, XI/(Z(Z +
2))) x D(0, ¢;) \ {0} and satisfies

|V (1,2, x,€)|

2\ 1
<ocy, (1410 ) e (-t @)1
lel lel

5 <(l+z)exp(p;maX§_O|Ej|)>zjoﬁj
M (137)

PoreesPri1 20

. ( 1+2) x| )ﬁm
Xl

2 -1
<sc,, (1 + @) exp (ﬁc(b) |T|)
€

lel

for all (.2, x,€) € Sy x Hy x D(0, X /(2(1 +2))) x D(0, &) \
0. 0

3. Analytic Solutions in a Complex
Parameter of a Singular Cauchy Problem

3.1. Laplace Transform and Asymptotic Expansions. We recall
the definition of Borel summability of formal series with
coefficients in a Banach space; see [18].

Definition 21. A formal series

— & aj; .
X(t) =y -t cE[[t]] (138)
=07
with coeflicients in a Banach space (E, | - [Ig) is said to be 1-

summable with respect to ¢ in the direction d € [0, 27) if

(i) there exists p € R, such that the following formal
series, called formal Borel transform of X of order 1

— & ajrj
B(X)(1)=) -5 €E[[]],
= (")

is absolutely convergent for [7] < p;

(139)

(ii) there exists 8 > 0 such that the series B(X)(1) can
be analytically continued with respect to 7 in a sector
Sy5 = {r € C* : |d — arg(7)| < &}. Moreover, there
exist C > 0 and K > 0 such that

| (X) (@), < Ce*™ (140)
forall 7 € S 5.

If this is so, the vector valued Laplace transform of order 1 of
A(X)(1) in the direction d is defined by

7' (B(X)) ) =t" J B (X) (v) e,

L,

(141)

19

alonga half-line L, = R,e” c S4s U {0}, where y depends on
t and is chosen in such a way that cos(y — arg(t)) > 6; > 0,
for some fixed §,, for all t in any sector

Sior = {t €C":t| <R,|d-arg(t)| < g} , (142)

wheremr < 0 < m+25and 0 < R < §,/K. The function
ff"l(%(}?))(t) is called the 1-sum of the formal series X(¢) in
the direction d and defines a holomorphic bounded function
on the sector S; 3 . Moreover, it has the formal series X(t) as
Gevrey asymptotic expansion of order 1 with respect to t on
Si.r- This means that, for all 6, < 6, there exist C, M > 0
such that

foralln > 1andallt € S;p .
In the next proposition, we give some well-known iden-
tities for the Borel transform that will be useful in the sequel.

< CM"n! |t["
E

(143)

n—1
7 (#(X) 0 - Y 2tk
o P!

Proposition 22. Let X(t) = Ym0 At /0! and Gt) =
Yo bat" [n! be formal series in E[[t]]. We have the following
equalities as formal series in E[[7]]:

(107 +2,) (% (X) (1) =2 (a,X (1) (1),

3. (#(X)) (1) =B (tX (1)) (1),

T

1% (X) (1) =B ((f3, +1) X (1) (1), (144)

JT (BX) (1 -5) (BG) (s)ds
0

=B (X (1)G1)) (7).

Proof. By a direct computation, we have the following expan-
sions from which Proposition 22 follows:

—~ "
X ()= Y s

n=0

(102 +0,) (3 (%) () = Y,

o
2 bl
n=>0 (n')

— "
tX (1) = Znan_lm,

n=1

n

o (#(%)) (@) = Yna,,——

2 bl
nx1 (I’l')
n

(3, +t) X (t) = Z"ZQ’H%’

n>1



20

w3 (X)) - Y, T,

n>1
_- o~ n! t"
tX(t)G(t) = —ab, —,
050-3( 3 o)

JT (BX) (1 -5)(BG) (s)ds
0

n! T”
= b, | —.
;QQMW’>MZ

(145)
O

3.2. Analytic Solutions of Some Singular Cauchy Problem. Let
S,r,7, > 1 be integers. Let & be a finite subset of N* and
J/ a finite subset of N?. For all (s,ky, k;,k,) € & and all
integers fy, ;1 > 0, we denote by by . k4,8, (€) some
holomorphic function on D(0,¢,) which satisfies the next
estimates: there exist constants p, p’ > 0, b ik k, > 0 with

p | kol i s (©)]
eeD(0,¢,

1\ Bo
e P 1 B
< bs,ko,kl,kz (T) <5) ﬁolﬁl+1!

forall By, ;1 > 0. Likewise, forall /), ;) € /4 and all integers
Bo>Bis1 = 0, we denote by ¢ ; 4 s (€) some holomorphic
function on D(0, ;) with the following estimates: there exists
a constant ¢; ; > 0 with

1\ Bo
e P 1 P
m%@l%(7>(5)ﬁwm

(147)

(146)

sup
e€D(0,¢,)

for all S, B;,, = 0.
For all (s, ko, ki, k,) € S and all (I;,1;) € N, we consider
the series

IZIBO xﬁlﬂ
b, (z,x,€) = Z b
Sikookyky N 7 S’kO»kl,kz’ﬁm,Bln [; /3
:Bo’ﬁlﬂ>0 I+ 1
’Zﬁo xﬁln

Gy s (z,x,€) = Z

Gutfofins © T
Bo>B+120 folt ﬁ ﬁl -

(148)

which define bounded holomorphic functions on H, x
D(0, p) x D(0, €;).
We consider the following singular Cauchy problem:

((TZaT + T’)r2 + (_iaz + 1)1’1 ) aJS(YUd,D(O,GU)\{O} (T, z, X, 6)

r(ky—s) s
= Y by @xed®IT
(s,kgoky ke, )ES

ko ~k; Ak
’ (aT0 aZ axz YUd,D(O,eO)\{O}) (T: z, X, 6)
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+ Z 6,1, (Z, X, 6) e—r(lo+ll—1)Tlo+ll—1
(o>l e

!
(Yu,p0emi0) (T>2%,6))'
(149)
for given initial data
(aachUd,D(O,eo)\{o}) (T, 2,0,€) = YUd,D(O,eO)\{()},j (T, z¢),

0<j<S—1.

(150)

The initial conditions are constructed as follows. Let U,; be an
unbounded sector such that

k+1

§)

arg (1) # (151)
forall0<k<r,-1landallT €U, Forall0 < j < S-1and

all (Bys ..., ) € N1, let VU (B j) (T> €) De a function such
that

VUiBoren) (5 €) € Ep, g peor DOy, g0V (152)

forall e € D(0,¢,) \ {0}.

We choose two real numbers p;, M® > 0 such that

M® > 2(1+2)exp <p{ max |§j|> (153)
j=0

- =0
and we take X' > 0 and Z;> M°, forall 0 < j < I. We make
the assumption that the formal series

¢d,j (ZO) e Zl’ €)
= V T, .
for 20 " Ugs(Bos-Bpf) ( 6)"(/30 ﬁ,,]),e,(r,r,D(O,p(ﬁo ..... ﬁl,j))UUd
Zﬂo . Zﬁz
BB

(154)

belongs to the Banach space G(Zﬁ,...,?f,?) for all e €
D(0,ey) \ {0} and all 0 < j < S — 1. Moreover, we
assume that there exists a constant C%j > 0 such that

SupeeD(O,eo)\{O} ”q)d,j | (Z;,...Z?XO) < C‘Pd,j'
Let

y Kttt ©)

2
m=>0 (m')

be its Taylor expansion with respect to 7 on D(0, pg, .5,./))>
for all e € D(0,¢,) \ {0}. We consider the formal series

VU Byenfpi) (T €) = (155)

X, (oo fi) (€)

o ™ (156)

Y(ﬁo’---’ﬁz’j) (Toe) = Z

m=>0

for all e € D(0,¢,) \ {0}. For all (B,... [3,,]') we define

YU, D0\ O} B ])(T €) as the 1-sum of Yﬁ B ])(T €) in



Abstract and Applied Analysis

the direction d. From the fact that 7 — Vs s »(7,€)
belongs to E(ByvecpihcscrDO0.pigy. 0007 forall e € D(0,¢,) \

{0}, we get that Yy, p(g.e,)\(01,(8....8.) (T €) defines a holomor-
phic function for all T € U4 and all e € D(0,¢,) \ {0},
where

r 0
Uaonier = {T €C:|T| <hlel",|d —arg(T)| < E}’
(157)

for some 6 > 7 and some constant & > 0 (independent of
eand fB,..., ), forall 0 < j < S — 1. The initial data are
defined as the formal series

Yy, poenionj (T2-€)

exp (iz (T BE;))
BBl

0<j<S-1,
(158)

which actually define holomorphic functions on the domain
Ugonier ><Hp{ xD(0, €,)\{0}. Indeed from hypotheses (153) and
(154) and the multinomial formula (129), following the first
part of the proof of Proposition 20, we get that there exists a
constant C, > 0 such that

= Y YU, 000 Ffin) (T>€)
BossPr=0

(¥l
z VU, By (F2€) P (lz (ZJ'=0 ﬁjﬁj))
fofizo Byl B!

[\
SCM<1+I§5) exp(é%{@ﬂﬂ)

Yo By
. Z < (I+1)exp (p{maxlj:0 'EJ') )
0
Boses3=0 M
-1
<2™Cyq (1 + %) exp (ircw) |r|>
le]™ lel

forallTe Uy z € H, and € € D(0,¢,) \ {0}.
We get the following result.

(159)

Proposition 23. Let the initial data be constructed as above.
We make the following assumptions. For all (s, ko, k,,k,) € §
and all (1,,1,) € W, we have that

s > 2k,

S >k,
S>b(s—ky+2)+k,, (160)
S>hr;+b(s—ky+2)+k +k,,

I, >2.

Then, there exists a constant I > 0 (independent of €) such that
if one assumes that

”(pd,j (ZO,...,ZZ,G)“(?; ..... 25 < I, 161)
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where Pqj is defined in (154), for all e € D(0,¢,) \ {0}, the
problem (149), (150) has a solution

Yu,.p0e0) (152, %, €)

-y

BorewosProPri1 20

YU, D0\ 04 B fisfr) (T>€)
(162)

' exp (iz (lezo ﬂjfj)) P
Bol--- B! B!

which defines a bounded holomorphic function on Uy g 1o X
H, x D(0, p,) for some h' > 0andp, >0, foralle € D(0,¢,) \
{0}. Moreover, each function Yy, po.e)\0},(Byspfiny) (1> €) CAN
be written as a Laplace transform of order 1 in the direction d
of a functiont — Vy_ s . g.p.)(T>€) which is holomorphic on
D(0, pg,....5.p.,)) YU Uq and satisfies the estimates: there exist
two constants C,; > 0, K;; > 0 (both independent of ) such
that

V0 Bnfioi) (@ €))

1
[+2\Zhi .
W) KByt B!

(163)

< Cy; exp <&C(b) |T|> (

for all T € D(0, PBorBiBiy)) Y Ua and € € D(0,€) \ {0}

Proof. One considers a formal series

Y (T, z, x,€)
. I
- Y 7 .o oP (iz (Zjeo %)) s
Bose-sBsBrs1 =0 Foeliobron) 52 ﬁol : ",Bl! ﬁl+1!
(164)
solution of (149), with initial data
(91Y) (T, z,0,¢)
= f’j (T, z, €)
(165)

A exp (i (Lo B%5)
- Z Ygypoi) (T€) [gog..J.;l!] =

Bose-sr=0
0<j<S-1,

for all e € D(0,¢,) \ {0} where 17% ..... p,.j)(T>€) are defined in

(156). We consider the formal Borel transform of Y (T, z, x, €)
of order 1 with respect to T' denoted by

V (1,2, x,€)
) I
- Y 7 (r.e exp (iz (Ejo0 B))) xFv
BoswsBisPrar =0 Boveobfi) 22 Bol-- B! Bri!
(166)
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where, by construction, \7% ..... 5.8 (T>€) is the Borel trans-
form of order 1 with respect to T of the formal series
Yg,...5.8.0(T>€), for all e € D(0,¢y) \ {0}.

From the identities of Proposition 22, we get that
V(T, z, x, €) satisfies the following singular Cauchy problem:

(7" + (=0, + 1)) 3,V (1,2, x,€)

_ r(kg=9) 35
= ) bk @00,
(skoskpky €8

. (Taﬁ + a,)k°ajlaf§2\7 (1,2, x,€)

_ IR PN *]
+ Y a @xee Wk (Vinzxe)”

Ul
(167)
with initial data
(aj;\?) (1,2,0,€)
_ Z Vigopup) (556) exXp (lZfLa ﬁjgj)) (168)

B

0<j<S-1,

Boreahr20

where V Boveofis j)(‘r, €) are defined in (152), for all € € D(0, ;) \
{0}. In the following, we rewrite (167) using the two following
technical lemmas. Their proofs can be found in [17, Lemmas
5 and 6]. Therefore we omit them.

Lemma 24. For all ky > 1, there exist constants ai; € N,
ko < k < 2k, such that

2k,

Z Wk, ko afu (1)
k=kq

(v02 +3,)" u(e) = (169)

for all holomorphic functionsu : Q — C on an open set Q C

Lemma 25. Let a,b,c > 0 be positive integers such thata > b
and a > c¢. We put § = a + b — c. Then, for all holomorphic
functions u : Q — C, the function a;“(rbaju(‘r)) can be
written in the form

o (o) = Y ayart ol u),

(170)
(b'c"eOs

where Oy is a finite subset of Z* such that, for all (b',c') € Og,
b —c'=8,b"20,c <0,andoyy o € Z.
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Using the latter Lemmas 24 and 25 together with assump-
tion (160), we can rewrite (167) in the form

(Trz +(—io, + 1)“) oV (1,2, x,€)

— r(ko=s)
= z bs,kg,kl,kz (z,x,€)€™
(s.kork sk )ES

' ' A
< >yt o 05192V (1,2, x,€)
(r'.p")€0; i,

et «l
+ z G, (2, x,€) € rloth =g h (V(T,z,x,e)) Y,
(lpl)ens
(171)

where O, is a finite subset of N? such that, for all (', p) €
O;_,» we have ' +p' =s—kyand & € Z, for the given
initial data

(31V) (1.2,0,¢)

exp (iz (X)e BE)))
= 2 Vigs (06 ﬂog..J.;gl!J =

Borhr20

(172)

0<j<S-1

From assumption (160), we deduce that assumptions (119)
and (122) of Proposition 20 are fulfilled for (171). Hence, from
Proposition 20, we deduce the existence of a constant I > 0
(independent of €) such that if inequality (161) holds, then the
formal series V (1, z, x, €) solution of (171) and (172) defines
a holomorphic function Vi, (7,2, x, €) on the product U, x
H, ;X D(0, p;) x D(0,¢,) \ {0} which satisfies the next bound
estlmates there exists a constant C,¢ > 0 such that

W\ (o
IV, @z x,6)| < Cig [ 1+ ) o |€|,C(b) |l
(173)

forall (7,2, x,€) € Uy x HP{ x D(0, p;) x D(0, ¢;) \ {0}. More-
over, from the proof of Proposition 20 (especially formula
(136)), we also get that each formal series \7(/3 BB )(7,€)
defines a holomorphic function VU BB )(T, e) on (U, U
D(0, s PBorsBias) ))) X D(0, &) \ {0} w1th the followmg estimates:
there exist two constants C;q > 0, K4 > 0 such that

V0 Brnfifi) (7€)

75 ((Bo- > i) |T|> <l+ 2 )Zﬂ-o B;

< ICqexp (

KIS Byl !
(174)

.....

From (174), we get that each formal series Y(ﬁoa---;ﬁz;ﬁm (T, ¢)
is 1-summable with respect to the fact that T is the direction
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d and its 1-sum denoted by Yy, po.e 01, (BoenBfins) )(T,€) can
be written as Laplace transform of order 1 in the direction d
of the function 7 = Vi (g 2 s (7, €). Moreover, again by
(174), we deduce that the series

Yy, poeno) (152, %, €)

-y

BoroBrofin 20

YU,,,000,60\0} Bor- i) (T>€)
(175)

' exp (iz (le:o ﬂjfj)) P
/30!"'/51! /gl+1!

defines a bounded holomorphic function on Uy g ¢ X Hyy %
D(0, p,) for some K > 0and p > 0, forall e € D(0,¢,) \ {0}.
Finally, from the algebraic properties of the x-summation
procedure (see [18] Section 6.3) since Y(T,z, x,€) formally
solves (149), we deduce that Yy pe (T2 x,€) is an
actual solution of the Cauchy problem (149), (150). O

4. Formal Series Solutions and Gevrey
Asymptotic Expansion in a Complex
Parameter for the Main Cauchy Problem

4.1. Analytic Solutions in a Complex Parameter for the Main
Cauchy Problem. We recall the definition of a good covering.

Definition 26. Letv > 2 be an integer. Forall 0 <i < v—1, we
consider an open sector &; with vertex at 0 and with radius¢;.
We assume that these sectors are three by three disjoint and
that &;,, N &; # 0, forall 0 < i < v — 1, where by convention
we define &, = &,. Moreover, we assume that Uy_;., ;&; =
% \ {0}, where % is some neighborhood of 0 in C. Such a set
of sectors {&;}.;<,_; is called a good covering in C*.

Definition 27. Let {&;}<i,-1 be a good covering in C*. Let
r > 0 be a positive real number and let r, > 1 be some integer.
Let I be an open sector with vertex at 0 with radius g > 0.
We consider the following family of open sectors:

. r 0
Udiﬂ)esrg = {t € C :|t] < gyrgs ldi —arg (t)l < 5} , (176)

whered; € R,0 <i < v-1and 0 > m, which satisfy the
following properties.

(1) Forall0o <i <v-1,d; # n((2k + 1)/r,) for all 0 <
k<r,-1

(2) Forall0 <i<wv-1,allt e
thate't € Uy g, -

T ,andall € € &;, we have

Under the above settings, we say that the family
{Ua,0.r, Yo<icy-1» T} is associated with the good covering

{gi}ogisv—l'

Let S > 1 be an integer. Let & be a finite subset of N*, and
let /' be a finite subset of N*.

As in the previous section, for all (s, ky, ki, k,) € & and
all integers f3, .1 > 0, we denote by by . k. 5,5, (€) some
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holomorphic function on D(0,¢,) which satisfies the next
estimates: there exist constants p, p’ > 0, b,k k, > 0 with

sup [Byge s ko, (©)]
eeD(0,¢)

_,'\ o B
e P l 1+1
S bs,kmkl;kz ( 2 > <2P> ﬁO!BlJrl!

forall B, 1,1 = 0. Likewise, forall (/j, ;) € /" and all integers
Bo> Bii1 = 0, we denote by ¢ ; 45 s (€) some holomorphic
function on D(0, ;) with the following estimates: there exists
aconstant ¢, ; > 0 with

' e—P, Po 1 B

sup |g (e)f e — <—> 18,,,!

cenlbn) To1BosBrat Wh \ 2p Bo! B
(178)

(177)

for all B, 3,1 = 0.
For all (s, ko, ki, k,) € S and all (I;,1;) € A, we consider
the series

’Zﬁo xﬁm
bs’ko»kl’kz (Z’ X 6) = Z b5>koak1,kz’/30>ﬁl+1 ( ) ﬁ [;
/30’/31+1>0 I+ 1
lzﬁ() xﬁlﬂ
Cloall (Z, ) 6) = Z lo 1>BosPrir ( ) ﬁ | ﬁl
1

ﬁo’ﬁlﬂ =0
179)

which define bounded holomorphic functions on H, x
D(0, p) x D(0,€). Let {&;}o<icy—1 be a good covering in C*
and let 7, 7,,7; > 1 be three integers. We put r = r;/r,.

Forall 0 < i < v — 1, we consider the following Cauchy
problem:

(6'3 (tzat + t)rz + (=0, + 1) ) 33X, (t, 2, x, €)

= Y byur @xOE (afoa’;laﬁzxi) (t,z, x,€)
(sskoskrky) €S

+ Z q,,, (z,x,€) oL (X (1,2, x,€))"
(ol )en
(180)

for given initial data

(31X,) (t,2,0,€) =&, ; (t,z,€), 0<j<S—-1, (18])
where the functions E;; are constructed as follows. We
consider a family of sectors {{Uy. g\ lo<ic,-1, 7} associated
with the good covering {&;},<;c,_;- Forall0 < i < v -1, let
U,, bean unbounded open sector centered at 0, with bisecting
direction d; and with aperture n; > 6 — 1. We choose 6 and n;
in such a way that

2k +1
§)

arg (1) # 7 (182)
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forallTEUd,a110<1<v—1 andall0 < k <r, — 1. Forall
0<i<v-1landall0<j<S$-1,wedefine

Eij (t,z,€) = YUd,.,D(O’eo)\{O},j (€'t,z€), (183)

where Yy, po.e,noy,j (152 €) is given by expression (158) and
constructed as in the beginning of Section 3.2 with the help

of a family of functions Vi, s s »(7,€), for (By,..., ;) €
N*10 < j < S — 1, satisfying (152).
We make the additional assumption that, for all

(Bos---» ) € N*1,0 < j < § -1, there exists a holomorphic
funct1on T > Vg, @€ on DO,pg s ) for all
€ € D(0,¢,) \ {0} such that

VUdi (Bor-Bri) (z.€) = Vig,.., Bii) (r.€) (184)

forall0 <i<v-1lall0<j<S-1,all7 € D(0,pg 5.
and all € € D(0,¢,) \ {0}.
Moreover, we assume that the series ¢, ;(Zo, ..., Z}€)

defined in (154) belong to the Banach space G(Zg, s Z), YO)
forall e € D(0,¢,) \ {0}, where X_ > 0 and Z(;, 0<j<l are
chosen in such a way that Z(J) > M° for M° > 0 that fulfills

inequality (153) for some real number p; > 0.

By construction, E, ;(£, z, €) defines a holomorphic func-
tionon I xHy x&;,forall0 <i<v-landall0<j<S$-1,
for well-chosen radius 5 > 0 and aperture 0.

Proposition 28. Let the initial data (181) be constructed

as above. We make the following assumptions: for all
(s, ko> k15 ky) € S and all (1), 1,) € N, we have that

s > 2k,
S>k,,
S>b(s—ky+2)+k,, (185)
S>hri+b(s—ky+2)+k +k,

I, >2.

Then, there exists a constant I > 0 (independent of €) such that
if one assumes that

”(Pd,-,j (Zo> vy

forall0 < i < v-—1, foralle € D(0,¢,) \ {0}, the problem
(180), (181) has a solution X,(t,z, x,€) which is holomorphic
and bounded on (I N D(0, 1)) x HP{ x D(0, p;) x &, for some
py > 0. Moreover, there exist constants K3, M,3 > 0 and 0 <
W' < W' such that

Zl’ 6)”(22’“.50 0. <1

72X (186)

sup |Xis1 (12, x,€) = X; (1,2, x, €)|
tegﬂD(O,h”),zEHP{ ,xeD(0,p)

<K ex _&
= P P\ T )

(187)
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foralle € &,,N&;and all0 < i < v—1 (where by convention
X, = X,), provided that €, > 0 is small enough.

Proof. For all 0 < i < v — 1, we consider the singular Cauchy
problem (149) with initial data

(aiYUd,. ,D<0,eg)\{0}) (T, 2,0,€) = Yy, poenonj (T-2:€)

0<j<S-1.
(188)

Bearing in mind hypothesis (185) and assumption (186), we
see that the assumptions of Proposition 23 are all fulfilled
for the problem (149), (188), which, therefore, possesses a
solution (T,z,x) +— Yy, poeno(T>2 x,€), holomorphic
and bounded on Uy g X Hy x D(0, py) for some >0
and p, > 0, for all e € D(0, ¢,) \ {0}. Now, we put
X;(tz,x,€) =Yy, |

Doe\ o) (€82, %, €) (189)

which defines a holomorphic and bounded function on
(7 n D(0,H)) x Hy x D(0,p) x &, forall 0 < i <
v — 1, by construction of I and &; in Definition 27. Since
YUdi,D(O,eo)\{O}(T’ z, x, €) solves the problem (149), (188), one
can check that X;(t, z, x, €) solves the problem (180), (181) on
(7 nD(0,1)) x H, xD(0,p;) x &, forall0 <i<v-1.

In the next step of the proof, we show estimates (187). Let
0 < i < v—- 1. Using Proposition 23, we can write the function
X;(t,z, x, €) as follows:

Xi (t) Z, X, 6)

(vl

B exp (IZ (ijo /”jfj)) xPra

= Y Xigp 9 Bl Bl B
Bose-sPisPre120 o v r

(190)
where

_ 1 ~7/(e"t)
K%MMNMV;qL‘%%mm”@e dr

! (191)

with integration path L, = R, eV ¢ U, and such
that 7 +— VU o (T €) are holomorphlc functlons on
0>+2P] 4

.....

the estlmates there exist constants Cyos K20 >0, Wthh satlsfy
1Ky < 1, with

sczoexp< L)l |>(”2)z

for all T € D(0, PlBosesfi ﬁm)) u U, and € € D(0,¢,) \ {0}.
Moreover, from assumption (184), we deduce with the help

b
Koo' Bot - B!
(192)
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of recursion (107), which is satisfied for the coefficients of the
formal solution V (7, z, x, €) of the problem (171), (172), that,
for all (Bys..., B Biu1) € N'*2, there exists a holomorphic
function 7 > Vig g p,)(7,€) on D0, pg,, g, g,,)) for all
€ € D(0,¢,) \ {0} such that

(193)

VU o) (F€) = Vig,,.ppn) (F-€)

for all T € D(0, PlBor ﬁz,ﬁm))’ alle € D(O,eo) \ {0}, and all
0<i<v-1.
We show the following.

Lemma 29. There exist constants 0 < h" < W, Cy, Ky,
M,, > 0 (independent of €), which satisfy p,K,, < 1, such
that

SUp [ Xip gy (6€) - g (5:6)]

teTND(0,h")

i By
= C21 <l]:4—-_02> J ]Kﬁlﬂﬁo ﬂl+1 7M21(p(ﬁ“ """ /;l+1)/|€| )
(194)

foralle € &,,NE, allO<i<v—1 andall(ﬁo,...,ﬁm) €

Proof. From the fact that the function 7 — Vi3 55 (7,

€)e " is holomorphic on D(0, P(py...fupuy)> for all € €

D(0,¢,), we deduce that its integral along the union of a

,,,,

circle with radius pg s /2 connectlng (p
2)e V=11 and Py 1)/2)eﬁ”" and a segment starting
from (p Borsfi) /2)e¥ ™ to the origin, is vanishing. There-

.....

fore, using property (193), we can write, for all (f3,...,
Br Briy) € N2,

Xi+1,(ﬁ0,...,ﬁ,+1) (t.€) - Xi,(ﬁg,..-,ﬁm) (t,€)

1 -
et (J VUi Borofinn) (T2€) €
PByrrfysy) 127V 141

/(Erf)d.[

_ J VUdi’(ﬁU""’ﬁl+1) (T) 6) e_T/(ert)dT

Lottty 27V

—1/(e't)
Vi) (€€ dT) )

(195)

where

..........

,,,,,
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First, we give estimates for
I

(197)

1 — r
il Vi i (BE e,

By construction, the direction y;,, (which depends on €'t) is
chosen in such a way that cos(y;,; — arg(e’t)) > &, for all
€€ &, Nn&andallt € T nD(0,h'), for some fixed §, > 0.
From estimates (192), we deduce that

1
S [+2)\2= .
I < — Col = Kﬁ“ Bol- - B!
le"t| /2
AAAAA Bt

MO
e((aC(b))/lel')he—

1
1 1+2\2moPi
_C20<W> Kf(lf ﬁ()!“.ﬁhl!

(h/1€"t]) cos(y;iq —arg(e't))dh

BCHORGNICIT N

1 (B /1D-0T®N P,/ lel )
—oC(b)[t]

1

C 1+2\ZmP

< %(W) KO Bl B!
2

(198)

forallt € I n D0, k) with |t] < (8, = 8,)/a((b), for some
0<9d,<d,andforalle € &, NE,.

i+1
Now, we provide estimates for

I

’ (199)
VUdi’(ﬂo"“’ﬁl+1) (T, 6) e_T/(e t)d‘[ )

Bt y/2oYi

By construction, the direction y; (wich depends on €'t) is
chosen in such a way that cos(y;, — arg(e't)) > 8, for all
€€ &, N&andallt € 7 nD(0,H), for some fixed §, > 0.
Again, from estimates (192), we deduce as above that

I

o B
T ——

(200)

forallt € I n D0, k) with |t] < (8, = 8,)/a(b), for some
0<9d,<d,andforalle € &, NE,.

i+1
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Finally, we give upper bounds for

I, =

,,,,,

Vigopon (me)e €de| . (201)

Due to (192) and bearing in mind property (193), we deduce
that

1 Vi1 l +2 ZJ Oﬁ IB
I < J C20<_> Koo' Bot -+ B!
|€rt| Yi M° '
(U( o)/ el ) (pg..., B)/2)
(202)
(P% _____ B/ 2)(cos(O—arg(e ) /1€"t])
P(/;O ’’’’’ ﬁl+1 de
2

By construction, the circle C(pg 4, 1/2, Vi Vis1) is chosen
in order that cos(6 — arg(e't)) > &, for all 0 € [y;,y,,4] (if
Y < ym) forall 8 € [y,,y:] (f y;,1 < 7). and for every
te T NDO,K),ee€ &;,1 N &;. From (202), we get that

1
[+2\%m
< Y1 = %[ Co <W) Kﬁmﬁo B!

P@oapr) 1 (B /1D=0T®N Py )/ 2lel )
2 le"t|
1
L+2\2=Fi 4 (203)
< |Yi+1 ‘Yilczo<m> Kf(l)lﬂo!"‘ﬁm
P L 6,14,/ 1l D)
2 |eTt|

forallt € I N D(0,h') with |t| < (8, - 8,)/a((b), for some
0 <6, <6,andforalle € &, N &, Regarding inequality
(70), we deduce from (203) that

My vl (1r2)PF

Vi + N B

I3 S 8:1 Czo( MO > ﬁl Bo! -+ B!
O/ Pty /el M)

(204)
forallt € I n D(0,h') with |t| < (8, = 8,)/a((b), for some
0<9d,<d,andforalle € &, N &,

Fmally, gathering decomposmon (195) and estimates
(198), (200), and (204), we get inequality (194). O
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From Lemma 29 and taking into account assumption
(153), we can write

sup |Xis1 (12, x,€) = X; (£, 2, x, €)|
tef/‘nD(o,h”),zer{ ,x€D(0,p;)

< Z Cue Mo (Pegy...py)1el)
PBor--PrPrs120

U 1 ij:u ﬁj
(l + 2) ePI(man:g|£j|) »
’ ( (P1K21)ﬁl

MO

<Gy Z ¢~ Mo (Pgo...pr /1€l

ﬁo """ ﬁbﬁlﬂzo
1 25110 ﬁj
. <max {lem, E})

foralle € &;,, N &;and all 0 < i < v — 1. Moreover, we recall

that, for all 1ntegersl >1,x20,

(205)

Nl+2

Card y (Bps-- > Br1) € 7 =%
Zlf:lO Bi (206)
C(k+I+ D) (k)
I+ D! @+
where (k) = (k + 1+ 1)(x +I)---(x + 1) is a polynomial

of degree I + 1 in k. From definition (89) and with the help of
(206), we get two constants C,, > 0 and 0 < K,, < 1 such
that

I+1
a3 1)\ 20bB;
CZl Z ‘ MZI(PﬁO ---- ﬁlﬂ)/lel ) <maX {PIKZI’ E}) -
Bos--osBysBrer =0

g}( ) Cﬁ/”z

K Epoeenr

<Cy 7 [ . 'exp _MZIW

;czo( +1)! 2(1+x)"" e
1 K
(max ok 5f)

&

< CZZZ exp | —My, 2+ )hﬁ/?’z o ( 22)

x>0

(207)

foralle € &;,;, N&;all0 <i < v- 1. Now, we recall the
following lemma from [4].

Lemma 30. Let 0 < a < 1 and o« > 0. There exist K, M > 0
and & > 0 such that

Ze—(l/(ﬁl)“)(l/e)ak
x>0

foralle € (0,6].

< Kexp (—Me_l/(““))

(208)

From Lemma 30 applied to inequality (207) and from
(205), we deduce that estimates (187) hold, if ¢, is chosen
small enough. Thus proof of Proposition 28 is complete.
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4.2. Existence of Formal Power Series Solutions in the Complex
Parameter for the Main Cauchy Problem. This subsection is
devoted to explaining the main result of this work. Namely,
we will establish the existence of a formal power series

k
—~ €
X (t,z,x,€) = ;;,Hk (t,z,x) T

€ 6((7nD(0,K")) x Hy x D(0,p,)) [[€]]
(209)

which solves formally (180) and is constructed in such a way
that the actual solutions X;(t, z, x,€) of the problem (180),
(181) all have X as asymptotic expansion of Gevrey order
(hry + ry)/r; on &; (as formal series and functions with
coeflicients and values in the Banach space 6((7 ND(0, k")) x
H, x D(0, p;)) equipped with the supremum norm) (see
Definition 31 below), forall0 <i < v - 1.

The proof makes use of a Banach valued version of
cohomological criterion for Gevrey asymptotic expansion of
sectorial holomorphic functions known in the literature as
the Ramis-Sibuya theorem. For a reference, we refer to [18,
Section 7.4 Proposition 18] and [30, Lemma XI-2-6].

Definition 31. Let (E, || - [Ilz) be a complex Banach space over
C. One considers a formal series G(€) = Y., G,€" where
the coefficients G,, belong to E and a holomorphic function
G : & — E onan open bounded sector & with vertex at 0.
Let s > 0 be a positive real number. One says that G admits
G as its asymptotic expansion of Gevrey order s on & if, for
every proper and bounded subsector T of &, there exist two
constants K, M > 0 such that, for all N > 1, one has

< KMVNE el
E

N-1
G(e) - Z G,€"

n=0

(210)

foralle € T.

Theorem RS. Let (E, || - [I) be a complex Banach space over C.
Let {&;}y<icy_1 be agood coveringin C*. Forevery0 <i < v—1,
let G; be a holomorphic function from &; into E, and let the
cocycle A;(e) = Gy, ,(e) — G;(€) be a holomorphic function
fromZ; .= &;n&,,, into E (with the convention that &, = &
and G, = G,). We assume that

(1) G,(€) is bounded as € € &, tends to 0, for every 0 < i <
v—1;

(2) A; has an exponential decreasing of order s > 0 on Z,,
forevery0 < i < v—1, meaning that there exist C;, A; >
0 such that

1 @ < /1", (211)
foreverye € Z,and0 <i<v-1.

Then, there exists a formal power series Gle) € E[[€]] such
that G,(¢) admits G(e) as its asymptotic expansion of Gevrey
order s on &;, forevery 0 <i <v-—1.

We now state the main result of our paper.
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Theorem 32. Let one assume that conditions (185) hold. For
all0 <i<v-1,0<j<S-1, onealso assumes that for the
Junctions E; ;(t, z, €) constructed in (181) inequalities (186) are
fulfilled for some constant I > 0 given in Proposition 28. Let
n

E=0((7nD(0,h"))xHyxD(0,p))  (212)
be the Banach space of holomorphic and bounded functions
on (7 n D(O,K")) x H, x D(0,p,) equipped with the
supremum norm, where h", p|, p, are the constants appearing
in Proposition 28.

Then, there exists a formal series

k
- €
X (t,z,x,€) = ) Hy (t,2,%) o CEllell (a3)
= :
which formally solves the equation
(673 (tzat + t)r2 +(-i0, + l)rl) X (t, 2, x, €)
= Y bk @000 dEX (2, x,€)
(skoskrky) €S (214)

/= 1
+ Z Gy ly (z,x,¢€) ghrh-1 (X (t,z, x, e))1
(Upl)en

and is the Gevrey asymptotic expansion of order (hry + r,)/r;
of the E-valued function ¢ € &; — X,(t,z, x,¢€), solution of
the problem (180), (181) constructed in Proposition 28, for all
0<i<v-1L

Proof. We consider the functions X;(t,z,x,€),0 <i < v -1
constructed in Proposition 28. Forall 0 < i < v — 1, we define
G;(e) := (t,z,x) — X,(t,z,x,€), which is, by construction,
a bounded holomorphic function from &; into the Banach
space E of holomorphic and bounded functions on (9 N
D(0,H"))xH o xD(0, p;) equipped with the supremum norm,

where h', p{ , p1 are constants appearing in Proposition 28.
Bearing in mind estimates (187), we deduce that the cocycle
A;(e) = Giq(e) — G;(e) fulfills estimates of form (211) on
Z; = &4 N &, wheres = (hry +1,)/ry, forall 0 < i <
v — 1. According to Theorem RS stated above, we deduce the
existence of a formal series G(€) € E[[e]] which is the Gevrey
asymptotic expansion of order (hr, +r,)/r; of G;(¢) on &, for
all0 <i <v—1.Let us define

k
G X €
G(e) =X (t,z,x,€) = ,;)Hk (t,z, x) o

(215)

It only remains to show that X is a formal solution of
(214). From the fact that G;(e) admits G(e) as its asymptotic
expansion at 0 on &;, one gets

lim sup

€— 0,e€%;

1
|a€X,- (t,z, x,€)
i tegnD(O,h”),zer{ ,x€D(0,p;)

- H, (t,z,x)| =0
(216)
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foralll > 0andall 0 < i < v — 1. Now, we choose an integer
i € {0,...,v — 1}. By construction, the function X;(t, z, x, €)
solves (180). We differentiate it / times with respect to €. By
means of Leibniz’s rule, we get that aiXi(t, z, X, €) satisfies the
identity

I! hy (13 2 2 Sk,
hllhzlae (€7) (9, +1)* 859X, (t. 2, x.€)

hy+hy=1
+ (=0, +1)" 3%9LX, (t, 2, x,€)

— Z ts
(s,kgky,ky)€S

( Z —l! b (z, x,€)
: € Us,kg.ki.ky >
i 'e!
ko 2ky 2k, 2R (217)
- (pafodX;) (2. x€)

+ Z tlo+11—1

(Il )en

I!
10 G, (2 %€)

hgthy ety =100

L

. H <a?in) (t,z, x,€)

j=1

foralll > 1andall (¢, z, x,€) € (9 ND(0, h"))pr{ xD(0, p;)x
&;. We let € tend to 0 in equality (217) and, with the help of
(216), we get the following recursions:

H,(t,z,x
(o, + 1) s B2
= Z £
(skgky,ky)€S
(beg s, 1, ) (25 %, 0) 900192 H), (t,2,%)
hy+hy=1 hy! h!

+ Z tlo+ll—1

(I>l)en

(a?oclo,ll) (Z, X, 0) L hj (t; A x)

! [1 ;!

J=1

hothy+-+hy =1

(218)

forall0 <1 < ry,all(t,2,x) € (F/“ﬂD(O,h”))xHP{ xD(0, p),
and

v (eid, + 1) o HLE20)

(o, +1)" S Mo, 2 ) T

* (-
= Z £
(skorkr k) €S
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( (b, 1, 5, ) (2 %,0) 908105 H), (t,2, %) >
hy =1 hy! h,!

+ Z tlo+11—1

(losl ) eV

(g, ) (z.x,0) o Hy, (2, %)

1 ;!

Jj=1

hothy+-+hy =1

(219)

for every I > ry and all (t,z,x) € (9 n D(0, H")) x Hp{ X
D(0, py). Since the functions by . (2, x,€) and g ; (2, X, €)
are analytic with respect to € near the origin in C, we get that

(b s, ) (2%, 0)
5051 5 > h
Dogo s, (2 %,€) = ) lhzn €

h=0

(220)
(a?l:lo’ll ) (Z, X, 0) eh

Gy (z,x.€) = Z h!

h=0

for all (s,ky, ki, ky) € &, (Ip,];) € A and all (z,x,€) €
Hp x D(0, p;) x D(0, €). Finally, gathering recursions (218)
and (219) and expansions (220), one can see that the formal
series (215) solves (214). O
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