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In structural dynamic systems, there is inevitable uncertainty in the input power from a source to a receiver. Apart from the
nondeterministic properties of the source and receiver, there is also uncertainty in the excitation. This comes from the uncertainty
of the forcing location on the receiver and, for multiple contact points, the relative phases, the force amplitude distribution at those
points, and also their spatial separation.This paper investigates quantification of the uncertainty using possibilistic or probabilistic
approaches. These provide the maximum and minimum bounds and the statistics of the input power, respectively. Expressions
for the bounds, mean, and variance are presented. First the input power from multiple point forces acting on an infinite plate is
examined. The problem is then extended to the input power to a finite plate described in terms of its modes. The uncertainty due
to the force amplitude is also discussed. Finally, the contribution of moment excitation to the input power, which is often ignored
in the calculation, is investigated. For all cases, frequency band-averaged results are presented.

1. Introduction

The treatment of structure-borne sound sources remains a
challenging problem. Structural excitation to a building floor,
for example, by active components like pumps, compressors,
fans, and motors, is an important mechanism of sound
generation. To obtain an accurate prediction of the injected
input power from such sources, both the source and the
receiver must firstly be characterised. However in practical
application, the variability of source and receiver properties
including the lack of knowledge in the excitation force creates
uncertainty in the input power. The problem is exacerbated
because in practice there will usually be multiple contact
points (typically four) and 6 degrees of freedom (3 for
translation and 3 for rotation) at each, and that force and
moment components at each contact point will contribute
to the total input power. Therefore to assess the uncertainty,
some quantification of the bounds, mean, and variance of the
input power is of interest.

The uncertainty in vibrational energy due to random
properties, for example, dimensions, shapes, boundary

conditions, and so on in a simple receiver structure, such as a
plate, has been described by Langley and Brown [1, 2], where
expressions for the mean vibrational energy and its variance
were developed. A closed form solution was presented for
the relative variance as a function of modal overlap factor
and the nature of the excitation [1]. In [2], the analysis was
extended to the ensemble average of the frequency band-
averaged energy as a function of the frequency bandwidth.
The analysis proceeded on the assumption that the natural
frequencies form a random point process with statistics
governed by, for example, the Gaussian orthogonal ensemble
(GOE). The same type of analysis for a more complex system
has also been proposed [3].

Regardless of the receiving structure, the concept of
source descriptor has been proposed to characterise a source
based on its ability to deliver power without necessarily
knowing any information about the receiver [4, 5]. Here, the
concept of effective mobility [6, 7], that is, the ratio of the
actual velocity at a point and in one direction, to the con-
tributions of the excitations from all components and points,
was used.
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The effectivemobility concept was also employed in [8] to
estimate the total power to an infinite beam through four con-
tact points. The importance of having knowledge of the force
distribution at the contact points was acknowledged. For this
purpose, three simple force ratio assumptions were intro-
duced, and the effects of force position, type of excitation, the
structural loss factor, the receiver, and the number of contact
points were investigated. It was found that the estimation is
accurate only in the mass-controlled region and when the
system approximated a symmetrical response. In a later paper
[9], the force ratio was defined in terms of its statistical dis-
tribution. Simple expressions of the distribution at the mass-,
stiffness-, and resonance-controlled regions were derived.

Characterisation of a source in practice can be ap-
proached by using a reception plate method [10, 11] which
is based on laboratory measurements, where from measured
mobilities and surface mean-square velocities of the receiver,
the free velocities and mobilities of the source can be
extracted.

This paper focuses only on the uncertainty in the excita-
tionwith the source and receiver assumed to be deterministic.
The sourcemay havemultiple contact points.The uncertainty
in input power due to the excitation phase, its location, and
separation of the contact points is investigated. First some
general comments are made. Broadband excitation is des-
cribed, although only time-harmonic excitation is considered
here with frequency averages subsequently being taken. The
input power from multiple point forces to an infinite plate
is examined to give an insight into the physical mechanisms
involved. In practice, the receiver will have modes, although
the modal overlap might be high. The input power to a finite
plate is then analysed, where now the forcing location on the
receiver becomes important. The mean and the variance of
the input power averaged over force positions are investi-
gated. The results are also presented in frequency-band aver-
ages.

The uncertainty in the input power due to uncertainty
in the force amplitude for multiple contact points is also
discussed for a simple case of two contact points. Rather than
dealing with force ratios between contact points, the sum of
the squared magnitudes of the forces is assumed known.

Finally, the inclusion of moments in the excitation is
investigated and predictions of its contribution to the input
power are made.

2. Input Power and Uncertainty Assessment

2.1. Time-Harmonic Excitation. Consider a vibrating source
connected through a single or𝑁 contact points to a receiver.
For a time-harmonic excitation at frequency 𝜔, the input
power is expressed as a function of mobility (or impedance)
of the source and receiver [10, 12]. This requires knowledge
of both source and receiver mobilities and the so-called
blocked force or free velocity of the source. In general, the
mobilities are matrices and the blocked forces or the free
velocities are vectors, with the elements relating to the various
translational and rotational degrees of freedoms (DOFs) at
the contact points. In this paper, however, the analysis is
made by assuming that the force excitation is known, and the

source mobility is assumed to be much smaller than that of
the receiver, as is usually the case in practice.The input power
is therefore given by

𝑃in =
1

2
Re {F̃∗ỸF̃} , (1)

where F̃ = [𝐹
1
𝑒
𝑗𝜙
1 𝐹

2
𝑒
𝑗𝜙
2 ⋅ ⋅ ⋅ 𝐹

𝑁
𝑒
𝑗𝜙
𝑁]

𝑇 is the vector of the
complex amplitudes of the time-harmonic forces and where
∗ denotes the conjugate transpose. The 𝑖th force has a real
magnitude 𝐹

𝑖
and phase 𝜙

𝑖
. The mobilities of the receiver are

represented by an𝑁×𝑁matrix Ỹ. In this section, only forces
are considered. Moment excitation is discussed in Section 6.

2.2. Broadband Excitation. For a broadband excitation over
a frequency band 𝐵, the input power should be defined in
terms of power spectral density and can be written as

𝑆
𝑃in
=

𝑁

∑

𝑖

𝑆
𝑖𝑖
Re {�̃�

𝑖𝑖
} +

𝑁

∑

𝑖,𝑘

𝑖 ̸= 𝑘

Re {𝑆
𝑖𝑘
}Re {�̃�

𝑖𝑘
} , (2)

where 𝑆
𝑖𝑖
and 𝑆

𝑖𝑘
are the autospectral density and cross-

spectral density of the forces, respectively, and �̃�
𝑖𝑘
is the trans-

fer mobility between points 𝑖 and 𝑘. The cross-spectral densi-
ties would often in practice be difficult to measure. However,
the coherence relates the auto- and cross-spectral densities of
the excitation. Thus by assuming that only the autospectra of
the forces are known, the cross-spectra are such that


𝑆
𝑖𝑘


= ±√𝛾2𝑆

𝑖𝑖
𝑆
𝑘𝑘
, (3)

where 0 ≤ 𝛾2 ≤ 1 is the coherence. This gives maximum and
minimum bounds to the magnitude of the cross-spectral
density. A rather similar approach is proposed by Evans and
Moorhouse [13] for the case of a rigid body source, where
the real part of the cross-spectral density is predicted using
the available data of the autospectra and the calculated free
velocities at the contact points from the source rigid body
modes. Hence, this is limited only to the mass-controlled
region of the source at very low frequencies. The comparison
with measured data shows a good agreement. However,
neither of these approaches are implemented in this paper.
All forces are assumed to be time harmonic.

2.3. Uncertainty Quantification. Two approaches are em-
ployed to describe the uncertainty in the input power,
namely, possibilistic and probabilistic approaches [14]. The
possibilistic approach gives an interval description of the
input power, which lies between lower and upper bounds;
that is,

𝑃in ∈ [𝑃in 𝑃in] , (4)

where 𝑃in and 𝑃in are the minimum and maximum bounds
and𝑃in is the interval variable. One example has been given in
Section 2.2, where the input power can be bounded by using
the spectral coherence data.
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The probabilistic approach gives information about the
likelihood and probability of the input power.The variation is
specified by a probability density functionΠ. IfΠ(𝑧) is a con-
tinuous function of some variable 𝑧, themean or the expected
value of the input power and its variance are defined by

𝜇
𝑃in
= 𝐸 [𝑃in] = ∫

𝑧

𝑃in (𝑧)Π (𝑧) d𝑧,

𝜎
2

𝑃in
= ∫

𝑧

𝑃
2

in (𝑧)Π (𝑧) d𝑧 − (𝜇𝑃in)
2

.

(5)

3. An Infinite Plate Receiver

The input power to an infinite plate, as an ideal simple struc-
ture, is first investigated.The point and transfer mobilities for
an infinite plate are given by [15]

�̃�
𝑝
=

1

8√𝐵
𝑒
𝑚
,

�̃�
𝑡
= �̃�

𝑝
[𝐻

(2)

0
(𝑘𝐿) −

2𝑗

𝜋
𝐾

0
(𝑘𝐿)] ,

(6)

where𝐻(2)

0
is the zeroth-order Hankel function of the second

kind, 𝐾
0
is the zeroth-order modified Bessel function of the

second kind,𝑚 is themass per unit area, and𝐵
𝑒
= 𝐸ℎ

3

/12(1−

]2) is the bending stiffness of the plate having Young’s
modulus 𝐸, thickness ℎ, and Poisson’s ratio ]. The input
point mobility is purely real and independent of frequency,
behaving as a damper. In the transfer mobility, the first and
second terms represent propagating and near-field outgoing
waves, respectively.

Assume an infinite plate is excited by two point forces
separated by a distance 𝐿. From (1), the force vector is F =

{𝐹
1
𝑒
𝑗𝜙
1 𝐹

2
𝑒
𝑗𝜙
2}
𝑇 and the mobility is a 2 × 2matrix. The total

power is, thus, the sum of the input power at each location
which yields

𝑃in =
1

2
Re {�̃�

𝑝
} (𝐹

2

1
+ 𝐹

2

2
) + Re {�̃�

𝑡
} 𝐹

1
𝐹
2
cos𝜑, (7)

where 𝜑 = 𝜙
1
− 𝜙

2
is the phase difference between the two

forces. Note that �̃�
12
= �̃�

21
= �̃�

𝑡
. For the case of an infinite

structure, the inputmobility is the same at any positionwhich
implies that �̃�

11
= �̃�

22
= �̃�

𝑝
.

3.1. Dependence on the Contact Points Separation. When the
structural wavelength 𝜆 is much larger than the separation
of the excitation points (𝜆 ≫ 𝐿), the transfer mobility is
approximately equal to the pointmobility.Therefore, �̃�

𝑝
≈ �̃�

𝑡
.

For simplicity, if 𝐹
1
= 𝐹

2
= 𝐹, the input power becomes

𝑃in = Re {�̃�
𝑝
} 𝐹

2

(1 + cos𝜑) . (8)

From (8), the maximum and minimum input power are

𝑃in = 2𝐹
2 Re {�̃�

𝑝
} , for 𝜑 = 2𝑛𝜋

𝑃in = 0, for 𝜑 = (2𝑛 + 1) 𝜋,
(9)

where 𝑛 is any integer.
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Figure 1: The normalised input power to an infinite plate subjected
to two in-phase (—) and out-of-phase (⋅ ⋅ ⋅ ) harmonic unit point
forces (— grey line: max/min bounds at higher frequencies).

When the structural wavelength is much smaller than 𝐿
(𝜆 ≪ 𝐿), the input power is

𝑃in = (Re {�̃�𝑝} + Re {�̃�
𝑡
} cos𝜑)𝐹2. (10)

For small structural wavelength, the maximum and mini-
mum input powers depend on Re{𝑌

𝑡
} cos𝜑 which indicates

the dependency of the power on the phase and the distance
between the excitation forces. Now since 𝑘𝐿 ≫ 1, the real
part of the transfer mobility in (6) can be expressed in its
asymptotic form [16] as (see Appendix A)

Re {�̃�
𝑡
} = Re {�̃�

𝑝
}√

2

𝜋𝑘𝐿
cos(𝑘𝐿 − 𝜋

4
) . (11)

The input power can thus be written as

𝑃in = Re {�̃�
𝑝
} (1 + √

2

𝜋𝑘𝐿
cos(𝑘𝐿 − 𝜋

4
) cos𝜑)𝐹2. (12)

The input power at higher frequencies is thus bounded by

𝑃in = (1 ± √
2

𝜋𝑘𝐿
)Re {�̃�

𝑝
} 𝐹

2

. (13)

Figure 1 shows the total input power when the two forces
are in-phase (𝜑 = 0) and out-of-phase (𝜑 = 𝜋) as a function
of 𝑘𝐿. Note that the input power has been normalised with
respect to the input power from two point forces acting
incoherently (equal to two times the power from a single
point force). It can be seen that the power fluctuates around
the value it would have if the two forces were applied inde-
pendently. From (12), the power is minimum and maximum
when 𝑘𝐿 = (2𝑛 + 1)𝜋 for 𝑛 = 0, 1, . . . for in-phase and out-
of-phase forces, respectively. These are when, with respect to
the wavelength, the two in-phase forces become out of phase
and the out of phase forces become in phase.The intersection
between the two curves at high 𝑘𝐿 is when 𝜑 = 𝜋/2. For 𝑘𝐿 <
1, that is, when the forcing distance is less than half a struc-
tural wavelength, the total power is constant with frequency.
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3.2. RandomPhase. In practice, accurate information regard-
ing the relative phase between the forces is generally not
known. It might be assumed that all possible relative phases
have equal probability. The probability density function Π of
the phase is then constant and given by

Π(𝜑) =
1

2𝜋
, 𝜑 = [0, 2𝜋] . (14)

From (10), the mean power and its variance using (5) are

𝜇
𝑃in
= Re {�̃�

𝑝
} 𝐹

2

,

𝜎
2

𝑃in
=
1

2
(Re {�̃�

𝑡
} 𝐹

2

)
2

.

(15)

It can be seen that the mean power equals that which would
be given by two forces acting independently. The variance,
hence, arises from interference between the two forces. As
�̃�
𝑡
= �̃�

𝑝
for 𝑘𝐿 ≪ 1, from (15), the normalised standard devia-

tion is 𝜎/𝜇 = 1/√2. For 𝑘𝐿 ≫ 1, 𝜎 decreases as 𝑘𝐿 increases
(see (11)). Substituting (11) into (15) gives

𝜎
2

𝜇2
= (

1

𝜋𝑘𝐿
) cos2 (𝑘𝐿 − 𝜋

4
) . (16)

The bounds of the variance occur when cos2(𝑘𝐿 − 𝜋/4) = 1.
The maximum normalised standard deviation is therefore
𝜎/𝜇 = 1/√𝜋𝑘𝐿.

When the separation distance of the contact points is
uncertain, consequently 𝑘𝐿mod 𝜋 becomes unknown, while
1/(𝑘𝐿) is more or less constant. Therefore by averaging (16)
over all possible 𝑘𝐿 mod 𝜋, the variance can be expressed
as

⟨
𝜎
2

𝜇2
⟩

𝑘𝐿

= (
1

𝜋𝑘𝐿
)[

1

𝜋
∫

𝜋/2

−𝜋/2

cos2 (𝑘𝐿 − 𝜋
4
) d (𝑘𝐿)]

=
1

2𝜋𝑘𝐿
.

(17)

Therefore, the normalised standard deviation due to uncer-
tainty in 𝑘𝐿 is 𝜎/𝜇 = 1/√2𝜋𝑘𝐿.

Figure 2 shows the input power for a number of possible
relative phases of excitation. The mean power is a function
of the point mobility which then gives a constant value with
frequency. The normalised deviation of the power (1 ± 𝜎/𝜇)
lies between the maximum and minimum input power and
bounded by 1±1/√𝜋𝑘𝐿. It can be seen that uncertainty in 𝑘𝐿
increases the deviation of the input power.

3.3. Four Contact Points. The case of four input excitations is
more realistic in practice, for example, a vibrating machine
with four feet. Figure 3 shows an infinite plate excited by four
harmonic point forces. In this case, from (1), the mobility is a
4 × 4 matrix. The diagonal elements are the point mobilities
at each location, which for an infinite structure are equal
to �̃�

𝑝
. The analysis is generally complicated. For simplicity,

by assuming that the excitation positions form a rectangular
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Figure 2:The normalised input power to an infinite plate subjected
to two harmonic unit point forces with various relative phases (grey
lines): −− mean, − ⋅ − mean ± standard deviation, — (thick lines)
max/min bounds, — mean ± bounds of standard deviation, and ⋅ ⋅ ⋅
mean ± bounds of standard deviation due to uncertainty in 𝑘𝐿.
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Figure 3: An infinite plate excited by four harmonic point forces
applied at the vertices of a rectangle.

shape, therefore, �̃�
12
= �̃�

21
= �̃�

34
= �̃�

43
; �̃�

13
= �̃�

31
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=
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and �̃�
14
= �̃�

41
= �̃�

23
= �̃�

32
. The problem can be simpli-

fied numerically by choosing a force vector whose phases are
relative to the phase of one reference force. The force vector
can be rewritten as

F̃ = [𝐹
1

𝐹
2
𝑒
𝑗𝜓
2 𝐹

3
𝑒
𝑗𝜓
3 𝐹

4
𝑒
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4]

𝑇

, (18)

where 𝜓
𝑖
is the relative phase of 𝐹

𝑖
with respect to 𝐹

1
. Thus,

the total input power is given by
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)) .

(19)
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Note again in (19), that the input power is the sum of the
powers that would be injected by the forces acting individu-
ally (the first term) and terms that depend on the relative
phases of the forces (the remaining terms).

Thus, if equal probability of relative phase is assumed and
the phases are uncorrelated, the probability density function
Π can be expressed as

Π(𝜓
2
, 𝜓

3
, 𝜓

4
) = Π (𝜓

2
)Π (𝜓

3
)Π (𝜓

4
) ,

Π (𝜓
𝑖
) =

1

2𝜋
.

(20)

Using (5) and assuming all the forces have equal amplitudes,
the mean power and the variance are given by

𝜇
𝑃in
= 2Re {�̃�
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, (21)
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(22)

As in the case of two point forces in Section 3.2, the variance
of the input power depends only on the transfer mobilities
while themean power is only a function of the pointmobility.
In general, themean and the variance of input power averaged
over all possible phases of excitation for𝑁 contact points for
a rectangular separation can be written as

𝜇
𝑃in
=
1

2

𝑁

∑

𝑖

Re {�̃�
𝑖𝑖
} 𝐹
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𝑖
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𝑖=1

𝑁

∑

𝑘=2

𝑖<𝑘

(Re {�̃�
𝑖𝑘
} 𝐹

𝑖
𝐹
𝑘
)
2

.

(23)

The bounds for the normalised input power are obtained
by inserting the maximum transfer mobility from (11) into
(19), which for equal force amplitudes yields

𝑃in

𝜇
= 1 ± √

2

𝜋𝑘
(𝐿

−1/2

1
+ 𝐿

−1/2

2
+ 𝐿

−1/2

3
) . (24)

In the sameway, substituting (11) into (22), the bounds for the
normalised standard deviation are

𝜎

𝜇
= ±√

1

2𝜋𝑘
(𝐿

−1

1
+ 𝐿

−1

2
+ 𝐿

−1

3
)
1/2

, (25)

where the positive and negative signs are for the maximum
and minimum bounds, respectively.

Following the same method for the case of two point
forces, the bounds due to uncertainty in 𝑘𝐿 are given by

𝜎

𝜇
= ±0.5√

1

𝜋𝑘
(𝐿

−1

1
+ 𝐿

−1

2
+ 𝐿

−1

3
)
1/2

. (26)
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Figure 4:The normalised input power to an infinite plate subjected
to four harmonic unit point forces with various phases (grey lines):
−−mean, −⋅−mean ± standard deviation,— (thick lines) max/min
bounds, — mean ± bounds of standard deviation, and ⋅ ⋅ ⋅ mean ±
bounds of standard deviation due to uncertainty in 𝑘𝐿.

Figure 4 shows the input power with various relative
phases of excitation. As in Figure 2, the power fluctuates
at high 𝑘𝐿 around the mean value. The standard deviation
shown is from (22). The first dip in the standard deviation
corresponds to the frequency where the diagonal 𝐿

3
equals

half the structural wavelength, and the subsequent dips are
related to 𝐿

1
and 𝐿

2
. Equations (25) and (26) again show

that the standard deviation reduces as the separation of the
contact points increases.

4. Input Power to a Finite Plate

For a finite structure, the mobility and, hence, the input
power can be expressed in terms of a summation over modes
of vibration. The mobility of a finite structure at an arbi-
trary point (𝑥, 𝑦) subjected to a point force 𝐹 at (𝑥

0
, 𝑦

0
) at

frequency 𝜔 is given by [10]

�̃� = 𝑗𝜔

∞

∑

𝑛=1

Φ
𝑛
(𝑥

0
, 𝑦

0
)Φ

𝑛
(𝑥, 𝑦)

𝜔2

𝑛
(1 + 𝑗𝜂

𝑛
) − 𝜔2

, (27)

where Φ
𝑛
is the 𝑛th mass-normalised mode shape of the

structure, 𝜔
𝑛
is the 𝑛th natural frequency, and 𝜂

𝑛
is damping

loss factor of the 𝑛thmode. A case often considered is that of a
rectangular plate with simply supported boundary conditions
as this system provides a simple analytical solution. For a
simply supported rectangular plate with dimensions 𝑎×𝑏, the
mode shape and the natural frequency for mode (𝑝, 𝑞) are

Φ
𝑝𝑞
(𝑥, 𝑦) =

2

√𝑀

sin(
𝑝𝜋𝑥

𝑎
) sin(

𝑞𝜋𝑥

𝑏
) ,

𝜔
𝑝𝑞
= √

𝐵

𝑚
[(
𝑝𝜋

𝑎
)

2

+ (
𝑞𝜋

𝑏
)

2

] ,

(28)
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where𝑀 is the total mass of the plate and 𝑝, 𝑞 = 1, 2, 3, . . ..
The rigid bodymotion existing in the reception plate method
[11] can be approximated by assuming the edges are guided or
sliding. The mode shape functions involve cos terms instead
of sin terms in (28). Using the corresponding real part of the
point mobility in (27), the input power for point excitation is
given by

𝑃in =
1

2

∞

∑

𝑝=1

∞

∑

𝑞=1

𝜔𝜔
2

𝑝𝑞
𝜂
𝑛
Φ

2

𝑝𝑞
(𝑥

0
, 𝑦

0
) |𝐹|

2

(𝜔2

𝑝𝑞
− 𝜔2)

2

+ (𝜔2

𝑝𝑞
𝜂
𝑛
)
2

. (29)

4.1. Averaging over Force Positions. Equation (29) implies
that the input power depends on the forcing location which
might be uncertain. Figure 5 shows the input power from a
single point force for various forcing locations. The structure
considered is an aluminium plate having dimensions 0.6 ×
0.5 × 0.0015m, Young’s modulus 7.1 × 10

10 N/m2, 𝜌 =

2700 kg/m3, and damping loss factor 𝜂 = 0.05, assumed con-
stant for every mode. The input power is normalised with
respect to the input power to an infinite plate.

The peaks occur at the resonances of the plate. They
are distinct at low frequencies, but the modal overlap
increases as the frequency increases. Analytically, since
1/(𝑎𝑏) ∫

𝑎

∫
𝑏

Φ
2

𝑝𝑞
d𝑥

0
d𝑦

0
= 1/𝑀, the mean input power aver-

aged over all possible force positions is [10] as follows:

⟨𝑃in⟩𝑥
0
,𝑦
0

=
|𝐹|

2

2𝑀

∞

∑

𝑝=1

∞

∑

𝑞=1

𝜔𝜔
2

𝑝𝑞
𝜂

(𝜔2

𝑝𝑞
− 𝜔2)

2

+ (𝜔2

𝑝𝑞
𝜂)

2
. (30)

It can be seen that at high frequencies, the mean power
converges to the same level as the input power to an infinite
plate. The variance of the input power also decreases at high
frequencies as with respect to the spatial variation of the
vibrationmodes, the forcing location becomes less important
as the frequency increases.

4.2. Averaging over Frequency Bands. Suppose that the exci-
tation frequency lies between two frequencies 𝜔

1
and 𝜔

2
. The

input power can then be averaged over this frequency band
and can be expressed as

⟨𝑃in⟩𝜔 =
1

𝜔
2
− 𝜔

1

∫

𝜔
1

𝜔
2

𝑃in (𝜔) d𝜔. (31)

Figure 6 shows the average input power for a 100Hz band-
width and at 50Hz centre frequency spacing. For the plate
example considered, the modal density is 0.065 modes/Hz.
Therefore with this bandwidth, there are on average just over
6modes in the band. It can be seen that themean value is now
close to the infinite plate value except below 100Hz, where the
modal overlap is low and the response is stiffness dominated.

4.3. Prediction of Mean and Variance. The frequency average
of the input power in (29) strongly depends on the statistical
distribution of 𝜔/((𝜔2

𝑚𝑛
− 𝜔

2

)
2

+ (𝜔
2

𝑚𝑛
𝜂)

2

). For a symmetric
structure like a rectangular plate, asymptotically the natural
frequency spacings have a Poisson distribution; that is, the
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Figure 5:The normalised input power to a finite plate subjected to a
single harmonic point force for various possible force positions (grey
lines): — mean and − ⋅ −mean ± standard deviation.
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Figure 6: The normalised input power to a finite plate subjected to
a single harmonic point force for various possible force positions
averaged over 100Hz frequency band (grey lines): —mean and − ⋅−
mean ± standard deviation.

spacings between successive natural frequencies are statisti-
cally independent and have an exponential distribution [17].
From [1, 2, 10, 17], the mean and variance of the input power
averaged over all possible forcing locations yield

⟨𝑃in⟩(𝜔,𝑥
0
,𝑦
0
)
=
|𝐹|

2

𝑛
𝑑
𝜋

4𝑀
,

⟨𝜎
2

⟩
(𝜔,𝑥
0
,𝑦
0
)

=
|𝐹|

4

𝑛
𝑑
𝜋

16𝜂𝜔𝑀2

,

(32)

where 𝑛
𝑑
(𝜔) = 0.276𝑎𝑏/ℎ𝑐

𝐿
is the modal density of plate and

𝑐
𝐿
= (𝐸/𝜌(1−]2))1/2 is the longitudinal plate wave speed.The

mean power equals the input power to an infinite plate.
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Figure 7:Themean and standard deviation of the input power of a finite plate due to variation in forcing locations (numerical: —mean, − ⋅−
mean ± standard deviation, and (32): −−mean and ⋅ ⋅ ⋅ mean ± standard deviation; (a) 𝜂 = 0.05 and (b) 𝜂 = 0.1).

Figure 7 shows the normalised standard deviation of
the input power averaged over force positions for different
damping loss factors together with the modal overlap factor
(MOF), where MOF = 𝑛

𝑑
𝜂𝜔. It can be seen that there is a

good agreement between the numerical calculations and the
analytical predictions if MOF > 1.

From (32), the relative standard deviation can be defined
as a function of modal overlap factor; that is,

𝑟
𝜎
=
⟨𝜎⟩

⟨𝑃in⟩
=

1

√𝜋𝑛𝑑𝜂𝜔
=

1

√𝜋 MOF
. (33)

For plates with other shapes, the natural frequency spac-
ing statistics are not Poisson (e.g., under many circumstances
they asymptote to Gaussian orthogonal ensemble statistics).
An alternative expression for the variance can then be found
[1, 2].

4.4. Four Point Excitations. In this section, results are pre-
sented for the case where there are four rectangularly dis-
tributed point excitations. The diagram of the force positions
is the same as in Figure 3 for an infinite plate. The total
input power is also similar to (19) except that for a finite
structure the leading term is now expressed in terms of
the input mobility for each force location. Therefore by also
assuming equal force amplitudes and equal probability of
all the excitation phases, the mean power for a finite plate
subjected to four point forces according to (23) is given by

𝜇
𝑃in
=
1

2
(Re {�̃�

11
} + Re {�̃�

22
} + Re {�̃�

33
}

+Re {�̃�
44
}) 𝐹

2

,

(34)

whilst the variance is the same as in (22).
Figure 8 shows the normalised mean and the standard

deviation of the input power to a plate having dimensions
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Figure 8: The normalised input power to a finite plate subjected
to four harmonic point forces averaged over all possible excitation
phases (— mean and − ⋅ −mean ± standard deviation).

1 × 0.8 × 0.0015m. The simulation is made for forces with
a square distribution, where 𝐿

1
= 𝐿

2
= 0.1m (see Figure

3), and is located around the middle of the plate. The result
shows typical behaviour where the variation is larger at low
frequencies and decreases as 𝑘𝐿 increases.

For the same force separation, Figure 9 shows the relative
standard deviation 𝑟

𝜎
for the average input power over all

possible force positions and frequency bands. It can be seen
that the standard deviation can be estimated reasonably and
accurately by using results for the infinite plate, except at
very low 𝑘𝐿. The result from (33) is close to the averages
of the numerical results. The figure also shows that the dips
clearly correspond to frequencies where the distance between
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Figure 9: The relative standard deviation of input power to a finite plate subjected to four harmonic point forces averaged over various force
positions and frequency bands: — numerical, − ⋅ − infinite plate and −− (33) ((a) 𝜂 = 0.1 and (b) 𝜂 = 0.05).

the excitation points is a multiple of half the structural
wavelength, 𝑘𝐿 = 𝑛𝜋. However, Figure 9(b) shows that for
a smaller damping, the infinite plate result is now an under-
estimate of the numerical values. In this case, the prediction
using (33) gives a good agreement, particularly at large 𝑘𝐿.

5. Random Force Amplitude

Besides the phases and locations of excitation, the force
distribution at the contact points also generates variability in
the input power. In practice, this could be due to the condi-
tion of the installation or the nature of the source itself. The
problem is that it is very difficult in practice to have know-
ledge of its distribution in sufficient detail. The situation
becomes more complicated still if moment excitation is also
taken into consideration. Thus, in theoretical studies often,
for convenience, only translational forces of equal amplitude
are assumed [8, 11].

Here, the approach is used to constrain the total square
magnitude of the forces, that is, to assume

𝐹
2

eff =
𝑁

∑

𝑖=1

𝐹
2

𝑖
(35)

is constant.The goal is to obtain themaximum andminimum
bounds of the mean and variance of the input power provid-
ing that only the so-called effective force 𝐹eff is known. From
(23) for the mean input power to an infinite plate excited by
two point forces,

𝜇
𝑃in
=
1

2
�̃�
𝑝
(𝐹

2

1
+ 𝐹

2

2
) =

1

2
�̃�
𝑝
𝐹
2

eff. (36)

It can be seen that for an infinite plate, the mean power does
not depend on the force distribution but rather on the charac-
teristics of the receiver only. However, the variance depends
on the product of the forces at the contact points. For two

forces, the maximum variance is obtained when both contact
points have equal force distribution; that is, 𝐹

1
= 𝐹

2
, and

the minimum variance is when one of the forces equals the
effective force while the other is zero; that is, 𝐹

1
= 0; 𝐹

2
= 𝐹eff

(see (23)). For a finite plate, the location of the excitation
determines themobility of the receiver.However, if the spatial
variation is small (𝑘𝐿 < 𝜋), the mean input power also
depends only on the receiver mobility as in (36), where �̃�

𝑝
=

�̃�
11
≈ �̃�

22
.

Figure 10(a) shows the distribution of mean and the
standard deviation of the input power due to random relative
phases for various force amplitudes in frequency averages,
where 𝐹2eff = 1N

2. The excitation points are located at (0.25𝑎,
0.6𝑏) and (0.58𝑎, 0.6𝑏) for the same plate dimensions as in
Section 4.1 with damping loss factor 𝜂 = 0.01. It can be seen
that at low frequency, the variation is up to 4 dBwhich is quite
significant. However, this reduces as the frequency increases.
The variation can also be reduced by increasing the damping
loss factors as shown in Figure 10(c).

The average mean and variance from this results can be
obtained by assuming𝐹2

1
is uniformly probable between 0 and

𝐹
2

eff. Within this range, the probability density functionΠ can
be assumed constant; that is,

Π(𝐹
2

1
) =

1

𝐹
2

eff
,

𝐹
2

1
= [0, 𝐹

2

eff] .

(37)

Using (5), the mean and the variance of the input power
due to random phases averaged over random point force
loading for the case of two contact points are given by

⟨𝜇
𝑃in
⟩
𝐹
2

1

=
1

4
(Re {�̃�

11
} + Re {�̃�

22
}) 𝐹

2

eff,

⟨𝜎
2

𝑃in
⟩
𝐹
2

1

=
1

12
(Re {�̃�

12
} 𝐹

2

eff)
2

.

(38)
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Figure 10: (a, c)The distribution of the mean (dark grey) and mean ± standard deviation (light grey) of the input power to a finite plate with
two contact points due to random relative phases for various force amplitudes; (b, d) The average mean (—) and average mean ± standard
deviation (− ⋅ −) over random force amplitudes. (a)-(b) 𝜂 = 0.01; (c)-(d) 𝜂 = 0.1.

Figures 10(b) and 10(d) show the average mean and
standard deviation of the input power from the results in
Figures 10(a) and 10(c). Here, again it can be clearly seen
that the deviation decreases with frequency and also as the
damping loss factor increases. In this example, for 𝜂 = 0.1, the
deviation of the power from the mean is insignificant above
𝑘𝐿 = 5 (<1 dB).

Figure 11 shows the mean and variance due to random
phases and force amplitudes for the infinite plate, also with
two contact points, where in (38), �̃�

11
= �̃�

22
= �̃�

𝑝
. Asymptotic

form of �̃�
𝑡
in (11) is used to calculate the maximum andmini-

mum bounds (the case where 𝐹2
1
= 𝐹

2

2
= 𝐹

2

eff/2). The range
between the bounds can be seen to be roughly 2 dB between
𝑘𝐿 = 4 and 16. However, this decreases as the frequency
increases.

6. The Contribution of Moment Excitation

6.1.TheEffect ofMoment Excitation on the Input Power. In the
previous sections, only the translational force is considered as
the driving excitation. However, in principle the motion at a
contact point of a structure-borne source would involve up to
six components where not only forces, but also moments will
contribute to the total input power. The moment excitation
is often neglected partly because of measurement difficulties
rather than the fact that, in most cases, it gives a small
contribution to the input power [18]. The contribution of
moments is most important at higher frequencies and is less
important than that of forces if the source is far away from
discontinuities or boundaries [19].

Figure 12 illustrates the components of excitation
assumed to act on a structure. The response at the contact
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Figure 11: The mean (−−) and mean ± standard deviation (− ⋅ −) of
the input power to an infinite plate with two contact points due to
random relative phases and random force amplitudes (— max-min
mean ± standard deviation, (thick line) max-min bounds).

point is a function of point mobilities, transfer mobilities
for different axes, and also the cross-mobilities for different
components. Therefore, there will be a 6 × 6mobility matrix
for each excitation point. The problem becomes more com-
plicated for multiple contact points. For 𝑁 contact points,
the interaction between components will increase the size of
the system matrix to 6𝑁 × 6𝑁.

In this paper, however, the problem is simplified by
neglecting the in-plane excitations, that is, 𝐹

𝑥
, 𝐹

𝑦
, and 𝑀

𝑧
.

Therefore, the mobility matrix is reduced to a 3 × 3 matrix
for a single contact point. In general, the input power due
to a combined point force and moment excitation can be
rewritten as

𝑃in =
1

2
(Re {�̃�V𝐹

}

𝐹


2

+ Re {�̃�V𝑀
�̃�𝐹

∗

}

+Re {�̃� ̇
𝜃𝐹

𝐹�̃�
∗

} + Re {�̃� ̇
𝜃𝑀

}

�̃�


2

) ,

(39)

where �̃�V𝐹 and �̃� ̇
𝜃𝑀 are the point force and point moment

mobilities and �̃� ̇
𝜃𝐹 and �̃�V𝑀 are the cross-mobilities from

force to rotation and from moment to translation, respect-
ively. Since �̃� ̇

𝜃𝐹

= �̃�
V𝑀, hence Re{�̃�V𝑀

�̃�𝐹
∗

}+Re{�̃� ̇
𝜃𝐹

𝐹�̃�
∗

} =

Re{�̃�V𝑀
(�̃�𝐹

∗

+ 𝐹�̃�
∗

)} = 2Re{�̃�V𝑀
}Re{�̃�𝐹∗}, and (39) can

be rewritten as

𝑃in =
1

2
(Re {�̃�V𝐹

}

𝐹


2

+ 2Re {�̃�V𝑀
}Re {�̃�𝐹∗}

+Re {�̃� ̇
𝜃𝑀

}

�̃�


2

) ,

(40)

where, for an infinite plate, Re{�̃�V𝑀
} = 0.

Inmatrix form, the power can be expressed as in (1) where
F̃ = [𝐹 �̃�

𝑥
�̃�

𝑦
]
𝑇 is the vector of the force and moments.

Mz

Fz

MyFy

Mx

Fx

Figure 12: Six components of point excitations.

With inclusion of themoment excitation, themobility matrix
for a single contact point is given by

Ỹ = [[
[

�̃�
V𝐹

�̃�
V𝑀
𝑥 �̃�

V𝑀
𝑦

�̃�
̇

𝜃
𝑥
𝐹

�̃�
̇

𝜃
𝑥
𝑀
𝑥 �̃�

̇
𝜃
𝑥
𝑀
𝑦

�̃�
̇

𝜃
𝑦
𝐹

�̃�
̇

𝜃
𝑦
𝑀
𝑥 �̃�

̇
𝜃
𝑦
𝑀
𝑦

]
]

]

, (41)

where Ỹ is symmetric.

6.2. Magnitude of Moment. The relative contribution to the
input power depends of course on the magnitude of the
excitation. Force andmoment cannot be compared directly as
they have different units. In a practical situation, they would
also depend on the nature of the force generationmechanism
in the source. The installation condition also has to be
considered. The effects of moment excitation for a vibrating
machine installed on soft support at the contact points would
be different to those if the machine was bolted tightly to the
receiver structure. Thus, the problem remains of qualifying
the relative effects of force andmoment. Moorhouse [18] pro-
posed a dimensionless mobility where, for example, the real
part of a cross-mobility, Re{�̃� ̇

𝜃𝐹

}, is normalised by the real
part of the corresponding point mobilities for both the force

and the moment, √Re{�̃� ̇
𝜃𝑀}Re{�̃�V𝐹}. This gives insight into

the relative contribution due to the different excitation com-
ponents.

6.2.1. Single Point Excitation. The relative importance of force
and moment in exciting a structure can be compared only
in terms of their input power. However, to calculate the
power not only the mobilities should be known but also
the magnitudes and the phases of the excitation components
(see (39)). Petersson [20] introduced the nondimensional
eccentricity which relates the ratio of magnitude of moment
and force to the structural wavenumber.

Here, another approach is introduced where the magni-
tudes of the moments, �̃� = 𝑀𝑒

𝑗𝜙
1 , and the force, 𝐹 = 𝐹𝑒𝑗𝜙2 ,

at the contact point are related by an effective lever arm 𝛼 by

𝑀 = 𝛼𝐹, (42)

where 0 < 𝛼 < ∞. This indicates that if 𝛼 is very small, the
structure is excited mainly by force, while if 𝛼 is very large
the structure is driven mainly by a moment. However, for
convenience, a nondimensional unit is preferred to scale the
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relative input power. The total input powers, 𝑃
𝐹
and 𝑃

𝑀
, due

to a force and a moment on an infinite plate are

𝑃in = 𝑃𝐹 + 𝑃𝑀 =
1

2
Re {�̃�V𝐹

} 𝐹
2

+
1

2
Re {�̃� ̇

𝜃𝑀

}𝑀
2

, (43)

and the real parts of the point mobilities are given by

Re {�̃�V𝐹
} =

𝜔

8𝐵𝑘2
,

Re {�̃� ̇
𝜃𝑀

} =
𝜔

8𝐵
,

(44)

where all the cross-mobilities Re{�̃� ̇
𝜃𝐹

} and Re{�̃�V𝑀
} are zero.

Consequently, the relative phase between the force and the
moment is irrelevant.

From (42), (43), and (44), the input power frommoment
excitation can be scaled in terms of the input power from the
force by a nondimensional unit 𝑘𝛼 and is expressed as

𝑃
𝑀
= (𝑘𝛼)

2

𝑃
𝐹
, (45)

where 𝑘 is the structural wavenumber. Equation (43) can be
rewritten as

𝑃in = ((𝑘𝛼)
2

+ 1) 𝑃
𝐹
. (46)

Figure 13 shows the normalised total input power to an
infinite plate for a single contact point. It can be seen that
the power from force excitation is constant with frequency
while the power from moment excitation is increasing with
frequency. Both powers intersect at 𝑘𝛼 = 1. For 𝑘𝛼 < 1, the
power is dominated by force excitation and for 𝑘𝛼 > 1, the
power is dominated by moment excitation.

For a finite plate receiver, the total input power is given as
in (40). While the situation is now numerically complicated,
(46) can again be used to scale the individual contribution to
the input power.

6.2.2. Multiple Point Excitation. Figure 14 shows a diagram
of a translational force 𝐹 which generates moment 𝑀 that
can be resolved into moments𝑀

𝑥
and𝑀

𝑦
components. The

moments can be expressed as

𝑀
𝑥
= 𝐿𝛽𝐹 sin (𝛿) ,

𝑀
𝑦
= −𝐿𝛽𝐹 cos (𝛿) ,

(47)

where 𝐿 is the lever arm, or the distance from the line of
action of 𝐹 to the point attached to the structure, 𝛿 is the
angle between the lever arm and the positive 𝑥-axis, and 𝛽
is a dimensionless scaling factor.

Equations (42) and (47) can be used to define the relation
between force and moment for multiple contact points.
Figure 15 shows the forces and moments for a typical four
point contact source, with the points having a rectangular
distribution, where 𝐿2

3
= 𝐿

2

1
+ 𝐿

2

2
. The reference moment

at any contact point might then be considered as a sum of
contributions from forces at all the contact points. In this

10−2

10−1

100

101

102

100

k𝛼

P
in

/P
F

Figure 13: The normalised input power from force (− ⋅ −) and
moment (−−) excitations at a single contact point and the total
power (—).
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situation, the moment about the 𝑥-axis can thus be expressed
in the form

{{{{

{{{{

{

𝑀
𝑥,1

𝑀
𝑥,2

𝑀
𝑥,3

𝑀
𝑥,4

}}}}

}}}}

}

=

[
[
[
[

[

𝛼
1

0 −𝐿
2
𝛽
3

−𝐿
3
𝛽
4
sin 𝜃

0 𝛼
2

−𝐿
3
𝛽
3
sin 𝜃 −𝐿

2
𝛽
4

𝐿
2
𝛽
1

𝐿
3
𝛽
2
sin 𝜃 𝛼

3
0

𝐿
3
𝛽
1
sin 𝜃 𝐿

2
𝛽
2

0 𝛼
4

]
]
]
]

]

×

{{{{

{{{{

{

𝐹
1

𝐹
2

𝐹
3

𝐹
4

}}}}

}}}}

}

,

(48)
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and the moments about the 𝑦-axis are

{{{

{{{

{

𝑀
𝑦,1

𝑀
𝑦,2

𝑀
𝑦,3

𝑀
𝑦,4

}}}

}}}

}

=
[
[
[

[

𝛼
1

𝐿
1
𝛽
2

0 𝐿
3
𝛽
4
cos 𝜃

−𝐿
1
𝛽
1

𝛼
2

−𝐿
3
𝛽
3
cos 𝜃 0

0 𝐿
3
𝛽
2
cos 𝜃 𝛼

3
𝐿
1
𝛽
4

−𝐿
3
𝛽
1
cos 𝜃 0 −𝐿

1
𝛽
3

𝛼
4

]
]
]

]

×

{{{

{{{

{

𝐹
1

𝐹
2

𝐹
3

𝐹
4

}}}

}}}

}

.

(49)

The subsequent sections discuss the effect of moment excita-
tion on the input power to infinite and finite plates particu-
larly for the multiple point excitation.

6.3. Infinite Plate Receiver

6.3.1. Single Contact Point. For a single contact point,
Figure 13 shows the input power as a function of 𝑘𝛼 and
the relative phase between the force and moment is not
important. However, for multiple contact points, the relative
phases are required as the result of the coupling between
forces andmoments to the response at another contact point.

6.3.2.Multiple Contact Points. As an example, for two contact
points there are fifteen relative phases. Assume the distance 𝐿
between the two points is parallel with 𝑥-axis (𝛿 = 0) so that
some transfer moment mobilities about 𝑥-axis become zero.
The transfer moment mobilities are given in Appendix A. In
this case, the total input power for the case of two contact
points is given by

𝑃in =
1

2
Re {�̃�V𝐹

𝑝
} (𝐹

2

1
+ 𝐹

2

2
) +

1

2
Re {�̃� ̇

𝜃
𝑥
𝑀
𝑥

𝑝
} (𝑀

2

𝑥,1
+𝑀

2

𝑥,2
)

+
1

2
Re {�̃�

̇
𝜃
𝑦
𝑀
𝑦

𝑝
} (𝑀

2

𝑦,1
+𝑀

2

𝑦,2
)

+ Re {�̃�V𝐹
𝑡
} 𝐹

1
𝐹
2
cos𝜓

1
+ Re {�̃�

̇
𝜃
𝑥
𝑀
𝑥

𝑡
}𝑀

𝑥,1
𝑀

𝑥,2
cos𝜓

2

+ Re {�̃�
̇

𝜃
𝑦
𝑀
𝑦

𝑡
}𝑀

𝑦,1
𝑀

𝑦,2
cos𝜓

3

+ Re {�̃�V𝑀
𝑦

𝑡
} (𝐹

2
𝑀

𝑦,1
cos𝜓

4
+ 𝐹

1
𝑀

𝑦,2
cos𝜓

5
) ,

(50)

where𝑌
𝑝
denotes the point mobility (the same contact point)

and 𝑌
𝑡
denotes the transfer mobility (different contact point).

The phase 𝜓 denotes the relative phase between the two
components at the same or different contact points; for
example, 𝜓

4
is the relative phase between the moment about

the 𝑦-axis and the force at different points. In (50), it has
been noted that �̃�V𝑀

𝑦

𝑡
= �̃�

̇
𝜃
𝑦
𝐹

𝑡
. Due to the complexity of this

expression, it is difficult to determine the bounds of input
power analytically. However for simplicity, it is assumed that
all the components are in-phase, so that 𝜓

𝑖
= 0 for 𝑖 =

1, 2, 3, 4, and 5. By also assuming 𝐹
1
= 𝐹

2
= 𝐹, 𝛼

1
= 𝛼

2
and

following the same method as in (48) and (49) for a 2 × 2
matrix, thus,𝑀

𝑥,1
= 𝑀

𝑥,2
= 𝑀

𝑥
= 𝛼𝐹,𝑀

𝑦,1
= (𝛼 + 𝛽𝐿)𝐹,

and𝑀
𝑦,2
= (𝛼 − 𝛽𝐿)𝐹. The asymptotic forms of the transfer

mobility in (50) for this case can be expressed as (see also
Appendix A)

�̃�
V𝑀
𝑦

𝑡
=
2

𝑘
Re {�̃�

̇
𝜃
𝑦
𝑀
𝑦

𝑝
}

× √
2

𝜋𝑘𝐿
(sin(𝑘𝐿 − 𝜋

4
) − 𝑗 sin(𝑘𝐿 − 3𝜋

4
)) ,

(51a)

Re {�̃�
̇

𝜃
𝑥
𝑀
𝑥

𝑡
} =

2

𝑘𝐿
Re {�̃� ̇

𝜃
𝑥
𝑀
𝑥

𝑝
}√

2

𝜋𝑘𝐿
sin(𝑘𝐿 − 𝜋

4
) , (51b)

Re {�̃�
̇

𝜃
𝑦
𝑀
𝑦

𝑡
} = 2Re {�̃�

̇
𝜃
𝑦
𝑀
𝑦

𝑝
}√

2

𝜋𝑘𝐿

× (cos(𝑘𝐿 − 𝜋
4
) −

1

𝑘𝐿
sin(𝑘𝐿 − 𝜋

4
)) .

(51c)

By substituting (51a), (51b), and (51c) into (50) and setting
the cos and sin terms equal to unity, the maximum and
minimumbounds of the input power normalisedwith respect
to the input power from translational force (𝑃

𝐹
) for in-phase

excitation are found to be

𝑃in

2𝑃
𝐹

= 1 + (𝑘𝛼)
2

+
(𝑘𝛽𝐿)

2

2

± √
2

𝜋𝑘𝐿
[1 + (𝑘𝛼)

2

− (𝑘𝛽𝐿)
2

+
(𝑘𝛽𝐿)

2

𝑘𝐿
] .

(52)

This reduces to (13), the case where there is only translational
force excitation, when 𝑘𝛼 ≪ 1 and 𝑘𝛽𝐿 ≪ 1.

In Section 3.2, assuming random phases with equal prob-
ability in (50), the mean and the variance of the input power
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to an infinite plate receiver through𝑁 contact points can, in
general, be expressed as

𝜇
𝑃in
=
1

2

𝑁

∑

𝑖

(Re {�̃�V𝐹
𝑖𝑖
} 𝐹

2

𝑖
+ Re {�̃�

̇
𝜃
𝑥,𝑦

𝑀
𝑥,𝑦

𝑖𝑖
}𝑀

2

𝑥,𝑦(𝑖)
) , (53)

𝜎
2

𝑃in
=
1

2

𝑁−1

∑

𝑖=1

𝑁

∑

𝑘=2

𝑘>𝑖

(Re {�̃�V𝐹
𝑖𝑘
} 𝐹

𝑖
𝐹
𝑘
)
2

+
1

2

𝑁−1

∑

𝑖=1

𝑁

∑

𝑘=2

𝑘>𝑖

(Re {�̃�
̇

𝜃
𝑥,𝑦

𝑀
𝑥,𝑦

𝑖𝑘
}𝑀

𝑥,𝑦(𝑖)
𝑀

𝑥,𝑦(𝑘)
)

2

+
1

2

𝑁−1

∑

𝑖=1

𝑁

∑

𝑘=2

𝑘>𝑖

(Re {�̃�
̇

𝜃
𝑥,𝑦

𝐹

𝑖𝑘
}𝐹

𝑖
𝑀

𝑥,𝑦(𝑘)
)

2

+
1

2

𝑁−1

∑

𝑖=1

𝑁

∑

𝑘=2

𝑘>𝑖

(Re {�̃�V𝑀
𝑥,𝑦

𝑖𝑘
}𝑀

𝑥,𝑦(𝑖)
𝐹
𝑘
)

2

,

(54)

where 𝑖 and 𝑘 indicate the 𝑖th and 𝑘th contact points,
respectively.

The bounds of the normalised standard deviation can be
obtained by substituting (51a), (51b), and (51c) into (54). After
algebraic manipulation, it can be approximated by

𝜎

2𝑃
𝐹

≈
1

√𝜋𝑘𝐿

[1 +
(𝑘𝛼)

4

(𝑘𝐿)
2
+ ((𝑘𝛼)

2

− (𝑘𝛽𝐿)
2

)
2

+2 ((𝑘𝛼)
2

+ (𝑘𝛽𝐿)
2

) ]

1/2

.

(55)

Again, for 𝑘𝛼 ≪ 1 and 𝑘𝛽𝐿 ≪ 1, this yields the standard
deviation for force excitation (see (16)). Following the same
method in(17), the standard deviation due to uncertainty in
the dimensionless spacing 𝑘𝐿 is given by

𝜎

2𝑃
𝐹

≈
1

√2𝜋𝑘𝐿

[1 +
(𝑘𝛼)

4

(𝑘𝐿)
2

+ ((𝑘𝛼)
2

− (𝑘𝛽𝐿)
2

)
2

+2 ((𝑘𝛼)
2

+ (𝑘𝛽𝐿)
2

) ]

1/2

.

(56)

Figure 16 shows the mean input power and its standard
deviation. The trend is the same as in Figure 2 for transla-
tional force excitation, except that the input power tends to
increase at high frequencies due to moment excitations.

6.4. Finite Plate Receiver

6.4.1. Single Contact Point. For a finite plate, the phase differ-
ence between the force and moment becomes important as
the cross-mobility is not zero. For the same plate dimensions
as in Section 4.1, Figure 17 shows the normalised input power
against 𝑘𝛼 for a single contact point assuming in-phase force
and moment. The result in Figure 17(a) shows the increase
of the input power due to moment contribution at 𝑘𝛼 >

0.25 (see also Figure 13). For the case where the excitation
is near to the plate edge in Figure 17(b), the total power is
significantly less at low 𝑘𝛼, because the point mobility for
force excitation (which dominates at low frequencies, 𝑘𝛼 ≪
1) is smaller near the edge.However, when 𝑘𝛼 > 0.2, the input
power is the same as that when the excitation position is near
to the centre of the plate due to the increasing power from the
moment, so that it compensates partly for the reducing power
from the force.

Figure 18 shows the normalised input power for various
forcing locations on the plate.The increase in themean power
due to the contribution of moment excitation can be seen
roughly above 𝑘𝛼 > 0.35.

Figure 19 shows the relative standard deviation 𝑟
𝜎
of the

averaged input power for different damping loss factors and
magnitudes of moment excitation. For all cases, it can be
seen that the relative standard deviation, in an average sense,
agrees reasonably well with that from the translational force
from (33). This indicates that the ratio between the mean
and standard deviation is approximately the same even if the
moment excitation is neglected in the calculation of the input
power. Particular attention is focused on the results at large
𝑘𝛼 when the moment starts to contribute substantially to the
total input power.

6.4.2. Multiple Contact Points. Again, the relative phases
due to coupling between forces and moments are of interest
for multiple contact points. The mean power, assuming the
relative phases between the excitations are equally probable,
is the same as that in (53) for an infinite plate. However, for
a finite plate a force will produce a rotation and a moment
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Figure 17:The normalised input power of a finite plate subjected to force andmoment excitations at a single contact point ((a) the power with
(−−) and without (—) moment and (b) the total power for the contact point around the edge (−−) and middle (—) of the plate: 𝛼 = 0.005m,
𝜂 = 0.1).
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Figure 18:The normalised input power to a finite plate subjected to force and moment excitations at single contact point for various possible
forcing locations (grey lines): — mean and − ⋅ − mean ± standard deviation. (a) discrete frequency and (b) frequency-band average; 𝛼 =

0.005m, 𝜂 = 0.1.

will produce a displacement at the same point. Therefore, the
variance is given by

𝜎
2

𝑃in
=
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𝑁
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2

.

(57)

For four contact points, the mobility matrices are 12 ×
12. Using (53) and (57), Figure 20(a) shows the mean and
standard deviation of the input power for damping loss factor
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Figure 19:The relative standard deviation of the input power to a finite plate subjected to force andmoment excitations at single contact point
averaged over various possible forcing locations and frequency bands; — numerical and −− (33) ((a) 𝛼 = 0.005m, 𝜂 = 0.1; (b) 𝛼 = 0.005m,
𝜂 = 0.01; and (c) 𝛼 = 0.01m, 𝜂 = 0.01).
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Figure 20: (a) The normalised input power to a finite plate subjected to force and moment excitations at four contact points averaged over
various possible forcing locations and frequency bands: mean (— numerical calculation, −− infinite plate) and mean ± standard deviation
(⋅ ⋅ ⋅ numerical calculation, − ⋅ − infinite plate). (b) The relative standard deviation of the input power; — numerical calculation, − ⋅ − infinite
plate, and −− (33) (𝐿 = 0.14m, 𝜂 = 0.05, 𝛼 = 0.005m, and 𝛽 = 0.005).
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Figure 21:The relative standard deviation of the input power to a finite plate subjected to force andmoment excitations at four contact points
averaged over various possible forcing locations and frequency bands; — numerical calculation and −− (33) (𝜂 = 0.01, 𝛼 = 0.005m, and
𝛽 = 0.005; (a) 𝐿 = 0.07m and (b) 𝐿 = 0.35m).

𝜂 = 0.05. The spatial separation of the contact points is again
assumed to form a rectangular shape and 𝐿 is the length
of the diagonal. The results agree well with those from the
infinite plate above 𝑘𝐿 = 10. Below this, as in Section 4.4, the
agreement deteriorates due to small damping. This is clearly
shown in the relative standard deviation plotted in Figure
20(b). However, it can be seen that the numerical result has a
good agreement with that from the prediction using (33).

Figure 21 shows the relative standard deviation for 𝜂 =

0.01 for different distances between the contact points. Again,
good agreement can be seen using (33), particularly for high
frequencies. In Figure 21(b) differences are seen for 𝑘𝐿 > 25,
but they are less than 1 dB. At low 𝑘𝐿, the prediction differs
by 2 dB on average due to the very low-modal overlap. From
the results presented, it shows that (33), which is applicable
only for the translational force, can also be used to predict
the contribution of moment at high frequencies.

7. Conclusions

The uncertainty in input power to a structure due to uncer-
tainty in the excitation has been investigated. For an infinite
plate, the distance between the location where multiple
forces are applied is not important if it is less than half a
structural wavelength.The variance of the input power due to
uncertainty in excitation phase and location tends to decrease
as the nondimensional frequency 𝑘𝐿 increases. For multiple
point excitation where the relative phases are random, the
mean power and the variance depend only on the input and
transfer mobility, respectively.

As for the infinite plate, the variance of the input power
to a finite plate also typically decreases as the frequency
increases. The frequency average of the input power over all
possible forcing locations from multiple contact points can
be estimated reasonably and accurately by using the infinite
plate result. However, for a very low damping (<5%) the

agreement deteriorates and the simple prediction of themean
and variance can be used [1, 17].

The uncertainty in the force amplitude at the contact
points has also been discussed. Unless the spatial separation
of the excitation locations is small, the distribution of the
force amplitude through the contact points is important to
obtain accurate estimates of the variation of the mean and
standard deviation of the input power, particularly at low
frequencies.This variation reduces as the damping loss factor
is increased.

The relative effect of moment excitation can be expressed
in terms of a force and a distance corresponding to a char-
acteristic of the source. It can also be scaled as a function of
the input power of the force and the structural wavenumber.
This effect tends to increase as frequency increases. The
contribution to the total input power can be predicted using
the simple expression of the relative standard deviation for
the force. However in any event, the effects of moment
excitation are typically small at low frequency and in any
event are generally less than the effects of force excitation.
They are typically, thus, of secondary importance.

Finally, there remains the moot point of what uncertainty
is, in practice, acceptable. This is to a large extent dependent
on the typical uncertainty of machinery characterisation
methods, such as the reception plate method. The attempt
here is to quantify to some extent the uncertainty introduced
by some details of the excitation, details that would typically
not be measured.

Appendices

A. Force and Moment Transfer Mobilities for
an Infinite plate

Figure 14 defines the force-moment excitation directions.The
same directions are also applied to the response at another
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point at distance 𝐿 away from the excitation point.The 𝑧-axis
is perpendicular to the surface of the plate.Themobility terms
of an infinite plate structure subjected to a harmonic force or
moment point loading are given by [15]
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where 𝐵 is the bending stiffness, 𝑘 is the structural wavenum-
ber, 𝐻(2)

𝑛
is the 𝑛th-order Hankel function of the second

kind, and 𝐾
𝑛
is the 𝑛th-order modified Bessel function of

the second kind. The asymptotic forms of the functions for
𝑘𝐿 ≫ 1 are given by [16]
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where 𝜖 = 4𝑛. For very large 𝑘𝐿, 𝐾𝑛(𝑘𝐿) → 0.

B. Force and Moment Mobilities for
a Finite Plate

For a finite rectangular plate, the mobilities can be written
in terms of a modal summation. The point reference (0,0)
is located at the corner of the plate. The moment-rotational
velocity transfer mobilities at frequency 𝜔 for a plate with
damping loss factor 𝜂 are given by [15]
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and the force-rotational and themoment-translational veloc-
ity transfer mobilities are
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whereΦ
𝑝𝑞

is the mass normalised mode shape and 𝜔
𝑝𝑞

is the
natural frequency of the (𝑝, 𝑞) mode as defined in (28) for
a simply supported boundary condition. The point mobility
can be obtained by setting 𝑥 = 𝑥

0
and 𝑦 = 𝑦

0
.
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