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Aimed at portable application, a new integrated process chip for thin film bulk acoustic resonator (FBAR) mass sensor is proposed
and verified with 0.18 um CMOS processing in this paper. The longitudinal mode FBAR with back-etched structure is fabricated,
which has resonant frequency 1.878 GHz and Q factor 1200. The FBAR oscillator, based on the current-reuse structure, is designed
with Modified Butterworth Van Dyke (MBVD) model. The result shows that the FBAR oscillator operates at 1.878 GHz with a
phase noise of −107 dBc/Hz and −135 dBc/Hz at 10 KHz and 100 KHz frequency offset, respectively. The whole process chip size
with pads is 1300 μm × 950 μm. The FBAR and process chip are bonded together to sense tiny mass. The measurement results
show that this chip precision is 1 KHz with the FBAR frequency gap from 25 kHz to 25 MHz.

1. Introduction

In recent years, mass sensor based on FBAR technology has
a rapid development due to its high mass sensitivity and
integrated potential [1]. FBAR mass sensor is considered
as an excellent portable healthcare sensor resolution [2, 3].
Recent researches mainly focus on relative humidity sensor
[4], glycerol detector [5], gravimetric sensing [6], ultraviolet
sensor [7], DNA and protein detection [8], microfluidic
system [9], and so on. However, by now FBAR mass sensors
are handled with network analyzer and RF probe station,
which is massive and various with testing environment. It is
not fit to portable application. There is no paper to report
FBAR sensor signal processing chip and its FBAR oscillator.
In this paper, we presented an integrated chip, which can
be connected with FBAR to process its RF sensor signal and
show mass change value directly.

2. FBAR Sensor Design

2.1. System Scheme. FBAR structure is shown in Figure 1.
It consists of an AlN thin piezoelectric film sandwiched by
two Al metal electrodes with back-etched structure and an
adsorption layer which is used to adsorb a particular material

for sensor. The adsorption layer should be selected according
to the different detected target materials. The resonant
frequency will change due to the change of mass of the
target material. Conversion between frequency change and
the mass loading is described by the Sauerbrey equation [10]:

Δ fs = −2Δm · f 2
s A

−1μ−1/2
q ρ−1/2

q , (1)

in which Δ fs is the frequency change, fs is the fundamental
resonant frequency, Δm is the mass change, A is the active
area, ρq is the density, and μq is the shear modulus.

The sensor process system should be designed to obtain
FBAR resonant frequency changes due to tiny mass. Usually,
the system is based on dual-path structure, shown in
Figure 2, one path for sensor signal and the other for refer-
ence signal to deembed testing environment effects change,
such as pressure, temperature, and humidity, due to the two
paths that are neighbor in one chip. Because the signals of
FBAR are always weak, an oscillator network is designed
to active FBAR signals to obtain 3 V output to drive the
following processing circuit. The FBAR resonant frequency
is usual about 2-3 GHz. It is too high to be processed with
normal high speed counter. Mixture frequency approach
is also not fit to FBAR sensor owing it IP3 and complex
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Figure 1: Cross-section structure of FBAR.

structure. The designed new chip employs two divide-by-
256 dividers to lower FBAR resonant frequencies to about
10 MHz, then it counted them by two high speed counters.
The frequency difference is obtained by the subtractor.
According to this counting difference, the change of mass
load can be obtained from the following calculation:

Δm ≈ −M

fs
· Δ f = −M ·N

fs · T · S, (2)

where M is the quality of the work area of FBAR piezo-
electric, N is the division ratio of divider, T is the counting
cycle of counter, and S is the frequency counting difference.
The whole chip schematic also includes self-calibration and
UART interface.

2.2. FBAR and Its Oscillator. Back-etched structure is used to
manufacture FBAR, because it is relatively easy to fabricate
and has better performance compared to solid-mounted
structure (SMR). Figure 3(a) is the top view of the FBAR, and
the measured S parameter is shown in Figure 3(b). It shows
that the measured Q factor of FBAR is above 1200, and
the resonant frequency is 1.878 GHz. The FBAR oscillator
is composed of a FBAR, a pair of NMOS and PMOS, and
some resistors and capacitors to form the current-reuse
structure, in which the negative conductance is supplied by
the pair of MOS transistors, as shown in Figure 4. Compared
to the traditional cross-couple structure, this configuration
consumes less power since the pair of NMOS and PMOS
switches simultaneously, while the pair of NMOSs or PMOSs
in the conventional structure converts alternately. FBAR
oscillators designed and fabricated with 0.18 μm RF/mixed-
signal CMOS process and the MBVD model are employed
[11]. The simulation result of phase noise of the FBAR
oscillator is shown in Figure 5, and the result shows that
the oscillator operates at 1.878 GHz with a phase noise
of −107 dBc/Hz and −135 dBc/Hz at 10 KHz and 100 KHz
frequency offset, respectively.

2.3. Sensor Signal Processing Circuit. According to the oper-
ation of FBAR oscillators, we get the output frequency be-
tween 1.5 GHz and 2.0 GHz. In order to meet the digital

signal processing requirements, two divide-by-256 dividers
are designed to reduce the frequencies down to 10 MHz.
Owing to the high frequency, the front-end of dividers
should adopt high speed circuits. Hence, signal-coupled logic
(SCL) structure which is the evolution of emitter-coupled
logic (ECL) is used due to its high speed, low power, and
low noise [12]. The divide-by-256 divider consists of a single-
ended to differential converter, three cascaded divide-by-
2 SCL dividers, and five cascaded divide-by-2 D-flip-flop
(DFF) dividers. The reason why it does not implement with
all SCL dividers is that the layout area of SCL is larger
than DFF structure. The main structure of SCL divider is
master-slaver D flip-flop consisting of two D-latches. Figures
6(a) and 6(b) show the block diagram of the divide-by-
2 SCL divider and the circuit schematic of the D-latch,
respectively. M1 and M4 constitute the sampling circuit, and
the cross-coupled pair M2 and M3 constitutes the holding
circuit. When the clock signal (CK) is at high state, D-
Latch works like a buffer; when the clock signal is low, the
cross-coupled pair holds the existing state through positive
feedback principle. Additionally, five stages of divide-by-
2 DFF divider are implemented based on the traditional
master-slaver structure.

The signal after divide-by-256 will be sent into standard
digital signal processing circuit. In this paper, 40 MHz
temperature compensate X’tal (crystal) oscillator (TCXO) is
used as the high precision clock due to its high frequency
stability, wide frequency range, and high frequency accuracy.
Taking into account the power consumption, the sampling
period of this system is set to 500 ms, and the counting
period is set to 256 ms. The word length of the count
difference is 24 bits. Figure 7 gives the top block diagram of
the digital processing circuit generated by Verdi. It consists
of timing module, counter module, subtracter module,
encoding module, UART clock module, and sending module.

3. Measurement Results

The whole FBAR signal processing circuit is verified in
0.18 μm RF/mixed-signal CMOS process, and the dimension
of the chip with pads is 1300 μm × 950 μm. Figure 8 shows
the chip micrograph. The chip is banded with FBAR by
gold wire, and the whole sensor system is tested. The
measurement results are listed in Table 1, where the fre-
quency difference ranges from 25 kHz–25 MHz. This tiny
mass sensor signal processing circuit has high accuracy, but
sometimes there is an accidental error of ±1000 Hz, which
is related to the synchronization of high speed counter
trigger. For example, when the signal frequency difference is
100 kHz, the measured difference is 100 kHz in most case, but
sometimes it is 99 kHz or 101 kHz.

4. Conclusion

An integrated tiny mass sensor based on FBAR and CMOS
technology is proposed and verified in this paper. The system
of FBAR sensor is designed with dual-path structure. One
path is used for sensor signal, and the other for reference
signal to diminish the effect of environment change. FBAR
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Figure 2: Scheme of FBAR tiny sensor.
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Figure 3: (a) Chip photo of the fabricated FBAR, (b) measured resonant frequency of FBAR.
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Figure 4: Schematic of the FBAR oscillator and equivalent circuit of FBAR.
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Figure 5: Phase noise of the FBAR oscillator from postlayout simulation.
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Figure 6: (a) Block diagram of divide-by-2 SCL divider, (b) circuit schematic of D-latch.
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Table 1: Measurement results of sensor signal processing circuit.

Reference
signal/Hz

Sensor
signal/Hz

Measured
difference/Hz

Accidental
error/Hz

1 899 000 000 1 898 975 000 25 000 ±1 000

1 899 000 000 1 898 900 000 100 000 ±1 000

1 899 000 000 1 889 000 000 10 000 000 ±1 000

1 899 000 000 1 874 000 000 25 000 000 ±1 000

operates in longitudinal mode, and its resonant frequency
is 1.878 GHz with Q factor above 1200. Two FBAR signals
are activated by oscillators based on current-reuse differential
configuration to promote their output signals. Subsequently,
these two FBAR oscillator signals are divided by 256 and
then sent to digital signal processing circuit to obtain the
frequency difference. Finally, this frequency offset is used
to evaluate the tiny mass loading change. The whole FBAR
signal processing circuit is verified in 0.18 μm RF/mixed-
signal CMOS process.
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