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The method is proposed of optical vortex topological charge detection along with a design of a corresponding detector. The
developed technique is based on measurements of light field intensity. Mathematical model simulating performance of the detector
is described in the paper, and results of numerical experiments are presented which illustrate recognition of a vortex in a turbulent
medium and in the presence of amplitude and phase noise in the registered radiation. Influence of shifts of the system optical axis
on precision of registration is also considered in the paper.

1. Introduction

As it is well known, optical beams not only can transmit
energy, but also possess linear and angular momentum. The
total angular momentum includes a spin component, asso-
ciated with polarization of light, and orbital component,
related with phase and amplitude profiles [1]. In the vicinity
of a singular point, the complex amplitude of a beam car-
rying an optical vortex can be described by the equation [1]:

A = C · rVd exp
(
jVdϑ

)
, (1)

where C is a constant, Vd is the topological charge of vortex,
r ≡ (x, y) is the radius vector of a point in a cross-section
of the beam, r ≡ |r| is the distance between the vortex and
the given point, ϑ is an azimuth angle, and j = √−1 is an
imaginary unit. The orbital angular momentum of such a
beam reduced to one photon is equal to �Vd. A topological
charge Vd can be associated with a bit of data. For example,
Vd = 0 can be considered as a logical zero, while Vd = 1 is
a logical unit. On the base of these properties the authors of
[2, 3] proposed to use optical angular momentum to code
and transfer information in optical communication systems.

Usually a laser beam propagating in a medium acquires
some distortions, which reduce precision of data transfer.
Intensity of distortions and probability of errors in commu-
nication line should be considered for each particular situa-
tion. But it is possible to presume that these errors depend on
properties of the medium, on parameters of communication
system, its design, principles of operation, and its practical
realization. Obviously, influence of atmospheric turbulence
and other factors on performance of the system using
optical vortices to transfer information should be thoroughly
considered. As an example of such analysis [4] can be taken
where influence of distortions was discussed.

If construction of the communication system is chosen
as the objective of investigation, structure of the system and
influence of each element on its quality must be considered.
Results of such investigation were published by the authors of
[5]. The schematic of system discussed in this paper included
transmitter, formed by generator of optical vortices, and
initial wavefront corrector which includes adaptive receiver
with a sensor of wavefront S(r, t), a second corrector, and
comparator. The key element of the system is a sensor that
registers topological charge Vd(r, t) of the vortex and its
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location rd(t). Reconstruction of the wavefront is not always
required in the algorithm of system performance; ordinarily
the sensor is employed as a detector of vortices.

Such a detector can be built on the base of a unit meas-
uring or reconstructing

(1) distributions of phase gradients (Shack-Hartmann
sensor [6–8] or a pyramid wavefront sensor [9–11]),

(2) interference patterns (with subsequent analysis of it)
[12, 13],

(3) distributions of white light intensity (with analysis of
chromatic patterns) [14–16],

(4) phase distributions obtained out of local tilts mea-
sured by a wavefront sensor [17, 18].

But requirements to modern communication systems
cannot be met with devices whose speed of response is less
than a thousand Hz. In what follows we demonstrate the
possibility to construct a detector of vortex topological char-
ges using only measurements of beam intensity with registra-
tion speed of several GHz.

2. Detection of Optical Vortices with
the Use of Interferometer

In this part of the paper we illustrate theoretically the possi-
bility to employ an interferometer as a detector of optical vor-
tices in communication system. The obtained results show
that existence and order of an optical vortex can be revealed
with high precision even in the presence of additive phase
noise with amplitude of 0.4π.

If a light field in a ring interferometer rotates on angle
Δ = 2πM/m, where the ratio of M and m is an even number,
optical vortices of different topological charges included into
the input field form different optical patterns in the output
field. So the interferometer “sorts out” vortices into m groups
according to the rule [19]:

Ns = (m + [(Vd + L) mod m]) mod m,

ϕcos = ϕcos 0 +
2π(LM)

m
,

(2)

where Ns is the number of a group (or a structure), expres-
sion “mod” signifies operation of a modulus calculation, L
is an even number, ϕcos is a phase shift in feedback contour,
and ϕcos 0 is a value of ϕcos corresponding to L = 0 or M = 0.

The described properties of the interferometer allow us
to consider it as a detector of optical vortices, and especially
suitable to this purpose is the Rozhdestvenskii interferometer
with a unit of light field rotation included into an arm (unit
G) and with a phase shifting sell (ϕ).

The input field Ein(r, t) of interferometer is divided
into two parts. These parts propagate in different arms,
experience different diffraction changes and different atten-
uation, and acquire different phase shifts. At the end of the
interferometer optical paths, two fields interact. We assume

that the attenuation of the fields in both arms is identical,
as well as the lengths of the two optical paths. So the phase
shift ϕ between fields is induced only by unit G and the phase
shifting sell. This phase shift can be calculated as ϕ = ωδt,
where ω is the cycling frequency of the field and δ is the
optical path difference induced by the sell.

Let’s denote the optical field at the output of interfer-
ometer without the unit G and the phase shifting sell as
E(r, t). Field E(r, t) can be viewed as the output field of
an “empty” interferometer with equal arms or as the input
field Ein(r, t) recalculated to the output of such an interfer-
ometer. So without any limitations we can use field E(r, t)
instead of Ein(r, t) and write the following equation for the
output field:

EΣ(r, t) =
(

1
2

)1/2

(E(r, t) + E(r′, t − δt)). (3)

Here r′ ≡ (x′, y′) is a point in the beam cross-section at the
output of element G. Let’s assume that

E(r, t) = exA(r) cos(ωt + S(r)), (4)

where A(r) and S(r) are the amplitude and phase of light-
field and ex is a unit vector parallel to axis Ox. So the field at
the output can be rewritten as

EΣ(r, t) = ex

(
1
2

)1/2

[A(r) cos(ωt + S(r))

+A(r′) cos
(
ωt + S(r′)− ϕ

)]

≡ AΣ(r) cos(ωt + SΣ(r)).

(5)

Taking into account the formula for the beam intensity
in free space (ε0/μ0)1/2〈E2(r, t)〉T (ε0 is the electric constant
and μ0 is the magnetic constant), we obtain the following
equations describing the input and output fields:

I(r) = 2
〈

E2(r, t)
〉
T = A2(r),

IΣ(r) = 2
〈

E2
Σ(r)

〉
T =

1
2
I(r) +

1
2
I(r′)

+ (I(r)I(r′))1/2 cos
(
S(r)− S(r′) + ϕ

)

= A2
Σ(r),

(6)

where 〈E2(r, t)〉T ≡ (1/T)
∫ t+T
t E2(r, t′)dt′, and coefficient

(1/2)(ε0/μ0)1/2 was omitted to make the equation shorter.
Output IΣ ≡ 〈IΣ(r)〉r and input I ≡ 〈I(r)〉r intensities av-
eraged over the beam cross-section are

I = 〈A2(r)
〉

r,

IΣ = I +
〈

[I(r)I(r′)]1/2 cos
[
S(r)− S(r′) + ϕ

]〉

r

= 〈A2
Σ(r)

〉
r,

(7)
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〈I(r, t)〉r ≡ (1/Sb)
∫∫

(Sb)I(r, t)dr, and (Sb) is the region of
square S, occupied by the beam.

The relative intensity of the output beam is possible to
introduce in the following way:

Ir ≡ IΣ
I
= 1 + I−1

·
〈

[I(r)I(r′)]1/2 cos
[
S(r)− S(r′) + ϕ

]〉

r
.

(8)

Obviously, this intensity is equal to the ratio of the output
and input power of the beam; therefore, Ir can be registered
experimentally.

Let’s assume that the vortex light field incident on the
input aperture of interferometer includes only one singular
point positioned in the origin of coordinate system. In
general, amplitude A(r) and phase S(r) profiles of the field
entering (4) are the following:

A(r) = A(r), S(r) = Sr(r) + Vd · ϑ(r), (9)

and ϑ(r) ≡ arg(r) is an azimuth angle, whileVd is the order of
a singular point. In more strict representation these profiles
can be written as

A(r) = C exp

(

− r2

r2
0

)(
r

ρV

)|Vd|
, S(r) = Vd · ϑ(r).

(10)

Here r0 is the radius of a Gaussian beam with zero dislocation
(Vd = 0) and ρV is a coefficient defining the dependence of
the beam amplitude on radial coordinate. Vectors r and r′

are related by rotational transformation; modules of these
vectors are equal (r = r′), and ϑ(r) = ϑ(r′) + MΔ, so
substitution of (9) into (8) gives us the relative intensity

Ir(Vd) ≡ IΣ
I
= 1 + cos

[(
2πMVd

m

)
+ ϕ

]
. (11)

Several important properties of a beam with intensity
defined by (11) are recorded below.

(1) Variations of topological chargeVd produce a discrete
series of intensity Ir values, Ir(Vd) = Ir(Vd + im),
where i is an arbitrary even number.

(2) Influence of a vortex on intensity Ir can be compen-
sated by appropriate variations of phase shift ϕ. In
the same way as it was done in (2), the phase shift is
possible to be represented as ϕ0 + 2π(LM)/m, where
L, M, and m are even numbers and ϕ0 is a phase shift
corresponding to L = 0.

(3) Magnitude of Ir does not depend on amplitude A(r)
and phase distribution Sr(r) entering (4). Moreover,
(11) is valid for a general case of rotation symmetry
of mth order (in the optical system of interferometer,
rotation is induced by element G). According to this
property, A(r) = A(r′) and S(r) − S(r′) = const +
2πi, that is, amplitude and phase profiles are identical
in different regions of cross-section cut by rays with
azimuth angles ϑ = Δi.

The first and second properties strictly follow from (2).
Numeration of structures is the same as earlier, but it can also
be viewed as the rule of Ir discretization according to which
number Ns corresponds to structure IrNs.

Obviously, if a field with the symmetry discussed in
Section 3 is generated by a remote source, its properties do
not change in vacuum; consequently, the distance from a
source to detector is not important.

More general assumption stating that intensity Ir does
not depend on the distance between the source and detector
can be proved for beams propagating in vacuum or in linear
homogeneous medium.

Really, diffraction of a beam in such a medium is de-
scribed mathematically by a linear operator LD. Transforma-
tions of a beam in the detector (splitting operation of the
beam into three parts (LSpl), rotation of one part by element
G(LG), and summation of two parts (LΣ)) are also linear. Let’s
rearrange these operators. Due to linearity of operator LD,
the results obtained as the sum of the fields after diffraction
is the same as results of diffraction of the summed fields.
Because of that, mirrors M1 and M4 can be shifted to the
source of radiation, that is, LSplLDE ≡ LDE1 +LDE2 +LDE3 =
LD(E1 + E2 + E3) ≡ LDLSplE. The order of application of op-
erators LD and LG can also be changed: LGLDE = LDLGE,
because diffraction of the field and its subsequent rotation
gives the same result as rotation and diffraction of the
field. Physically, this means that element G can be moved
into the plane of the field generator. Using again the
linearity of operator LD, we came to a conclusion about
the possibility of changing the order of operators LD and
LΣ : LΣ(LDE1,LDE2) = LDE1 + LDE2 = LD(E1 + E2) =
LDLΣ(E1, E2). So mirrors M2 and M3 are also possible to
move to the source of radiation.

As a result of all these operations, the interferometer is
shifted to the source of radiation while detectors of intensity
registering the fields EΣ and pE remain near the receiver. Let’s
direct two beams of light from the source to the receiver. One
of them (field EΣ) is taken from the output of interferometer,
and the other (pE) is reflected by mirror M4. Obviously, the
ratio of intensity of these two beams does not depend on the
length of paths passed by them. In other words, value of Ir ≡
IΣ/I is independent of the path length.

In analysis of the problem we should take into account
aberrations of beams that are always present in real systems.
To do so we insert into the phase of field described by (9)
white additive noise and into its amplitude white multiplica-
tive noise with amplitudes AnS and AnA correspondingly:

A(r) = A(r)(1 + AnAξA(r)),

S(r) = Sr(r) + Vd · ϑ(r) + AnSξS(r),
(12)

where ξA(r) ∈ [−1, 1] and ξS(r) ∈ [−1, 1] are random
functions of r uniformly distributed in interval [−1, 1]. This
functions should meet the requirement

〈
ξA(r)

〉
r = 0,

〈
ξS(r)

〉
r = 0,

〈
ξA(r)ξA(r′(r))

〉
r = 0,

〈
ξS(r)ξS(r′(r))

〉
r = 0

(13)
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if r′(r) /= r. Mathematically these conditions signify that
spatial scale of noise variations is much smaller than the
characteristic size of our problem, for example, lesser than
the length of a ring 2πrc/m of radius rc. Substituting (12) into
(8), we obtain for intensity Ir the following formula:

Ir = 1 + I−1
〈
A(r)2(1 + AnAξA(r))(1 + AnAξA(r′))

× cos
[

2πVdM

m
+ ϕ0 + AnS(ξS(r)− ξS(r′))

]�

r
.

(14)

In what follows we consider two specific cases: AnA /= 0,
AnS = 0 and AnA = 0, AnS /= 0. For the first situation, (14)
can be written as

Ir= 1 + I−1
〈
A(r)2(1 + AnAξA(r))(1 + AnAξA(r′))

〉

r

× cos
(

2πVdM

m
+ ϕ

)
.

(15)

This equation is possible to simplify with application of
several mathematical operations:

(1) transmission from Cartesian to polar coordinates
in procedure of averaging 〈〉r = 〈〈r〉ϑ〉r =
(1/Sb)

∫ rmax

0

∫ 2π
0 r dr dϑ,

(2) calculation of integral over angle ϑ using such
properties of average values as 〈ξA(r)〉r = 0 and
〈ξA(r)ξA(r′(r))〉r = 0 for r′(r) /= r which are valid in
any cross-section of the beam. When calculation of
this integral is impossible, we can change averaging
over angle ϑ (this angle is analogous to some extent
with a temporal variable) to averaging over the
ensemble of realizations. For example,

〈
ξA(r)2

〉

ϑ
=
∫∞

−∞
ρ
{
ξA(r)

}
ξA(r)2dξA(r), (16)

where the density of probability of random process
ξA(r) is ρ{ξA(r)} = 1/2 for ξA(r) ∈ [−1, 1] and
ρ{ξA(r)} = 0 for ξA(r) /∈ [−1, 1],

(3) returning to the Cartesian coordinates, for example,

〈
rA(r)2

〉

r
=
〈
rA(r)2〈1〉ϑ

〉

r
=
〈
r
〈
A(r)2

〉

ϑ

〉

r

=
〈
A(r)2

〉

r
= I.

(17)

In such a way, from (15), we obtain a short formula

Ir = 1 +

(

1 +
A2
nA

3

)−1

· cos
(

2πVdM

m
+ ϕ

)
. (18)

Amplitude of noise AnA should always be less than
unity, so with AnA = 1 we obtain the minimum value of
coefficient before cosign function in (18). This coefficient
is equal to (1 + 1/3)−1 = 0.75. The value of coefficient is
close to unity, which means that influence of multiplicative

amplitude noise on intensity Ir is rather small (but only in
absence of phase noise), so value Vd of topological charge
is possible to detect correctly in the presence of such noise.
This property will be illustrated later by results of numerical
experiments.

Assuming that AnA = 0 and AnS /= 0, let’s analyze the
second problem concerning the influence of noise on the
quality of vortex registration. In this assumption (14) can be
rewritten in the form

Ir = 1 + I−1

·
〈
A(r)2 cos

[
2πVdM

m
+ ϕ + AnS(ξS(r)− ξS(r′))

]�

r
.

(19)

Viewing this equation as a function of two independent
random arguments and applying the operations discussed
earlier, we obtain

Ir = 1 +

(
sin2(AnS)

A2
nS

)

cos
(

2πVdM

m
+ ϕ

)
. (20)

According to this formula the phase noise decreases
the difference between values of Ir registered for different
topological charges as sin2(AnS)/A2

nS making detection of the
charge more difficult. For example, if AnS = π, detection of a
vortex is absolutely impossible.

The assumptions made above allow us to write for Ir a
more general equation:

Ir = 1 +

(

1 +
A2
nS

3

)−1(
sin2(AnS)

A2
nS

)

cos
(

2πVdM

m
+ ϕ

)
.

(21)

3. Simulation of the Vortex Detector
Performance and Analysis of Its
Characteristics in the Presence of
White Amplitude and Phase Noise

To validate conclusions made in the previous paragraph,
especially properties of (21), we developed the numerical
model of the detector which simulates performance of
the device in the presence of additive phase noise and
multiplicative amplitude noise with amplitudes AnS and AnA.
This noise is superimposed on the field described by (10)
with parameter ρV = 8r0. In the model of detector, the
field EΣ(r, t) = (1/2)1/2(E(r, t) + E(r′, t − δt)) is calculated
along with intensities IΣ ≡ 〈IΣ(r, t)〉r, I ≡ 〈I(r, t)〉r, and
Ir ≡ IΣ/I . Parameter M defining the angle of rotation was
taken equal unity (M = 1), and the path length was equal
zero.

The density of probability obtained in 150 realizations
for relative intensity Ir is shown in Figures 2 and 3 for
several fixed values of AnS, AnA, and Vd. Results of numeric
experiments illustrated in Figures 2 and 3 were obtained
with different angles of rotation Δ and different phase shifts
ϕ. The magnitude of phase shift ϕ was specially chosen to
provide maximum difference in values of intensity Ir(Vd).



International Journal of Optics 5

M1 M2

M3M4

1
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1
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ϕEin Eout

pE

G

Figure 1: The modified Rozhdestvenskii interferometer as a de-
tector of optical vortices. Rotation of rays 1, 2, and 3 is shown for
the angle of 120◦.

For example, ϕ = 0 for Δ = 180◦, and ϕ = −90◦ for
Δ = 120◦.

The main properties of the detector can be systematized
as follows.

(1) Performance of the detector is influenced mainly
by phase noise; influence of amplitude noise is
insignificant. This thesis coincides with conclusions
obtained in analysis of (18) and (20).

(2) Detection of a vortex topological charge Vd is
possible in a single realization with applications of the
following rules:

Vd =
{

1 + 2i, Ir ≤ 1,
0 + 2i, Ir > 1, for Δ = 180◦,

Vd =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2 + 3i, Ir < 0.94,

0 + 3i, Ir ∈ [0.94, 1.06] for Δ = 120◦,

1 + 3i, Ir > 1.06,

(22)

where i is an arbitrary even number. These rules are
valid with AnS ≤ 0.64π (for Δ = 120◦) and with
AnS ≤ 0.72π (for Δ = 180◦). The borders of their
application are shown in Figures 2 and 3 by vertical
dashed lines.

(3) The averaging of results over large numbers of
realizations allows one to detect value of topological
charge Vd even with AnS ≤ 0.85π (for angle Δ = 180◦

as well as for Δ = 120◦). But in this case the value
of mean intensity 〈Ir〉 should be used instead of Ir .
This result is not converse with conclusions made in
analysis of (20) where AnS < π.

In Figure 2 as well as in Figure 3 distributions of intensity
Ir have finite width, and due to this fact curves corresponding
to maximum and minimum values of Ir in Figure 4 do
not coincide. This can be attributed to small resolution of
calculation grid with only 32× 32 nodes in planes transverse
relatively to the direction of propagation. So conditions
(〈ξA(r)〉r = 0, 〈ξS(r)〉r = 0, 〈ξA(r)ξA(r′(r))〉r = 0, and
〈ξS(r)ξS(r′(r))〉r = 0 with r′(r) /= r, ) used to obtain (18),

(20), and (21) are met only approximately. This inaccuracy
can be removed completely in the process of averaging; for
instance, curves representing 〈Ir〉Nr coincide with values of
Ir calculated along (21).

In the end of the paragraph we want to point out that
theoretical conclusions concerning influence of white noise
on performance of detector are supported by results of nu-
merical experiments.

4. Influence of Optical Axis Shifts on the Value
of Relative Intensity Ir

As the origin of white noise, such imperfections of optical
system can be taken as roughness of optical surfaces of
detector and generator and some other factors. Another
source of imperfections is relative shift Shx of optical axes of
detector and generator.

To assess the influence of Shx on Ir , we have simulated
field transformations in the detector. In contrast to the
situation described in the previous paragraph we assumed
that aberrations of field were absent. As earlier, we took ϕ = 0
for Δ = 180◦ and ϕ = −90◦ for Δ = 120◦ (Figure 1). The
obtained dependencies of Ir on Shx/r0 are shown in Figure 5
for different parameters of the problem.

In the numerical model, the field described by (10)
can be used as distribution of radiation at the output of
generator and, at the same time, as the field at the output
of interferometer. This approach is valid because intensity
Ir does not depend on the path length. So as a factor of
normalization we used the size r0 of the beam at the output
of the laser source.

The following characteristic features of the problem are
seen in Figure 5. In situations where the finite size of the
receiver aperture does not influence the results, relative shifts
of axes induce asymptotical approach of Ir to unity. Also
we observe oscillations of Ir which can be registered for
topological charges different from zero (Vd /= 0).

In experiments performed with angle of rotation Δ =
120◦, the finite size of aperture manifests itself, and with the
increase of the ratio Shx/r0 intensity, Ir approaches zero. This
can be attributed to some properties of numerical model,
namely, to the fact that due to rotation of the filed some part
of interferometer input signal does not fall into the limits of
the output aperture.

Oscillations of Ir induce intersections of dependences
Ir(Shx/r0) obtained for different charges Vd (it should be
noted that for different charges values of Ir(0) are different).
This means that for some shifts of axis, detection of
topological charge with rules given by (22) is impossible.

Frequency and amplitude of oscillation increase with the
increase of absolute values of topological charge. So for large
|Vd| intersections, points are observed for less relative shifts
Shx/r0. For example, if angle Δ equals 180 degrees (Δ = 180◦),
intersection of curves corresponding to the pair (Vd0,Vd1) =
(1, 2) happens earlier than for pair (3, 2) but later than for
(Vd0,Vd1) = (3, 0).

The presence of coefficient (r/ρV)|Vd| in (10) results in an
increase of amplitude of oscillations and in a decrease of their
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Figure 2: Influence of phase and amplitude noise with amplitudes AnS and AnA on the probability density of the intensity Ir with Δ = 180◦

and ϕ = 0. The vertical dashed line corresponds to AnS = 0.72π, while horizontal dashed lines correspond to relative intensity Ir equal to 0,
1, and 2.
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Figure 3: The same results as in Figure 2 obtained with Δ = 120◦ and ϕ = π/2. The vertical dashed line corresponds to AnS = 0.64π, while
horizontal dashed lines correspond to relative intensity Ir equal to 0.94 and to 1.06.
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Figure 4: Influence of phase and amplitude noise with amplitudes AnS and AnA on maximum and mean values of intensity 〈Ir〉 calculated
over 150 realizations. Results were obtained with Δ = 180◦ and ϕ = 0 (a, b) and with Δ = 180◦ and ϕ = 0 (c, d). Amplitudes of noise were
taken as AnA = 0.5 (a, c) and AnS = 0.6π (b, d). The mean values of intensity calculated according to (21) coincide with curves in figures.
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Figure 5: Dependence of relative intensity of interference field Ir(Shx/r0) on the shift of optical axes Shx obtained for different initial amplitude
profiles, angles of rotation Δ, and topological charges Vd .
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Figure 6: Calculated over 100 realizations, mean and maximum
values of Ir obtained with different topological charges Vd for angles
of rotation Δ = 180◦ (a) and Δ = 120◦ (b). Here LF is Fried’s
coherence length. Horizontal dashed lines in the upper and lower
parts of the pictures show the regions where values of Ir are greater
and lesser than 1.84 and 0.16. In the middle part of Figure 5(a)
dashed lines correspond to Ir = 1 with threshold values Ir = 0.97
and Ir = 1.06; in Figure 5(b) they correspond to Ir = 1 with
threshold values Ir = 0.82 and Ir = 1.12. Vertical dashed lines in
Figure 5(a) show values of LF/r0B equal to 0.26 and 0.30, while in
Figure 5(b) equal to 0.22, 0.25, 0.30, 0.43, and 0.71.

frequency. For topological charges with modulus greater
than zero, this coefficient shifts points of intersection along
Shx/r0 axes on 25–56%, approximately from Shx = 0, 5r0 up
to Shx = 0, 7r0. At the same time, the curve corresponding
to Vd = 0 does not change its position, so the difference
between curves becomes greater. This feature is especially
well pronounced for the pair of charges (Vd0,Vd1) = (±3, 0).

The intersections discussed above are observed to be of
relatively small values of Shx(Shx ≈ 0.3r0, . . . , 0.8r0). So it is
not necessary to register the whole distribution of the beam
amplitude by the receiver. Really, for Shx ∈ [0, 0.8r0], the
curve representing dependence Ir(Shx/r0) for the diameter of
aperture Drsv = 20r0 coincides with the curve obtained with
the aperture Drsv = 4r0. Moreover, for Shx = 0, intensity Ir is
practically not influenced by the aperture diameter Drsv.

5. Detection of a Vortex Carried by a Beam in
the Turbulent Atmosphere

White noise is a source of aberrations that can easily
be simulated in numerical experiments, but distortions of
beams in the real atmosphere cannot be related explicitly
only with noise, so we assessed the influence of turbulence
on performance of the detector. Investigations were carried
out for beams with Gaussian initial distribution of amplitude
and with a screw dislocation in the wavefront. The beam

formed in such a way passed a thin phase screen and an
optically homogeneous path of length Lt.

Intensity of turbulent distortions was characterized by
the Fried coherence length LF and by inner Minner and outer
Mouter scales of turbulence. Value of LF was varied from
50r0B to 0.05r0B, inner and outer scales: Minner = 0.16r0B ≈
0.11r0, Mouter = 5r0B ≈ 3.5r0, or Mouter = 20r0B ≈ 14.14r0,
where r0B = r0/

√
2 is a radius of a Gaussian beam entering

the equation. I(r) = C2 exp(−2r2/r2
0 ) = C2 exp(−r2/r2

0B).
Path length was taken equal to 0.05 and 0.5 of diffraction
length that corresponds to 5.9 and 59 kilometers for beams
with radius of 10 cm and wavelength of 0.5 mkm. Averaged
over 100 realizations of random phase screen, the minimum,
maximum, and mean values of intensity Ir were calculated
for all combinations of the physical parameters listed above.

On the path of 59 kilometers in the registration plane the
distance between nodes of calculation grid was about r0B

′/16,
where r0P

′ is the size of beam in this plane. The error of
intensity calculations was assessed by comparing the results
with data obtained by processing of the etalon vortex. This
error was less than 3%.

Additional errors appear at rotation of the field, but
rotation on angle of 180◦ always gives zero error, and on
angle Δ = 120◦, the following errors: 0.0003 (0.22%) for
Vd = −1, 0.0029 (0.1%) forVd = −2, and 0.0012 (0.12%) for
Vd = −3. To make numeric experiments more realistic, we
introduced in the output plane of the generator relative shifts
of receiver and generator optical axes: Sh ≡ |(Shx, Shy)| =
| − 0.079r0B(1, 1)| = 0.11r0B, which results in shift of axes
in the plane of receiver on the value of Sh

′ = 0.044r0B
′.

These operations induced increase of errors in calculation of
Ir up to 3% for angle of 180◦ and up to 10% for Δ = 120◦.
Nevertheless, these errors can be considered as systematic
ones, and their influence on precision of vortex registration
can be reduced by variations of threshold values in (22).

The obtained dependence of Ir on Fried’s coherence
length is shown in Figure 6 for 3 different topological charges
(Vd = −1, Vd = −2, and Vd = −3). Under conditions of
weak turbulence (LF/r0B

∼= 50) for Δ = 120◦ and Vd = −3,
the value of Ir differs from unity on 1.4%, that is, deviation
of Ir almost coincides with theoretical assessments (4%)
obtained earlier.

Analysis of results obtained numerically and partially
represented in Figure 6 reveals the following features of the
detection system.

(1) In weak turbulence (LF > 10r0B) intensity, Ir does
not change. Values of Ir are close to corresponding
results registered in the presence of weak white noise:
Ir = 0 and Ir = 2 in Figure 2 with Δ = 180◦;
Ir = 0.14 and Ir = 1.86 in Figure 3 with Δ =
120◦. Differences of registered values of intensity
are induced mainly by shifts of optical axes and, to
smaller extent, by atmospheric turbulence.

(2) Concurrence of graphics obtained for paths of 5.9
and 59 km confirms the theoretical statement accord-
ing to which the value of relative intensity Ir does not
depend on the path length.
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Figure 7: Relative intensity Ir calculated numerically with application of different phase screens Nr(Nr ∈ [0, 99]). Angles of field rotation
Δ = 180◦(a, b) and Δ = 120◦ (c, d), Fried’s coherence length LF = 0.25r0B (a, c) and LF = 0.1r0B (b, d). The uppermost and bottommost
dashed lines correspond to values of Ir = 1.86 and 0.14. Dashed lines in the central part of the picture correspond to Ir = 1 with threshold
values of 0.97 and 1.06 (a and c) and to Ir = 1 and threshold values of 0.82 and 1.12 (b and d).

(3) Analysis of topological charge detection in a single
realization allows us to conclude that

(i) if the angle of field rotation is 180◦, vortices
with topological charges Vd = −1 and Vd = −2
can be detected when LF > 0.26r0B, with Vd =
−2 and Vd = −3 when LF > 0.26r0B (the bor-
ders of regions are shown in Figure 6(a) by the
first and third dashed lines);

(ii) if Δ = 120◦, vortices with Vd = −1 and Vd =
−3 can be detected when LF > 0.71r0B, with
Vd = −2 and Vd = −3 when LF > 0.43r0B (the
fourth and fifth dashed lines in Figure 6(b));

(4) To detect vortices with topological charges Vd = −1
and Vd = −2 or Vd = −2 and Vd = −3 and with ro-
tation of the field on angle Δ = 180◦ we should
change the rule of detection given by (22) to the
following form:

Vd =
⎧
⎨

⎩

1, Ir ≤ 0.97,

2, Ir > 0.97,

or Vd =
⎧
⎨

⎩

3, Ir ≤ 1.063,

2, Ir > 1.063.

(23)

This rule is valid with LF > 0.26r0B or with LF >
0.26r0B (corresponding borders are shown by vertical
dashed lines in Figure 6(a)).

(5) For angle of rotation Δ = 120◦ in (22) we can change
the threshold values and obtain the new condition of
vortex detection:

Vd =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2 + 3i, Ir < 0.818,

0 + 3i, Ir ∈ [0.818, 1.12]

1 + 3i, Ir > 1.12.

, (24)

The new rule is valid for detection of vortices with
Vd = −1 and Vd = −3 or with Vd = −2 and Vd = −3
when LF > 0.25r0B or LF > 0.30r0B (the regions are
marked by the second and third vertical dashed lines
in Figure 6(b)). But if we need to detect vortices only
with charged Vd = −1 and Vd = −2, then we can use
the rule

Vd =
⎧
⎨

⎩

1, Ir ≤ 0.904,

2, Ir > 0.904,
(25)

which is valid for LF > 0.216r0B (the first vertical
dashed line in Figure 6(b)).

(6) Analysis of large samplings (100 realizations or more)
allows us to detect topological charges of vortices
with (22) for LF = 0.1r0B or even in stronger
turbulence. Naturally, in procedure of detection we
employ averaged values of intensity 〈Ir〉 instead of Ir .

Influence of phase screen simulating turbulent distor-
tions of radiation on detection of vortex topological charges
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Figure 8: One-dimensional distributions of probability density ρIr ≡ ρ(Ir) obtained with different values of Mouter and Shx . The values of
Fried’s coherence length are 0.25, 0.1, and 0.05. Curves marked by symbols “Δ”, “�”, and “o” were obtained for topological charges −1, −2,
and 0 correspondingly.
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Figure 10: Two-dimensional probability density ρ(Ir0, Ir1) obtained with Shx ≈ 0.314r0B , Mouter = 5r0B , and different values of Vd0, Vd1, LF ,
and Δ.

is illustrated in Figure 7. Different curves in this picture
correspond to vortices with different charges (Vd = −2, Vd =
−1, and Vd = −3). In Figures 7(b) and 7(d), curves cannot
be separated which indicates large strength of turbulence.

Also in Figure 7 we observe mirror symmetry between
curves Ir(Nr) related with different charges, for example,
with Vd = −2 and Vd = −1; Vd = −2 and Vd = −3.

The exact reflection of curves is possible to expect when
optical axis of receiver and detector coincide and angle of
rotation is 180◦, but development of symmetry for Δ = 120◦

is unachievable (Figures 7(c) and 7(d)).
One more characteristic feature observed in these pic-

tures is the following: normally, Ir(Nr ,Vd0) /= Ir(Nr ,Vd1) for
Vd0 /=Vd1. This attribute and the symmetry of curves are also
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Figure 12: The same data as in Figure 9 but obtained with Mouter = 20r0B .

illustrated by distributions ρ(Ir), ρ(Ir0, Ir1) of probability
density presented in Figures 8, 9, 10, and 11 for different
values of LF, Mouter, Shx, and Vd.

Graphs representing the results of numeric experiments
with zero shifts of optical axes show that differences in
probability density ρ(Ir0, Ir1) for triplets (120◦, −1, 1) and

(120◦, −1, −2) cannot be distinguished visually. The same is
true for triplets (180◦, −1, 0) and (180◦, −1, −2).

According to Figures 9, 10, 11, and 12 with increase
of turbulence strength (with decrease of LF), distribution
of probability density initially localized in vicinity of point
(1, 1) moves out of the second quadrant in direction of
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Table 1: Averaged over 13000 realizations mean values of 〈Ir1 − Ir0〉 and maximum amplitudes Ir0 max − Ir1 min obtained for pairs (Vd0,Vd1)
with different Fried’s coherence lengths LF/r0B , angles of field rotation Δ, shifts of optical axes Shx , and different outer scales Mouter.

LF/r0B

Δ = 180◦ Δ = 120◦

Shx = 0 Shx ≈ 0.314r0B Shx = 0 Shx ≈ 0.314r0B

Vd0 −1; −1; −1; −1; −1; −1; −1; −1;

Vd1 0 −2 0 −2 −2 +1 −2 +1

Mouter = 5r0B

0.25
〈Ir1 − Ir0〉 1.35 0.997 0.56 1.16 1.20 0.60 0.79

Ir0 max − Ir1 min 0.35 0.57 0.83 0.20 0.18 0.55 0.45

0.10
〈Ir1 − Ir0〉 0.39 0.24 0.08 0.35 0.38 0.11 0.19

Ir0 max − Ir1 min 1.01 1.00 1.02 0.75 0.72 0.80 0.76

0.05
〈Ir1 − Ir0〉 0.06 0.01 −0.02 0.05 0.07 −0.01 0.01

Ir0 max − Ir1 min 0.82 0.79 0.80 0.59 0.57 0.60 0.59

Mouter = 20r0B

0.25
〈Ir1 − Ir0〉 0.59 0.36 0.08 0.58 0.62 0.19 0.32

Ir0 max − Ir1 min 0.82 0.91 1.03 0.61 0.59 0.82 0.78

0.10
〈Ir1 − Ir0〉 0.11 0.03 −0.03 0.12 0.13 −0.01 0.02

Ir0 max − Ir1 min 0.99 0.98 1.02 0.72 0.71 0.74 0.71

0.05
〈Ir1 − Ir0〉 0.03 0.01 −0.00 0.02 0.04 −0.00 0.00

Ir0 max − Ir1 min 0.75 0.72 0.73 0.60 0.57 0.51 0.54

Table 2: Influence of optical axes shift Shx and outer scale Mouter of turbulence on difference Ir0 max − Ir1 min and mean difference 〈Ir1 − Ir0〉 of
functions Ir1(Nr) and Ir0(Nr).

Difference

Shift of axes Shx/r0B Outer scale of turbulence Mouter/r0B

0 0.315
Increase: 0 → 0.315

5 20
Increase: 5 → 20

Variations, % Variations, %

Interval Mean Interval Mean

〈Ir1 − Ir0〉 0.41
0.188 ≈ −131 · · · −77 0.432

0.164 ≈ −144 · · · −70≈ (1− 0.54) · 0.41 −26 ≈ (1− 0.62) · 0.432 −31.7

Ir0 max − Ir1 min 0.68
0.76 ≈ −17 · · ·

12 0.77
0.67 ≈ −229 · · · −34≈ (1 + 0.11) · 0.68 63 ≈ (1− 0.14) · 0.77 +15

the fourth one and acquires symmetric shape relatively to
this point. As a result distribution of function ρ(Ir0, Ir1) for
LF/r0P = 0.05 looks like a distribution of the Gaussian func-
tion.

Relative shift of the generator and receiver optical axes
Shx ≈ 0.314r0B in the presence of weak turbulence (LF =
0.25r0P) results in the broadening of distribution and trans-
port of its gravity center to the first and third quadrants.
These changes are clearly seen in graphics corresponding to
Δ = 180◦. With increase of turbulence, intensity increases
the speed of transformation of ρ(Ir0, Ir1) distribution to a
Gaussian form.

Symmetry of ρ(Ir0, Ir1) distribution guarantees correct
data transfer by a system even on realizations when the top-
ological charge of vortex is incorrectly detected. Due to sym-
metry an error of vortex identification is possible to consider
as a regular event; therefore, it can be taken into account in
the algorithm of detection. Another property of the system,
namely, the difference of intensities Ir(Nr ,Vd0) /= Ir(Nr ,Vd1)
observed when Vd0 /=Vd1 suggests application of adaptive
thresholds in the algorithm, with the use of which the errors
can be reduced.

The above-presented conclusions based on visual analysis
of results are supported by the data of Table 1, where the
influence of phase screen, detector, and order of a singular
points on difference 〈Ir(Nr ,Vd1)− Ir(Nr ,Vd0)〉Nr

≡ 〈Ir1 −
Ir0〉 is illustrated. Obviously, identification of vortices is
easier if the difference of intensities 〈Ir1 − Ir0〉 is greater.
According to Table 1 detection of vortices is not always
possible even with small intensity of turbulence, for example,
with LF = 0.25r0B. This notion does not conflict with
conclusions 3–5 drawn for Sh = 0.11r0B and Mouter = 5r0PB

in contrast with the thesis about possible application of (25)
for LF > 0.216r0P which seems rather doubtful. The cause
of disagreement can be explained as follows: according to
our estimates, probability of the event appearance is rather
small (about 1.6%) for a random phase screen with LF =
0.25r0B and Mouter = 5r0B which guarantees fulfillment of
inequality Ir(Vd1 = −2) < Ir(Vd0 = −1). But we used
only 100 realizations to obtain data shown as graphs in
Figure 6, so it is possible to expect that the screen is absent
in this sampling, while results in Table 1 were averaged over
13000 realizations.
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The results of Table 1 also allow one to conclude that with
Δ = 180◦ and Shx = 0, values of 〈Ir1− Ir0〉 and Ir0 max− Ir1 min

obtained for different pairs of (Vd0,Vd1) coincide precisely.
This property can be attributed to mirror symmetry of
corresponding curves representing functions Ir(Nr). With
Δ = 120◦ and Shx = 0, between values of 〈Ir1 − Ir0〉
and Ir0 max − Ir1 min we registered only small difference. If
the optical axes are shifted, mirror symmetry of curves is
broken as well as correlation between values of 〈Ir1− Ir0〉 and
Ir0 max − Ir1 min.

Additionally, increase of Shx and of the outer scale Mouter

results in decrease of 〈Ir1 − Ir0〉 (Table 2). Obviously, in this
case, performance of the detector can be improved with
application of an adaptive optics system compensating for
large-scale aberrations of radiation.

6. Conclusions

The main results of theoretical analysis can be summarized
as follows.

(1) Due to optical field transformation in an interferom-
eter, the magnitude of the output intensity depends
on the order of a vortex carrying by the field. This
magnitude can be used to detect presence and order
Vd of the vortex.

(2) The influence of white amplitude and phase noise
was assessed on precision of vortex identification. It
was shown that precision of vortex identification is
influenced mainly by amplitude white noise.

(3) Invariance of detector characteristics under path
length was proved in linear homogeneous medium.

(4) The mirror symmetry of the output field intensity
Ir relatively to the level Ir = 1 for specific angles
of rotation, and specific differences of topological
charges was demonstrated.

With the use of numerical simulation, it was shown that

(1) Assessments of white noise and turbulence influence
on precision of a vortex detection support theoretical
results.

(2) The simple criteria are possible to introduce in the
model of a detector to distinguish presence and order
of optical vortex.

(3) Magnitude of relative intensity Ir and precision
of vortex detection depend noticeably on shifts of
receiver and source optical axes.

The main characteristics are also found of 1D and
2D probabilities of vortex detection as functions of Fried’s
coherence length, inner and outer scales of turbulence, and
relative shifts of optical axes.
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