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1. Introduction

Consider the following optimal control problem (primal
problem (P ) in short):

(P ) min
∫ T

0
[F(x) + P(u)]dt, (1)

s.t. ẋ = A(t)x + B(t)u, x(0) = x0 ∈ Rn,

t ∈ [0,T],‖u‖ ≤ 1,
(2)

where F(·) is continuous on Rn, and P(·) is twice contin-
uously differentiable in Rm. An admissible control, taking
values on the unit ball D := {u ∈ Rm | ‖u‖ ≤
1}, is integrable or piecewise continuous on [0,T]. In (2)
we assume that A(t),B(t) are continuous matrix functions
in C([0,T],Rn×n) and C([0,T],Rn×m), respectively. This
problem often comes up as a main objective in general
optimal control theory [1].

By the classical control theory [2], we have the following
Hamilton-Jacobi-Bellman function:

H(t, x,u, λ) = λ∗(A(t)x + B(t)u) + F(x) + P(u). (3)

The state and costate systems are

ẋ = Hλ(t, x,u, λ) = A(t)x + B(t)u, x(0) = x0,

λ̇ = −Hx(t, x,u, λ) = −A∗λ−∇F(x), λ(T) = 0.
(4)

In general, it is difficult to obtain an analytic form of the
optimal feedback control for the problem (1)-(2). It is well
known that, in the case of unconstraint, if P(u) is a positive
definite quadratic form and F(x) is a positive semidefinite
quadratic form, then a perfect optimal feedback control
is obtained by the solution of a Riccati matrix differential
equation. The primal goal of this paper is to present an
analytic solution to the optimal control problem (P ).

We know from the Pontryagin principle [1] that if the
control û is an optimal solution to the problem (P ), with

x̂(·) and λ̂(·) denoting the state and costate corresponding
to û(·), respectively, then û is an extremal control, that is, we
have

˙̂x = Hλ

(
t, x̂, û, λ̂

)
= A(t)x̂ + B(t)û, x̂(0) = x0, (5)

˙̂
λ = −Hx

(
t, x̂, û, λ̂

)
= −A∗λ̂−∇F(x̂), λ̂(T) = 0, (6)

H
(
t, x̂(t), û(t), λ̂(t)

)
= min
‖u‖≤1

H
(
t, x̂(t),u, λ̂(t)

)
,

a.e. t ∈ [0,T].
(7)

By means of the Pontryagin principle and the dynamic
programming theory, many numerical algorithms have been
suggested to approximate the solution to the problem (P )
(see, [3–5]). This is due to the nonlinear integrand in the
cost functional. It is even difficult for the case of P(u) being
nonconvex on the unit ball D in Rm. We know that when
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P(u) is nonconvex on the unit ball D, sometimes the optimal
control of the problem (P ) may exist. Let us see the following
simple example for n = m = 1:

(P ) min
∫ 1

0

[
x − 1

2
u2
]
dt,

s.t. ẋ = x + u, x(0) = 0, t ∈ [0,T], |u| ≤ 1.

(8)

In fact, it is easy to see that û(t) ≡ −1; t ∈ [0,T] is an optimal
control.

In this paper, we consider P(u) to be nonconvex. If
the optimal control of the problem (P ) exists, we solve
the problem (1) to find the optimal control which is an
expression of the costate. We see that, with respect to u,
the minimization in (7) is equivalent to the following global
nonconvex optimization over a sphere:

min
‖u‖≤1

[
P(u) + λ̂(t)∗B(t)u

]
, a.e. t ∈ [0,T], (9)

when P(u) is a nonconvex quadratic function, the problem
(9) can be solved completely by the canonical dual transfor-
mation [6–8]. In [9], the global concave optimization over
a sphere is solved by use of a differential system with the
canonical dual function. Because the Pontryagin principle is
a necessary condition for a control to be optimal, it is not
sufficient for obtaining an optimal control to solve only the
optimization (9). In this paper, combing the method given
in [6, 9] with the Pontryagin principle, we solve problem (1)-
(2) which has nonconvex integrand on the control variable in
the cost functional and present the optimal control expressed
by the costate via canonical dual variables.

2. Global Optimization over a Sphere

In this section we present a differential flow to deal with the
global optimization, which is used to find the optimal control
expressed by the costate in the next section. Here we use the
method in our another paper (see [9]).

In what follows we consider the function P(x) to be twice
continuously differentiable and nonconvex on the unit ball
in Rm. Define the set

G = {ρ > 0 | [∇2P(x) + ρI
]
> 0, x∗x ≤ 1

}
. (10)

Since P(x) is nonconvex and ∇2P(x) is bounded on D :=
{x ∈ Rmx∗x ≤ 1}, G is an open interval (ρ, +∞) for the
nonnegative real number ρ depending on P(x). Let ρ∗ ∈ G
and x̃ ∈ {x∗x ≤ 1} satisfy the following KKT equation:

∇P(x̃) + ρ∗x̃ = 0. (11)

We focus on the flow x̂(ρ) defined near ρ∗ by the following
backward differential equation:

dx̂

dρ
+
[∇2P(x̂) + ρI

]−1
x̂ = 0, ρ ∈ (ρ∗ − δ, ρ∗

]
, (12)

x̂
(
ρ∗
) = x̃. (13)

The flow x̂(ρ) can be extended to wherever ρ ∈ G ∩ (0, ρ∗]
[10]. The dual function [6] with respect to a given flow x̂(ρ)
is defined as

Pd
(
ρ
) = P

(
x̂
(
ρ
))

+
ρ

2
x̂∗
(
ρ
)
x̂
(
ρ
)− ρ

2
. (14)

We have
(
dx̂
(
ρ
)

dρ

)∗[∇2P
(
x̂
(
ρ
))

+ ρI
]dx̂(ρ)

dρ

= −1
2
d
[
x̂∗
(
ρ
)
x̂
(
ρ
)]

dρ
= −d

2Pd
(
ρ̂
)

dρ2
≥ 0.

(15)

Consequently

d2Pd
(
ρ
)

dρ2
≤ 0. (16)

It means that dPd(ρ)/dρ decreases when ρ increases in G. If,
for a ρ̂ ∈ G, dPd(ρ̂)/dρ ≤ 0, then dPd(ρ)/dρ ≤ 0 for ρ ∈
G∩ [ρ̂,∞). Therefore,

Pd
(
ρ̂
) ≥ Pd

(
ρ
)
, (17)

as long as ρ ≥ ρ̂.

Theorem 1. If the flow x̂(ρ), ρ ∈ G∩ (0, ρ∗], defined by (11)–
(13), passes through a boundary point of the ball D = {x ∈
Rm‖x‖ ≤ 1} at ρ̂ ∈ G, that is,

[
x̂
(
ρ̂
)]∗

x̂
(
ρ̂
) = 1, ρ̂ ∈ G∩ (0, ρ∗

]
, (18)

then x̂ is a global minimizer of P(x) over the ball D. Further
one has

min
D

P(x) = P(x̂) = Pd
(
ρ̂
) = max

ρ≥ρ̂
Pd
(
ρ
)
. (19)

Proof. Since ρ̂ ∈ G, ρ̂ > 0. For each x ∈ D and whenever
ρ ≥ ρ̂ we have

P(x) ≥ P(x) +
ρ

2
[x∗x − 1]

≥ infD

[
P(x) +

ρ

2
[x∗x − 1]

]
= Pd

(
ρ
)
.

(20)

By (17), (18), we have

P(x) ≥ max
ρ≥ρ̂

Pd
(
ρ
) = Pd

(
ρ̂
)

= P
(
x̂
(
ρ̂
))

+
ρ

2

[(
x̂
(
ρ̂
))∗

x̂
(
ρ̂
)− 1

]
= P

(
x̂
(
ρ̂
))
.

(21)

Thus

min
D

P(x) = max
ρ≥ρ̂

Pd
(
ρ
)
. (22)

This concludes the proof of Theorem 1.

To illustrate the canonical dual method, let us present
several examples as follows.
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Example 2. Let us consider the following one-dimensional
concave minimization problem:

p∗ = minP(x) = −1
12

x4 − x2 + x,

s.t. x2 ≤ 1.

(23)

We have

P′(x) = −1
3
x3 − 2x + 1, P′′(x) = −x2 − 2 < 0, ∀x2 ≤ 1.

(24)

By choosing ρ∗ = 10, we solve the following equation in
{x2 < 1}:

−1
3
x3 − 2x + 1 + 10x = 0 (25)

to get a solution x̃ = −0.1251. Next we solve the following
boundary value problem of the ordinary differential equa-
tion:

dx
(
ρ
)

dρ
= x

(
ρ
)

x2
(
ρ
)

+ 2− ρ , x
(
ρ∗
) = −0.1251, ρ ≤ 10.

(26)

To find a parameter such that

x2(ρ) = 1, (27)

we get

ρ̂ = 10
3

, (28)

which satisfies

P′′(x) + ρ̂ = P′′(x) +
10
3
> 0, ∀x2 ≤ 1. (29)

Let x(10/3) be denoted by x̂. To find the value of x̂, we
compute the solution of the following algebra equation:

−1
3
x3 − 2x + 1 +

10
3
x = 0, x2 = 1 (30)

and get x̂ = −1. It follows from Theorem 1 that x̂ = −1 is the
global minimizer of P(x) over [−1, 1].

Example 3. We now consider the nonconvex minimization
problem:

p∗ = minP(x) = 1
3
x3 + 2x,

s.t. x2 ≤ 1.

(31)

By choosing ρ∗ = √
72, we solve the following equation in

{x2 < 1}:

x2 + 2 +
√

72x = 0 (32)

to get a solution x̃ = −2/(4 + 3
√

2). Next we solve
the following boundary value problem of the ordinary
differential equation:

ẋ = −x
2x + t

, t ≤ √72,

x
(√

72
)
= −2

4 + 3
√

2
.

(33)

To find a parameter such that

x2(ρ) = 1, (34)

we get

ρ̂ = 3, (35)

which satisfies

P′′(x) + ρ̂ = P′′(x) + 3 = 2x + 3 > 0, ∀x2 ≤ 1. (36)

Let x(3) be denoted by x̂. To find the value of x̂, we compute
the solution of the following algebra equation:

x2 + 2 + 3x = 0, x2 = 1 (37)

and get x̂ = −1. It follows from Theorem 1 that x̂ = −1 is the
global minimizer of P(x) over [−1, 1].

Example 4. Given a symmetric matrix G ∈ Rm×m and a
nonzero vector f ∈ Rm, let P(x) = (1/2)x∗Gx − f ∗x be a
nonconvex quadratic function. Consider the following global
optimization problem over a sphere:

minP(x) := 1
2
x∗Gx − f ∗x,

s.t. x∗x ≤ 1.

(38)

Suppose that G has p ≤ m distinct eigenvalues a1 < a2 <
· · · < ap. Since P(x) = (1/2)x∗Gx − f ∗x is nonconvex, a1 <
0. Let us choose a large ρ∗ > −a1 such that

0 <
∥∥∥(G + ρ∗I

)−1
f
∥∥∥ < 1. (39)

By solving the boundary value problem of ordinary differen-
tial equation

dx

dρ
= −(G + ρI

)−1
x,

(
ρ∗
) = (G + ρ∗I

)−1
f , ρ ≤ ρ∗,

(40)

we get the unique solution

x
(
ρ
) = (G + ρI

)−1
f , ρ ≤ ρ∗. (41)

Since G is symmetric, there exists an orthogonal matrix R
such that RGR∗ = D := (aiδi j) (a diagonal matrix) and
correspondingly R f = g := (gi) (a vector). By (41), we have

x∗
(
ρ
)
x
(
ρ
) = f ∗

(
G + ρI

)−2
f =

p∑
i=1

g2
i(

ai + ρ
)2 . (42)
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Since f ∗(G + ρ∗I)−2 f < 1 and

lim
ρ>−a1,ρ→−a1

p∑
i=1

g2
i(

ai + ρ
)2 = +∞, (43)

there exists ρ̂ ∈ (−a1, ρ∗) uniquely such that

x∗
(
ρ̂
)
x
(
ρ̂
) = f ∗

(
G + ρ̂I

)−2
f =

p∑
i=1

g2
i(

ai + ρ̂
)2 = 1. (44)

By Theorem 1, we see that x(ρ̂) = (G + ρ̂I)−1 f is a global
minimizer of the problem.

3. Find an Analytic Solution to the Optimal
Control Problem

In this section, we consider A(t),B(t) in problem (1)-(2) to
be constant matrices, F(x) = c∗x and

P(u) = 1
2
u∗Gu− b∗u, (45)

where c ∈ Rn×1, b ∈ Rm×1, and G(∈ Rm×m) is a symmetric
matrix. Suppose that G has p ≤ m distinct eigenvalues a1 <
a2 < · · · < ap and a1 < 0. Moreover, we need the following
basic assumption:

rank(B∗, b) > rank(B∗). (∗)

We consider the following optimal control problem:

(P ) min J(u) =
∫ T

0

[
c∗x +

1
2
u∗Gu− b∗u

]
dt, (46)

s.t. ẋ = Ax + Bu, x(0) = x0, t ∈ [0,T], ‖u‖ ≤ 1. (47)

To solve the above problem, we define the function
φ(t, x) = ψ∗(t)x, where ψ(t) is the solution to the following
Cauchy boundary value problem of the ordinary differential
equation:

ψ̇(t) = −A∗ψ(t) + c, (48)

ψ(T) = 0. (49)

By comparing (48)-(49) with (6) in terms of this special
problem (46)-(47), we see that

ψ(t) = −λ(t), a.e. t ∈ [0,T]. (50)

Noting that ψ(T) = 0 and x(0) = x0, we have

J(u) =
∫ T

0

[
c∗x +

1
2
u∗Gu− b∗u

]
dt

=
∫ T

0

[(
ψ̇(t)+A∗ψ(t)

)∗
x+

1
2
u∗Gu−b∗u

]
dt

=
∫ T

0

[
ψ̇∗(t)x+ψ(t)∗Ax+

1
2
u∗Gu−b∗u

]
dt

=
∫ T

0

[
ψ̇∗(t)x+ψ(t)∗(Ax+Bu)

−ψ(t)∗Bu+
1
2
u∗Gu−b∗u

]
dt

=
∫ T

0

[
ψ̇∗(t)x(t)+ψ(t)∗ẋ(t)

−ψ(t)∗Bu+
1
2
u∗Gu−b∗u

]
dt

=
∫ T

0

[
φ̇(t, x(t))− ψ(t)∗Bu +

1
2
u∗Gu− b∗u

]
dt

= φ(T , x(T))−φ(0, x(0))

+
∫ T

0

[
1
2
u∗Gu−b∗u−ψ(t)∗Bu

]
dt

= −φ(0, x(0))+
∫ T

0

[
1
2
u∗Gu−b∗u−ψ(t)∗Bu

]
dt.

(51)

Thus,

min J(u) = −φ(0, x(0))

+ min
∫ T

0

[
1
2
u∗Gu− b∗u− ψ(t)∗Bu

]
dt.

(52)

Consequently, we deduce that, for almost every t in
[0,T], the optimal control is

û(t) = arg min
u∗u≤1

[
1
2
u∗Gu− b∗u− ψ(t)∗Bu

]
. (53)

By the relation between ψ(t) and the costate in (50), for
given t ∈ [0,T], we need to solve the following nonconvex
optimization:

min
1
2
u∗Gu− (b − B∗λ(t))∗u,

s.t. u∗u ≤ 1.

(54)

It follows from the basic assumption (∗) that b − BTλ(t) /= 0
for each t ∈ [0,T]. By Example 4 and (53), for almost every
t in [0,T], we have

û(t) = (G + ρtI
)−1[b− B∗λ(t)], (55)
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with the dual variable ρt > −a1 satisfying

(b − B∗λ(t))∗
(
G + ρtI

)−2(b − B∗λ(t)) = 1. (56)

We define the function ρ(λ) with respect to λ by the following
equation:

(b − B∗λ)∗
(
G + ρ(λ)I

)−2(b − B∗λ) = 1,

ρ(λ) > −a1

(57)

and obtain an analytic solution to the optimal control
problem via a costate expression

û = (G + ρ(λ)I
)−1(b − B∗λ). (58)

On the other hand, by the solution of the Cauchy bound-
ary value problem of the ordinary differential equation (48)-
(49), we have

λ(t) = −ψ(t)

= eA
∗T
∫ T−t

0
e−A

∗te−A
∗sds c

= eA
∗(T−t)

[∫ T−t
0

e−A
∗sds

]
c.

(59)

Example 5. Consider the following optimal control problem:

(P ) min
∫ 1

0

[
x − 1

2
u2
]
dt

s.t. ẋ = x + u,

x(0) = 0, t ∈ [0, 1], |u| ≤ 1.

(60)

This is a simple case of (46),(47). We have G = −1, c =
1, b = 0, A = 1, B = 1, T = 1. By (59), we have

λ(t) = e1−t
∫ 1−t

0
e−sds = e1−t − 1 /= 0 (t /= 1). (61)

To find an analytic solution of the optimal control problem,
we solve the equation

(
ρ − 1

)−2
λ2(t) = 1, ρ > 1 (62)

to get

ρ = 1 + |λ(t)| = 1 +
[
e1−t − 1

]
. (63)

By (58), we obtain an analytic solution of the optimal control
problem which can be expressed as

û(t) = (ρ− 1
)−1[−λ(t)]

= (e1−t − 1
)−1[1− e1−t] = −1, (t /= 1).

(64)

4. Concluding Remarks

In this paper, a new approach to optimal control problems
has been investigated using the canonical dual method. Some
nonlinear and nonconvex problems can be solved by global
optimizations, and therefore, the differential flow defined by
the KKT equation (see (11)) can produce an analytic solution
of the optimal control problem. Meanwhile, by means of
the canonical dual function, an optimality condition is
proved (see Theorem 1). The global optimization problem
is solved by a backward differential equation with an equality
condition (see (12), (18)). More research needs to be done
for the development of applicable canonical dual theory.
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