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Clusters of workstations provide a cost-effective, high per-
formance parallel computing environment. These environ-
ments, however, are often shared by multiple users, or may
consist of heterogeneous machines. As a result, parallel ap-
plications executing in these environments must operate de-
spite unequal computational resources. For maximum perfor-
mance, applications should automatically adapt execution to
maximize use of the available resources. Ideally, this adap-
tation should be transparent to the application programmer.
In this paper, we present CRAUL (Compiler and Run-Time
Integration for Adaptation Under Load), a system that dy-
namically balances computational load in a parallel applica-
tion. Our target run-time is software-based distributed shared
memory (SDSM). SDSM is a good target for parallelizing
compilers since it reduces compile-time complexity by pro-
viding data caching and other support for dynamic load bal-
ancing. CRAUL combines compile-time support to identify
data access patterns with a run-time system that uses the ac-
cess information to intelligently distribute the parallel work-
load in loop-based programs. The distribution is chosen ac-
cording to the relative power of the processors and so as
to minimize SDSM overhead and maximize locality. We
have evaluated the resulting load distribution in the presence
of different types of load – computational, computational
and memory intensive, and network load. CRAUL performs
within 5–23% of ideal in the presence of load, and is able to
improve on naive compiler-based work distribution that does
not take locality into account even in the absence of load.
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1. Introduction

Clusters of workstations, whether uniprocessors or
symmetric multiprocessors (SMPs), when connected
by a high-performance network, are an attractive plat-
form for parallel computing due to their low cost and
high availability. The default programming paradigm
that is supported in hardware is message passing across
the nodes, and shared memory among processes within
a node. Unfortunately, the message passing paradigm
requires explicit communication management by the
programmer or parallelizing compiler. In applications
with dynamic access patterns, this communication
management can be very complex. Since the latency
of communication across nodes is much larger than
within a node, careful work distribution is also required
in order to minimize communication overhead. Fur-
thermore, on multiprogrammed platforms or on plat-
forms with unequal resources, the most efficient work-
load and communication schedule can be impossible to
predict statically.

An alternative programming paradigm is software-
based distributed shared memory (SDSM). An SDSM
protocol (e.g., [3,17,26]) provides the illusion of shared
memory across a distributed collection of machines,
providing a uniform and perhaps a more intuitive pro-
gramming paradigm. A shared memory paradigm pro-
vides ease-of-use and additionally leverages an SMP
workstation’s available hardware coherence to handle
sharing within the SMP. SDSM has been shown to
be an effective target for a parallelizing compiler [6].
Since data caching and communication is implemented
by the run-time system, compile-time complexity is
reduced. To improve performance, previous work [7,
21] has integrated compile-time information within the
run-time system. Access patterns from the compiler
are used by the run-time system to optimize communi-
cation, providing a significant improvement in perfor-
mance.

Workstation clusters are typically shared by many
users and are often possibly heterogeneous. Hence,
balancing load to accommodate these variances is es-
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sential to obtain good performance. A parallel appli-
cation should monitor the power of the computing re-
sources and distribute the workload according to the
observed power and the application’s computation and
communication demands. Ideally, this should be done
without increasing application programming complex-
ity.

In this paper, we present CRAUL (Compiler and
Run-time Integration for Adaptation Under Load), a
system that combines compile-time and run-time sup-
port to dynamically balance load in loop-based, SDSM
programs. Information from the compiler on future ac-
cesses is fed to the run-time system at the points in
the code that will be executed in parallel. Information
on past accesses as well as estimates of the available
computational and communication resources is avail-
able from the run-time. The run-time uses the past and
future access pattern information along with estimates
of the available computational and communication re-
sources to make an intelligent decision on workload
distribution. The decision balances the need not only
to distribute work evenly, but also to avoid high com-
munication costs in the underlying SDSM protocol.

Our techniques are applicable to any page-based
software DSM.2 In this paper, our target run-time sys-
tem is Cashmere [26]. We implemented the necessary
compiler extensions in the SUIF [2] compiler frame-
work. Our experimental environment consists of DEC
AlphaServer 2100 4/233 computers connected by a
low-latency Memory Channel [11] remote-memory-
write network.

We experiment with three different types of load –
pure computational load, computational and memory-
intensive load, and computational and network load.
Our load balancing strategy provides a 23–81% im-
provement in performance compared to the execution
time with a computational and memory-intensive load,
and is able to adjust work distribution in order to re-
duce SDSM overheads. Performance is improved re-
gardless of the type of load and is within 5–23% of
ideal in the presence of load.

The rest of this paper is organized as follows. Sec-
tion 2 describes the run-time system, the necessary
compiler support, and the algorithm used to make dy-
namic load balancing decisions. Section 3 presents an
evaluation of the load balancing support. Section 4 de-
scribes related work. Finally, we present our conclu-
sions and discuss on-going work in Section 5.

2Preliminary results on a different run-time system, Tread-
Marks [3], are presented in [13].

2. Design and implementation

We first provide some background on Cashmere [26],
the run-time system we used in our implementation.
We then describe the compiler support, followed by the
run-time support necessary for load balancing.

2.1. The base software DSM library

Our run-time system, Cashmere-2L (CSM) [26], is
a page-based software DSM system that has been de-
signed for SMP clusters connected via a low-latency
remote-write network. The system implements a multi-
ple-writer [4], “moderately” lazy release consistent
protocol [15], and requires applications to adhere to
the data-race-free, or properly-labeled, programming
model [1]. Effectively, the application is required to
use explicit synchronization to ensure that changes to
shared data are visible. The moderately lazy character-
istic of the consistency model is due to its implemen-
tation, which lies in between those of TreadMarks [3]
and Munin [4]. Invalidations in CSM are sent during a
release and take effect at the time of the next acquire,
regardless of whether they are causally related to the
acquired lock.

A unique point of the CSM design is that it targets
low-latency remote-write networks, such as DEC’s
Memory Channel [11]. These networks allow proces-
sors in one node to directly modify the memory of
another node safely from user space, with very low
(microsecond) latency. CSM utilizes the remote-write
capabilities to efficiently maintain internal protocol
data structures. As an example, CSM uses the Mem-
ory Channel’s remote-write, broadcast mechanism to
maintain a replicateddirectoryof sharing information
for each page (i.e., each node maintains a complete
copy of the directory). The per-page directory entries
indicate who the current readers and writers of the page
are.

Under CSM, every page of shared data has a single,
distinguished home node that collects modifications at
each release, and maintains up-to-date information on
the page. Initially, shared pages are mapped only on
their associated home nodes. Other nodes obtain copies
of the pages through page faults, which trigger requests
for an up-to-date copy of the page from the home node.
Page faults due to write accesses are also used to keep
track of data modified by each node, for later invali-
dation of other copies at the time of a release. If the
home node is not actively writing the page, then the
home node ismigrated to the current writer by sim-
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ply modifying the directory to point to the new home
node. If there are readers or writers of a particular page
on a node other than the home node, the home node
downgrades its write permissions to allow future pos-
sible migrations. As an optimization, however, we also
move the page intoexclusivemode if there are no other
sharers, and avoid any consistency actions on the page.
Writes on non-exclusive and non-home-node pages re-
sult in atwin (or pristine copy of the page) being cre-
ated. Thetwin is later used to determine local modifi-
cations.

As mentioned, CSM was also designed specifically
to take advantage of the features of clusters of SMPs.
The protocol uses the hardware within each SMP to
maintain coherence of data among processes within
each node. All processors in a node share the same
physical frame for a shared data page. The software
protocol is only invoked when sharing spans nodes.
The hardware coherence also allows software protocol
operations within a node to be coalesced, resulting in
reduced data communication, as well as reduced con-
sistency overhead.

2.2. Compile-time support for load balancing

For the source-to-source translation from a sequen-
tial program to a parallel program using Cashmere,
we use the Stanford University Intermediate Format
(SUIF) [2] compiler. The SUIF system is organized as
a set of compiler passes built on top of a kernel that
defines the intermediate format. The passes are imple-
mented as separate programs that typically perform a
single analysis or transformation and then write the re-
sults out to a file. The files always use the same format.

The input to the compiler is a sequential version of
the code. Standard SUIF can then generate a single-
program, multiple-data (SPMD) program. We have
added a SUIF pass that, among other things, transforms
this SPMD program to run on Cashmere. Alternatively,
the user can provide the SPMD program (instead of
having the SUIF compiler generate it) by identifying
the parallel loops in the program whose execution may
be divided among the processes.

Our SUIF pass also extracts the shared data access
patterns in each of the SPMD regions, and feeds this
information to the run-time system. The pass is respon-
sible for adding hooks in the parallelized code to allow
the run-time library to change the load distribution in
the parallel loops if necessary, given the information
on the data access patterns.

2.2.1. Access pattern extraction
In order to generate access pattern summaries, our

SUIF pass walks through the program looking for ac-
cesses to shared memory. A regular section [12] is then
created for each such shared access. Regular section
descriptors (RSDs) concisely represent the array ac-
cesses in a loop nest. The RSDs represent the accessed
data as linear expressions of the loop indices along
each dimension, and include stride information. This
information is combined with the corresponding loop
boundaries for that index, and the size of each dimen-
sion of the array, to determine the access pattern.

2.2.2. Load balancing interface and strategy
The run-time system needs a way of changing the

amount of work assigned to each parallel task. This
essentially means changing the number of (as well
as which) loop iterations are executed by each task.
To accomplish this, the compiler augments the code
with calls to the run-time library before the parallel
loops. These calls are responsible for changing the loop
bounds, and consequently, the amount of work per-
formed by each task.

The compiler can direct the run-time to choose
among partitioning strategies for distributing the par-
allel loops. Currently, a blocked distribution strategy is
implemented. Load redistribution is effected by shift-
ing the loop bounds of each processor, allowing us to
handle blocked distributions efficiently. We change the
upper and lower bounds of each parallel loop, so that
tasks on lightly loaded processors will end up with
more work than tasks on heavily loaded processors.
Applications with nearest neighbor sharing will ben-
efit from this scheme, since we avoid the creation of
new boundaries, thereby avoiding the introduction of
new communication due to increased sharing. Our goal
is to expand the types of work distribution possible in
the future in order to handle other initial distributions
efficiently, as well as to take care of different sharing
patterns.

2.3. Run-time load balancing support

As with any dynamic load balancing system, CRAUL
bases its distributions fundamentally on an estimate
of the available computational resources and com-
munication overheads. Specifically, CRAUL uses a
per-processor metric called Relative Processing Power
(RelativePower ) that captures the load induced
by resource contention (processor, memory, network,
and connecting busses) in a single value.Relative-
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Power is used to directly determine a proposed distri-
bution. However, the proposal is only accepted if atten-
dant SDSM overhead does not outweigh the distribu-
tion benefits. In the next two subsections, we describe
the RelativePower and SDSM overhead calcula-
tions in more detail. We then provide a pseudo-code
description of the entire run-time load balancing algo-
rithm.

2.3.1. Relative processing power
RelativePower is maintained for each proces-

sor and is inversely proportional to the time the proces-
sor spent in its most recent parallel regions. We refer
to the most recent parallel regions as theregion win-
dow. Intuitively, a processor that completes its region
window quickly will have a larger power relative to
the other processors. Time is a good basis forRel-
ativePower because it inherently captures the pro-
cessor’s perceived load, whether due to multiprogram-
ming or contention for memory and/or the network.
We track time over several parallel regions in order to
smooth out transient spikes in performance.

Fig. 1 shows the algorithm for calculatingRela-
tivePower . TaskTime holds the per-processor ex-
ecution time of the last region window. This array is
placed in shared memory and is updated as each pro-
cessor completes a parallel region. In the above al-
gorithm,TaskTime is first used to adjust theRel-
ativePower and then the resulting values are nor-
malized. This algorithm is executed by each proces-
sor. TheRelativePower calculation is only per-
formed at the end of a region window. This window is
system-specific and determined through experimenta-
tion. It corresponds to the period of time required in or-
der to avoid reacting to transient variations in resource
availability.

Our target class of applications are loop-based.
CRAUL uses theRelativePower to directly parti-
tion the loop into units of work.

2.3.2. SDSM overhead in load distribution
On hardware shared memory machines, the cost

of re-distributing load can sometimes negate the ben-
efits of load balancing [23]. Re-distribution on an
SDSM platform will be even more expensive, leading
to more overhead. Overhead on a page-based SDSM
platform is also increased byfalse sharing– the con-
current, but otherwise independent, access by two or
more processes to a single coherence unit. In Cash-
mere, the size of the coherence unit is a virtual mem-
ory page (8 KBytes on our experimental platform).
CRAUL necessarily addresses both of these factors.
First, CRAUL tailors its distributions to reduce false
sharing. (As described in Section 3, CRAUL even pro-
vides improvements for unloaded processors by re-
ducing false sharing.) Second, CRAUL accounts for
SDSM overhead when determining the potential bene-
fits of a redistribution.

False sharing that occurs at the boundaries of the
work partitions can be eliminated in the case of regu-
lar accesses. Moreover, on an SMP-aware system, false
sharing can only occur at partition boundaries that span
two SMP nodes. False sharing within a node occurs
only at the cache line level and the penalties are low
– hence, CRAUL does not attempt to eliminate cache
line level false sharing. CRAUL uses the above knowl-
edge of the underlying architecture to choose parti-
tion boundaries that do not introduce false sharing. If
a partition as determined directly fromRelative-
Power creates false sharing at the page level across
SMP nodes, CRAUL will adjust the bound so that
false sharing is eliminated after weighing the computa-

float RelativePower[NumOfProcessors]; // Initialized to 1/NumOfProcessors
float TaskTime[NumOfProcessors]; // Execution time of paral-
lel region
float SumOfPowers=0;

// Calculate new RelativePower
for all Processors i

RelativePower[i] /= TaskTime[i];
SumOfPowers += RelativePower[i];

// Normalize based on sum of the RelativePowers
for all Processors i

RelativePower[i] /= SumOfPowers;

Fig. 1. Algorithm to determine relative processing power.
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tional imbalance against the communication overhead
incurred. As an optimization, when all work is to be
performed by a single node, CRAUL assigns the work
to the node that is the home for the largest chunk of the
data, thereby respecting locality. Together, these steps
improve performance by reducing the amount of data
communicated.

In choosing a new distribution, CRAUL must ensure
that re-distribution overhead does not negate the bene-
fits of balancing the load. This is accomplished by in-
corporating an estimate of SDSM overhead with the
impact of the balanced distribution. The SDSM over-
head can be determined from the compiler-provided
access patterns and information on the shared data
cached at each node (available through the SDSM run-
time).

CRAUL counts the number of pages that need to be
transferred in the new distribution and multiplies the
number by the average page transfer cost provided by
the Cashmere run-time. The average is calculated over
several previous transfers in order to capture current
network load. This information is used to estimate the
execution time for the upcoming region window, as-
suming the new distribution:

EstTaskTimenew

=

∑i=nproc−1
i=0 TaskTimei

nproc
+ SDSM (1)

wherenproc is the number of processors andSDSM
is theSDSMoverhead calculated as described above.

The first term on the right of the equation estimates
the perfectly balanced execution time based on the ex-
ecution time of the last region window. The second
term then adds the SDSM overhead associated with re-
distribution. Since theTaskTimeis a sum over the last
several regions (the region window), the SDSM over-
head is effectively amortized.

The estimated task time of the current distribution
is simply taken to be the time of the slowest processor
through the last region window:

EstTaskTimecur = max
i=0...nproc−1

TaskTime, (2)

If EstTaskTimenew is less thanEstTaskTimecur, then
CRAUL uses the new workload distribution.

2.3.3. Run-time load balancing algorithm
Fig. 2 describes the run-time algorithm for exe-

cuting a parallel loop. Steps 1–3 determine the load
distribution and are described in the above subsec-
tions. Steps 4–7 execute and time the loop (we use the
instruction cycle counter available on our platform).
Step 8 controls the calculation ofRelativePower ,
which drives the load distribution. The calculation is
only performed at the end of a region window and only
if CRAUL detects a load imbalance. Load imbalance
exists if the fastestTaskTime is less than a certain
threshold of the slowestTaskTime . The threshold is
determined empirically (currently set to 10%).

1. Calculate loop bounds based on RelativePower.
2. Minimize SDSM communication.
2a. Align partition boundaries to eliminate false sharing.
2b. If work is limited to a single node then
2c. assign computation to the data’s home node

3. if there are new RelativePower values then
3b. Verify that re-distribution costs do not negate balancing improvements.

4. Start timer.
5. Perform parallel loop computation.
6. Stop and store timer in TaskTime.
7. nRgn++ // increment region counter

8. if nRgn == Size of Region Window then
8a. if load imbalance exists then
8b. calculate new relative powers
8c. nRgn=0 // Reset region counter

Fig. 2. Pseudo-code description of a parallel loop execution.
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int sh_dat1[N], sh_dat2[N];

for (i = lowerbound; i < upperbound; i += stride)
sh_dat1[a*i + b] += sh_dat2[c*i + d];

Fig. 3. Initial parallel loop. Shared data is indicated bysh_ .

int sh_dat1[N], sh_dat2[N];

redistribute(
list of shared arrays, /* sh_dat1, sh_dat2 */
list of types of accesses, /* read/write */
list of lower bounds, /* lower_bound */
list of upper bounds, /* upper_bound */
list of strides, /* stride */
list of coefficients and
constants for indices /* a, c, b, d */

);

lowerbound = new lower bound for that range;
upperbound = new upper bound for that range;

for (i = lowerbound; i < upperbound; i += stride)
sh_dat1[a*i + b] += sh_dat2[c*i + d];

Fig. 4. Parallel loop with added code that serves as an interface with the run-time library. The run-time system can then change the amount of
work assigned to each parallel task.

2.3.4. Run-time load balancing summary
CRAUL bases its distribution strategy on a combina-

tion of available computational resources and expected
re-distribution overhead. The availability of computa-
tional resources is modeled by a per-processorRela-
tivePower metric. This metric is inversely propor-
tional to loop execution time and captures load due
to contention for several different resources – proces-
sor, memory, and even network. Re-distribution over-
head is calculated by combining compiler-provided ac-
cess patterns and dynamic information on SDSM data
caching.

In choosing distributions, CRAUL also attempts to
minimize SDSM communication. The system assigns
work partitions to minimize false sharing and to locate
computation on home nodes. A proposed distribution
is based first on theRelativePower of processors
in the system and second on the reduction of SDSM
overhead.

A proposed distribution is accepted when the sum of
the expected execution time and the SDSM overhead is
less than the time for the slowest processor to complete
the last parallel region. CRAUL also handles the spe-
cial case where the expected computation time is less

than SDSM overhead – all work is then performed on
a single node.

2.4. Example

Consider the parallel loop in Fig. 3. Our compiler
pass transforms this loop into that in Fig. 4.

The new code makes aredistribute call to the run-
time library, providing it with all the necessary infor-
mation to compute the access patterns (the arrays, the
types of accesses, the upper and lower bounds of the
loops, as well as their stride, and the format of the ex-
pressions for the indices).

The redistribute computes the relative powers of
the processors (using the algorithm shown in Fig. 1),
and then uses the access pattern information to de-
cide how to distribute the workload. It then creates the
ranges of loop indices that each task has to access. Fi-
nally, the access pattern information can also be used
to prefetchdata [7].3

3The results presented do not exploit this feature, however.
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3. Experimental evaluation

3.1. Environment

Our experimental environment consists of four DEC
AlphaServer 2100 4/233 computers. Each AlphaServer
is equipped with four 21064A processors operating at
233 MHz and with 256 MB of shared memory, as well
as a Memory Channel network interface. The Mem-
ory Channel is a PCI-based network, with a point-
to-point bandwidth of approximately 33 MBytes/sec.
One-way latency for a 64-bit remote-write operation
is 4.3 µsecs. The 21064A’s primary data cache is
16 Kbytes, and the secondary cache size is 1 Mbyte.
Each AlphaServer runs Digital UNIX 4.0D with tru-
Cluster v. 1.5 extensions. The programs, the run-time
library, and Cashmere were compiled withgccversion
2.7.2.1 using the-O2 optimization flag. In Cashmere, a
page fetch operation takes 500µs on an unloaded sys-
tem, twin operations require 200µs, and a diff opera-
tion ranges from 485–760µs, depending on the size.

3.2. Results

We evaluate our system on four applications: Ja-
cobi, Matrix Multiply (MM), Shallow, and Transitive-
Closure (TC). Jacobi is an iterative method for solving
partial differential equations, with nearest-neighbor av-
eraging as the main computation. MM is a basic pro-
gram that multiplies two matrices over several itera-
tions. Shallow is the shallow water benchmark from
the National Center for Atmospheric Research. The
code is used in weather prediction and solves differ-
ence equations on a two-dimensional grid. TC com-
putes the transitive closure of a directed graph. Table 1
provides the data set sizes and the uniprocessor execu-
tion times for each application.

The compiler passes transform each parallel loop in
each of the applications in a manner similar to that
shown in Fig. 4. As stated in Section 2.2.2, the com-
piler currently directs the run-time system to choose a
blocked distribution of the loops. The run-time system
then dynamically adjusts the block boundaries accord-
ing to perceived load while attempting to avoid any
false sharing and optimizing for locality.

Fig. 5 presents speedups for the four applications
in theabsenceof load. The first (Plain ) bar in each
group is the performance of a compiler-based paral-
lelization strategy without any run-time support. The
second (Balance ) shows speedups with the load bal-
ancing algorithm in place. The third bar (Loc+Bal )

Table 1

Data set sizes and sequential execution time of applications

Program Problem size Sequential time (sec.)

Jacobi 2048× 2048 269.2

Matrix Multiply (MM) 256 × 256 398.6

Shallow 512× 512 434.6

Transitive Closure (TC) 2048× 2048 497.6

presents speedups using both the load balancing al-
gorithm as well as communication minimization opti-
mizations that avoid false sharing and attempt to per-
form computation on home nodes when beneficial. We
present speedups on 4 (one SMP), 8 (4 processors on
each of two SMPs), and 16 processors (4 processors on
each of four SMPs).

Since these experiments were performed in the ab-
sence of load, they provide a measure of the perceived
overhead of using our load-balancing scheme, as well
as any benefits from the elimination of false sharing
and scheduling based on locality. The benefits from
using our communication minimization optimizations
is most visible in Shallow. Shallow shows a 16% im-
provement in speedup with all CRAUL optimizations
(Loc+Bal ) in the absence of load, when compared to
a direct parallelization by the compiler (Plain ). The
application has 13 shared 2-dimensional arrays. All the
parallelized loops are partitioned in a blocked fashion.
The application consists of a series of loops that op-
erate either only on the interior elements of its matri-
ces or on the boundary rows and columns. Compiler
parallelized code or a naive implementation (Plain )
would have each process update a part of the bound-
ary rows and columns along each dimension in paral-
lel. In the case of the rows, this can result in multi-
ple processes writing the same pages since each row
fits in half a page for our benchmark data set. This re-
sults in false sharing when work is distributed across
nodes. Our run-time algorithm (Loc+Bal ) is able to
detect this false sharing and limits the distribution of
the work in the parallel region to a single node. Further,
the work is performed on the processor that currently
owns and accesses the updated data. This effect can be
seen in the reduction in the number of page transfers,
and in the number of redistribution decisions (Comm.
Redists. ) made due to SDSM communication opti-
mization in the noloadLoc+Bal case (see Table 2).

Additionally, each loop iteration in Shallow accesses
half a page for our data set (each row of 512 dou-
bles spans half a page). While a balanced partition-
ing results in the data accessed by each processor be-
ing aligned on a page boundary, when load is redis-
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Fig. 5. Speedups at 4, 8, and 16 processors in the absence of load.

tributed, there is a possibility of additional false shar-
ing if SDSM optimizations are not applied. This is seen
by the reduction in the number of page transfers from
theBalance to theLoc+Bal case (∼25 K pages to
∼13 K pages) in the presence of a computational load.

Fig. 6 presents speedups for the same four applica-
tions in thepresenceof three different types of load –
pure computation, memory and computation, and net-
work and computation. The pure computational load
consists of a program executing in a tight loop, and was
used to create contention for the processor on which it
executes. The memory and computational load consists
of a sequential matrix multiply of two 512× 512 ma-
trices containing long integers. The program’s working
set is larger than our second-level cache and so intro-
duces memory bus contention in addition to processor
load. This load was used to determine the effect of con-
tention for processor, memory, and bus resources. The
network and computational load consists of a program
that attempts to consume 8 MB/s of the available band-
width communicating with its peer on another node, in
addition to contending for the processor on which it ex-
ecutes (note that this program will create some mem-
ory bus traffic as well in order to access the PCI bus).
In order to test the performance of our load balancing
library, we introduced one of the above processes on
one of the processors of each SMP. This load takes up
50% of the CPU time in each case, in addition to the

memory and network utilization in the second and third
load type.

Once again, for each type of load, the first (Plain )
bar in each group is the performance of a compiler-
based parallelization strategy without any run-time
support. The second (Balance ) shows speedups with
the load balancing algorithm in place. The third bar
(Loc+Bal ) presents speedups using both the load bal-
ancing algorithm as well as communication minimiza-
tion optimizations. Speedups are presented on 4 (one
SMP), 8 (4 processors on each of two SMPs), and 16
processors (4 processors on each of four SMPs). Ta-
ble 2 presents detailed statistics including total data
transferred, number of page transfers, and the number
of redistribution decisions made due to load and due to
excess communication for each type of load in the case
of Loc+Bal . The statistics forPlain in the absence
of load are also presented as a reference.

The introduction of load slows down the applica-
tion by as much as 92–188% in the case of 16 proces-
sors. Our load balancing strategy provides a 23–81%
improvement in speedup at 16 processors compared to
the Plain with load. In all cases, the loads that add
memory and network contention result in a higher toll
on performance in comparison to a pure computational
load.

In order to determine how good the results of our
load balancing algorithm are, we compare the execu-
tion times obtained using 16 processors with load and
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Fig. 6. Speedups at 4, 8, and 16 processors with computational, memory, and network load.

our load balance scheme, with that using 14 proces-
sors without any load. This 14-processor run serves as
a bound on how well we can perform with load bal-
ancing, since that is the best we can hope to achieve
(four of our sixteen processors are loaded, and oper-
ate at only 50% of their power, giving us the rough
equivalent of fourteen processors). The results are pre-
sented in Fig. 7. The 16-processor load balanced Shal-
low and Jacobi executions are respectively 10% and
18% slower than the 14-processor run. This difference
is partly due to the fact that while computation can be
redistributed, in both applications the communication

per processor remains the same, which favors the 14-
processor runs.

In Fig. 8, we present a breakdown of the normal-
ized execution time when adding a computational load
with and without using CRAUL, relative to that on
16 processors with no load. Task and synchronization
time represent application computation and time spent
at synchronization points, respectively. Stall time mea-
sures the time required to obtain up-to-date data from
remote nodes. Message time indicates the time spent
handling protocol messages from remote nodes. Load
balance time indicates the time spent in the code that
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Fig. 7. Comparison of the speedups of the applications using our
load balancing algorithm on 16 loaded processors, compared to their
performance on 14 load-free processors.

implements the load redistribution. Protocol time cov-
ers the remaining time spent in the Cashmere library,
consisting mainly of the time to propagate modifica-
tions.

Our load balancing algorithm reduces the time spent
waiting at synchronization points relative to the exe-
cution time with load and no load balance because we
have better distribution of work, and therefore improve
overall performance. Task time also drops when load
balancing is applied, although, as expected, not to the
same level as the unloaded base case because of the
computational load that adds to overall execution time
(since we measure wall clock time). The drop in task
time can be attributed to a reduction in the impact of
the computational load on the execution time of the
parallel application due to better load distribution. The
time spent executing our load redistribution algorithm
is between 1.3 and 16%. Shallow and TC spend a larger
proportion of time in the load balancing code because
of the smaller granularity of each parallel region. Load
balancing almost always increases the amount of data
transferred (see Table 2 – except for Shallow, where
the communication optimizations help reduce the num-

Fig. 8. Normalized breakdown of execution time for the base system with no load, with computational load, and the full CRAUL system running
under computational load. Time is broken down into application computation (Task), wait at synchronization points (Synchronization), stall
while waiting for up-to-date data to be obtained (Stall), handling of incoming messages (Messages), miscellaneous protocol functions such as
the issuing of write notices (Protocol), and CRAUL load balancing overhead (Loc+Bal).
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Table 2

Application statistics covering number of barrier synchronizations, the amount of data transferred, the number of page
transfers, number of work redistributions due to load, number of redistributions due to communication optimization, at 16
processors – in the absence of load forPlain andLoc+Bal , and in the presence of computational, memory, and network
load forLoc+Bal

Program Barriers Data (MBytes) Page transfers Load redists. Comm. redists.

Jacobi no loadPlain 204 22.0 2662 0 0

no loadLoc+Bal 204 34.2 4125 6 0

comp. loadLoc+Bal 204 34.8 4209 12 0

mem. loadLoc+Bal 204 32.6 3938 6 0

net. loadLoc+Bal 204 37.2 4487 20 0

MM no loadPlain 104 2.4 288 0 0

no loadLoc+Bal 104 6.5 768 0 0

comp. loadLoc+Bal 104 6.5 777 10 0

mem. loadLoc+Bal 104 6.5 778 10 0

net. loadLoc+Bal 104 6.5 781 10 0

Shallow no loadPlain 904 112.1 13370 0 0

no loadLoc+Bal 904 103.5 12337 49 396

comp. loadLoc+Bal 904 109.7 13109 12 440

mem. loadLoc+Bal 904 106.6 12720 49 396

net. loadLoc+Bal 904 122.5 14673 12 440

TC no loadPlain 2052 64.1 7645 0 0

no loadLoc+Bal 2052 75.5 8869 5 0

comp. loadLoc+Bal 2052 78.1 9178 9 0

mem. loadLoc+Bal 2052 78.0 9166 10 0

net. loadLoc+Bal 2052 77.8 9138 7 0

ber of page transfers due to reduction in false sharing).
However, overall performance is improved due to the
reduction in synchronization and task time.

4. Related work

There have been several approaches to the prob-
lems of locality management and load balancing, es-
pecially in the context of loop scheduling. Perhaps the
most common approach is the task queue model. In
this scheme, there is a central queue of loop iterations.
Once a processor has finished its assigned portion,
more work is obtained from this queue. There are sev-
eral variations, includingself-scheduling[27], fixed-
size chunking[16], guided self-scheduling[25], and
adaptive guided self-scheduling[8]. These approaches
tend to work well only for tightly coupled environ-
ments, and in general do not take locality and commu-
nication into account.

Markatos and LeBlanc [23] show that locality man-
agement is more important than load balancing for
thread assignment in a thread-based scheduling sys-
tem. They introduce a policy they callMemory-Con-

scious Schedulingthat assigns threads to processors
whose local memory holds most of the data the thread
will access. Their results are simulation-based, and
show that the looser the interconnection network, the
more important the locality management. This work
led to the introduction ofAffinity scheduling[22],
where loop iterations are scheduled over all the pro-
cessors equally in local queues in a manner that max-
imizes the use of local memory. When a processor is
idle, it removes 1/k of the iterations in its local work
queue and executes them.k is a parameter of their al-
gorithm, which they define asP in most of their ex-
periments, whereP is the number of processors. If
a processor’s work queue is empty, it finds the most
loaded processor and steals 1/k of the iterations in that
processor’s work queue and executes them. Yan et al.
[28] builds on affinity scheduling, by usingadaptive
affinity scheduling. Their algorithm is similar to affin-
ity scheduling, but their run-time system can modifyk
during the execution of the program in order to change
the chunks of work grabbed from loaded processors
based on the relative processor load.

Cierniak et al. [5] study loop scheduling in heteroge-
neous environments with imbalances in the task time,
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processing power, and network bandwidth. While they
do handle variations in the task time per loop that are
statically determinable, they do not, however, address
how dynamic changes in the underlying system are
handled. Their results are also based on message-based
applications. Moon and Saltz [24] examined applica-
tions with irregular access patterns. To compensate for
load imbalance, they either re-map data periodically
during pre-determined points in the execution, or at ev-
ery time step.

In the context of dynamically changing environ-
ments, Edjlali et al. [9] and Kaddoura [14] present a
run-time approach that checks to see if there is a need
to redistribute work prior to each parallel section, and
attempt to minimize communication. This is similar
to our approach in CRAUL. However, their approach
deals with message passing programs.

Zaki et al. [29] present an evaluation of global vs.
local and distributed vs. centralized strategies for load
balancing on distributed memory message-based sys-
tems. The strategies are labeled local or global based
on the information they use to make load balancing de-
cisions. Distributed and centralized refers to whether
the decision-making is centralized at one master pro-
cessor, or distributed among the processors. The au-
thors argue that depending on the application and sys-
tem parameters, different schemes can be the most suit-
able for best performance. Our approach assumes a dis-
tributed strategy with global information.

The system that seems most related to CRAUL is
Adapt [20]. Adapt is implemented in concert with
the Distributed Filaments [10] software DSM system.
Adapt uses run-time information to extract access pat-
terns by inspecting page faults. It can recognize and
optimize for two access patterns:nearest-neighborand
broadcast. A cyclic distribution is used in the case of
broadcast sharing with varying execution times, and a
blocked distribution is used otherwise. In other work
[19], Adapt is also used to optimize not only the cur-
rent (local) parallel region, but also to attempt to ensure
optimal distributions globally for other parallel regions
as well. CRAUL uses both compile-time information
on access patterns in the parallel region to be executed,
as well as current run-time information on cached data,
in order to balance load as well as to minimize commu-
nication due to false sharing and to maintain locality
when beneficial.

Finally, systems like Condor [18] support transpar-
ent migration of processes from one workstation to an-
other. However, they do not address load distribution
in a single parallel application.

CRAUL deals with software distributed shared mem-
ory programs, in contrast to closely coupled shared
memory or message passing. The load balancing mech-
anism targets both heterogeneous processors and pro-
cessor, memory, or network load caused by competing
programs. Furthermore, CRAUL minimizes communi-
cation and page sharing by taking the coherence gran-
ularity and current caching information into account.

5. Conclusions

In this paper, we address the problem of load bal-
ancing in SDSM systems to balance load in loop-based
applications. SDSM has unique characteristics that are
attractive: it offers the ease of programming of a shared
memory model in a widely available workstation-
based message passing environment, and allows dy-
namic caching of accessed data. However, multiple
users and loosely connected processors challenge the
performance of SDSM programs on such systems due
to load imbalances and high communication latencies.

Our load-balancing system, CRAUL, combines in-
formation from the compiler and the run-time. It uses
future access information available at compile-time,
along with run-time information on cached data, to dy-
namically adjust load based on the available relative
processing power and communication speeds. Perfor-
mance tests on four applications and different types of
load (which consume either memory, processor, or net-
work resources) indicate that the performance with our
load balancing strategy is within 5–23% of the ideal.

CRAUL is also able to optimize work partitioning
even in the absence of load by taking advantage of
caching information to avoid excess communication
due to false sharing. The run-time system identifies
regions where false sharing exists and determines if
the resulting communication overhead would be larger
than the computational imbalance from eliminating the
false sharing. It then changes the work distribution by
adjusting the loop boundaries to avoid the false shar-
ing if beneficial, while respecting locality. Future work
will examine extensions to the system in order to han-
dle different types of work distributions and sharing
patterns.
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