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Abstract We study the interaction between the vortices in
multi-component superconductors based on the Jacobs and
Rebbi variation method using Ginzburg–Landau theory. With
one condensation, we get attraction interaction between the
vortices for type I and repulsion for type II superconductors.
With two condensation states such as MgB2 superconduc-
tors the behavior is quite different. There is attraction at large
distances and repulsion when the vortices are close to each
other. A stability point at distance 2.7/λ1 is obtained. In the
case of three condensation states such as iron based super-
conductors, we see different behavior depending on pene-
tration depth and correlation length. The formation energy
of a vortex with three condensation states is larger than the
one with one condensation state with comparable penetration
and correlation length. We obtain two stability points for the
superconductors with three condensation states.

1 Introduction

The interaction between the elementary particles can be
described by means of a field of force, just as the interac-
tion between the charged particles which is described by the
electromagnetic field. In quantum field theory, the electro-
magnetic field is accompanied by photon. Attraction and
repulsion of electric charged particles can be described by
exchanging particles called virtual photons [1]. On the other
hand topological defects are also important structures in
physics since they can affect the properties of matter or even
the phase structure of a system. These structures, such as
vortices, monopoles, strings, and instantons, can interact with
each other like particles. They even have interaction with par-
ticles [2]. In this paper we study the interaction between the
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vortices in superconductor materials based on a variational
numeric computation for arbitrary separation between the
vortices [3–5]. This method is useful in some phenomenolog-
ical models. Vortices are solutions of the Ginzburg–Landau
equations [6,7]. These equations give a topological structure
with finite energy. The Ginzburg–Landau equations are at
least two nonlinear coupled equations, so there is no exact
analytical solution for these equations. As the order of the
nonlinearity is not small, it is not possible to use the usual
perturbation methods to study the G-L Lagrangian behav-
ior. Nevertheless, it is possible to study their behavior at
asymptotic distances. Knowing the asymptotic behaviors of
the functions, we can have an ansatz for these solutions for
any arbitrary distances [5].

For the first time Abrikosov predicted the existence of
a vortex structure in superconductors [8–11]. He suggested
that the form of magnetic field penetration in a supercon-
ductor can be described by vortex equations. He studied the
vortex properties by a Ginzburg–Landau theory. The G-L
Lagrangian looks like an Abelian Higgs model where the
Higgs field is like the order parameter and the gauge field is
the electromagnetic field. The normal core of the vortex is
introduced by the superconductor correlation length ξ and the
London penetration depthλ. There are two types of supercon-
ductors [12,13] depending on the Ginzburg–Landau parame-
ter κ = λ/ξ . For κ < 1/

√
2, the magnetic penetration depth

is smaller than the correlation length. This is the type I super-
conductor, for which the vortex structure is not stable. The
interaction between vortices of this type is attraction. For
κ > 1/

√
2, the magnetic penetration depth is larger than the

correlation length, this is type II superconductor. The mag-
netic field can penetrate in these materials. The vortex struc-
ture is stable. There is repulsion between these vortices and
they form a triangular vortex lattice [12,13]. For κ = 1/

√
2,

called the Bogomol’nyi point or type I/II border, there is no
interaction between the vortices.
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Depending on the distance between the vortices, various
methods can be chosen to study the interaction between them.
Kramer [4] used asymptotic behavior of a vortex fields to
obtain an analytical expression for the vortex–vortex inter-
action energy when they are far from each other. The fields
can be explained by modified Bessel functions at the asymp-
totic regime; but what about the vortex interaction when they
are close to each other? Jacobs and Rebbi used a variation
method to obtain approximate trial functions describing the
fields of two vortices at arbitrary distances [5]. Variational
parameters were obtained by minimizing the free energy.
Their method can predict the results of Kramer for large dis-
tances. It also predicts the same type of interaction for the
small distances in type I and type II superconductors. There
are other methods to study the interaction between the vor-
tices [14–20].

A superconductor with more than one condensation state
is called a multi-band superconductor. MgB2 and iron pnic-
tide superconductors are of this type. These materials have a
higher phase transition temperature with respect to the usual
superconductors of type I and II. They behave differently
compared with the type I or type II superconductors with
one condensation state. Also the possibility of the existence
of more than three condensation states has been recently
studied from the theoretical point of view [21]. Interaction
between these vortices is different from the usual supercon-
ductors [22–30]. Babaev and Speight have studied theoreti-
cally [31,32] what happens when the value of magnetic pen-
etration depth is between two condensation lengths; vortices
may attract each other at large separations and repel each
other at short distances. This kind of superconductor, called
type 1.5 in the literature, is type I corresponding to one of its
condensation and type II with respect to the other one.

In this paper we use a G-L Lagrangian and the variational
method of Jacobs and Rebbi to study the interaction between
the vortices with three condensation states. The G-L theory
is valid near the critical temperature. A different coordinate
system, the polar coordinate system, is used in our calcula-
tions. Since a single vortex has a circular symmetry or SO(2)
symmetry, choosing a polar coordinate system simplifies the
calculations [3]. However, when we have two vortices in a
plane, we lose this symmetry and only a reflection symme-
try with respect to the plane remains. The plane is located
between the vortices. First we use this method for a vortex
with one condensation. Then we apply it for two and three
condensations. The case with three condensations is different
from the one with two condensations. The energy of forma-
tion of vortices of type 1.5 is larger than the energy of type I
and type II. Since the materials with multi-band condensation
states are high temperature superconductors, the formation
of these nonlinear structures with higher energy than usual
superconductors may have some relations with the higher
critical temperature in this kind of superconductors. Using

this method of calculation one can suggest the values of the
correlation lengths and penetration depths which increase the
current known phase transition temperatures.

2 The Ginzburg–Landau theory for multi-band
component superconductor

The free energy of G-L theory can be given by

E =
∫

Fdr, (1)

where the functional F is

F = α |Ψ | 2 + β

2
|Ψ | 4 + 1

2m

∣∣∣∣
(

−i h̄∇ − 2e

c
A

)
Ψ

∣∣∣∣ 2

+ 1

8π
(∇ × A)2 , (2)

the complex scalar field ψ is the order parameter or the con-
densation state. A is a vector potential for magnetic field. α
and β are the parameters that can be determined phenomeno-
logically from the correlation length ξ = h̄/

√
4mα and the

penetration depth λ = √
mc2β/8π |α|c2 of the supercon-

ducting matter [7]. α is a temperature dependent parameter
and is defined as α(T ) = α(0)(1 − T/Tc) with α(0) < 0.

One can generalize Eq. (2) to a multi-band superconductor
by increasing the number of condensation states. For exam-
ple for two bands, the G-L theory can be introduced with two
order parameters |ψ | and for three bands with three states. In
the G-L theory one may consider other contributions up to
ψ4 terms. The contributions of all types of possible interac-
tions between fields in the G-L theory should be considered
including ψiψ j , called interband coupling, |ψi |2|ψ j |2 etc.
The interband coupling terms, which do not exist in the usual
superconductor, imply some new properties for the type 1.5
superconductors. For the present work we consider only the
interband coupling terms. The free energy functional for two
condensation states is

F =
∑

i=1,2

[
αi |Ψi |2 + βi

2
|Ψi |4

+ 1

2mi

∣∣∣∣
(

−i h̄∇ − 2e

c
A

)
Ψi

∣∣∣∣
2
]

+ 1

8π
(∇ × A)2 − γ

(
Ψ ∗

1 Ψ2 + Ψ ∗
2 Ψ1

)
, (3)

where γ (T ) = γ (0)(1 − T/Tc) (and γ (0) = −0.4α(0)) is
the condensations coupling. The free energy functional for
the case with three condensations is

123



Eur. Phys. J. C (2014) 74:3093 Page 3 of 14 3093

F =
∑

i=1,2,3

[
αi |Ψi | 2 + βi

2
|Ψi | 4

+ 1

2mi

∣∣∣∣
(

−i h̄∇ − 2e

c
A

)
Ψi

∣∣∣∣ 2
]

+ 1

8π
(∇ × A)2 − γ1

(
Ψ ∗

1 Ψ2 + Ψ ∗
2 Ψ1

)

− γ2
(
Ψ ∗

2 Ψ3 + Ψ ∗
3 Ψ2

) − γ3
(
Ψ ∗

1 Ψ3 + Ψ ∗
3 Ψ1

)
. (4)

For convenience we use the dimensionless quantities

x = λ1x ′, Ψi = Ψ10Ψ
′
i , A = λ1 H1c

√
2A′,

F = H2
1c

4π
F ′,

γ = γ ′ |α1| , B = H1c
√

2B′, J = 2eh̄Ψ 2
10

m1ξ1
J′,

(5)

ψ2
10 = |α1|/β1 is called the bulk value and H1c =√
4πα1ψ

2
10 is the thermodynamic critical field of the first

condensate. B is the magnetic field and J is the super cur-
rent. Omitting the prime for the dimensionless quantities, we
have

F =
∑

i=1,2,3

[
αi

|α1| |Ψi | 2 + βi

2β1
|Ψi | 4

+ m1

mi

∣∣∣∣
(

1

iκ1
∇ − A

)
Ψi

∣∣∣∣
2
]

+ (∇ × A)2 − γ1(Ψ
∗
1 Ψ2 + Ψ ∗

2 Ψ1)

− γ2(Ψ
∗
2 Ψ3 + Ψ ∗

3 Ψ2)− γ3(Ψ
∗
1 Ψ3 + Ψ ∗

3 Ψ1). (6)

The Euler–Lagrange equations can be obtained by

∂F
∂Ψα

−
∑

i

∂

∂xi

∂F
∂(∂Ψα/∂xi )

= 0,

∂F
∂Ai

−
∑

i

∂

∂xi

∂F
∂(∂Ai/∂xi )

= 0.
(7)

Solving these equations is not straightforward. One can
use a finite difference technique and a relaxation method suit-
able for nonlinear coupled differential equations to obtain the
solutions which are used by Peeters [14–20]. Also it is pos-
sible to discretize the space and time with a method of lattice
gauge theory to obtain the solutions [13]. However, in this
paper we use the variational method introduced by Jacobs and
Rebbi to obtain trial functions for condensations and the vec-
tor potential. The advantage is that we can work analytically
with these variational functions. However, it is a long ana-
lytical calculation. This method may be useful for studying
the interaction between the vortices in the phenomenologi-
cal models of particle physics which study the confinement
problem [33–38].

3 Interaction between the vortices in type I and type II
superconductors

We use the dimensionless free energy functional of (2). Then
the G-L equations from (7) are obtained:

−Ψ + |Ψ | 2Ψ +
(

1

iκ
∇ − A

)
2Ψ = 0, (8)

∇ × ∇ × A = 1

2iκ1
(Ψ ∗∇Ψ − Ψ∇Ψ ∗)− |Ψ | 2A, (9)

where κ1 = λ1/ξ1. In Ref. [5] a solution (ansatz) for ψ and
A for the above equations is suggested:

Ψ = f (r)einθ and A = na(r)

κ1r
eθ . (10)

These are true for a straight vortex line type structure along
the axis z. r is the distance from the center of the vortex core.
eθ is the unit vector, θ is the azimuthal direction, and n rep-
resents the vorticity or the winding number. It is natural to
discuss these circularly symmetric solutions in polar coordi-
nates. Thus the fields are Ψ (r, θ), Ar (r, θ), and Aθ (r, θ). We
shall use the circular and reflection symmetries to obtain a
reduced GL energy function, an integral just over the radial
coordinate r . The variational equations are the reduced field
equations. By the principle of symmetric criticality described
in [3], solutions of these reduced equations give solutions of
the full field equations in the plane. Substituting (10) in (8)
and (9),

− f (r)+ f 3(r)− 1

κ2
1

(
∂2

r f + 1

r
∂r f

)

+n2(a − 1)2

κ2
1 r2

f = 0, (11)

∂2
r a − 1

r
∂r a + ( f 2)(1 − a) = 0. (12)

The asymptotic forms of f and a for these explicit expres-
sions do exist. We define the functions F and G such that

f (r) = 1 + F(r), a(r) = 1 + G(r) (13)

where F and G are small at large r . Thus substituting (13)
in (11) and (12) and linearizing with respect to F and G one
would get modified Bessel’s equations of zeroth order for F
as a function of k1r and first order for G/r as a function of
r , respectively. Hence for r � 1

F ≈ K0

(√
2k1r

)
, G ≈ r K1(r), (14)

where Kn is the nth modified Bessel’s function of the second
kind (note that K1 = −K

′
0). Solutions exist for any N �= 0

and can be found numerically. Near r = 0, f (r) ≈ r N . From
the above equations, the asymptotic values of f and a, f0 and
a0, for r → ∞ are obtained:

− 1 + f 2
0 = 0, a0 = 1. (15)
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The radial variation of the wave functions and vector potential
in the asymptotic region of r → ∞ can be found and are
given by

f (r) = 1 + c f1 exp

(
− r√

2ξ

)
, (16)

a(r) = 1 + ca exp
(
− r

λ

)
, (17)

where c f1 and ca are the coefficients that can be found.
Nielsen and Olesen [8–11] obtained similar solutions at the
asymptotic region. These are also called Nielsen–Olesen
solutions. Having the asymptotic behavior of the solutions
at r = 0 and r → ∞ one would suggest acceptable fit-
ting functions that would recover these asymptotic, and can
give acceptable intermediate behavior. A polynomial times
an exponential would be a good solution. The coefficients
of the polynomial must be obtained numerically. Jacobs and
Rebbi used a variational method to obtain these coefficients.
To obtain f (r), variational functions are suggested [5] and
the asymptotic behaviors of f (r) and a(r) fix the variational
parameters: fl and al ,

f (r) = 1 + exp

(
− r√

2ξ

) n∑
l=0

(
flr

l/ l!
)
, (18)

a(r) = 1 + exp
(
− r

λ

) n∑
l=0

(
alr

l/ l!
)
. (19)

To have single-value and finite functions for ψ and A in
the limit of r → 0, we use f = 0 and a2 → 0. Note
that in this method the G-L equations are not solved directly
but by using their asymptotic behavior, we suggest some trial
functions which minimize the free energy. The trial functions
which minimize the free energy are solutions of the G-L
equations, as well. For a vortex with vorticity two, asymptotic
behavior gives to f1 = f0/

√
2ξ and all other coefficients are

variational parameters which are determined numerically.
The G-L free energy of Eq. (37) is a function of fourth

order with respect to variational parameters, called Vi in the
following equation:

F = F0 +
∑

i

F (1)
i Vi +

∑
i≥ j

F (2)
i j Vi Vj

+
∑

i≥ j≥k

F (3)
i jk Vi Vj Vk +

∑
i≥ j≥k≥l

F (4)
i jkl Vi Vj Vk Vl .

(20)

We recall that in our problem the variational parameters
are fi and ai . The physical nature of the problem makes the
surface F( fi , ai ) concave and well behaved, so we use the
Newton method of optimization [5,13] with iteration proce-
dure

V (m+1)
i = V (m)

i −
∑

j

[
H−1

]
i j D(m)

j , (21)
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Fig. 1 Free energy density and condensation state and magnetic field
profiles cross sections in a plane for three types of G-L parameter with
winding number n = 1. k = 0.49 is for the type I superconductor.
k = 1.3 is for the type II superconductor. The bulk behaviors of conden-
sations and magnetic fields are the same for all three cases, as expected.
Increasing the G-L parameter leads to a faster screening of the con-
densation and the magnetic field penetration depth decreases. The free
energy value decreases by increasing the G-L parameter, as well

H is the Hessian matrix and Di = ∂F/∂Vi |Vi =V (m)
i

. The

stationary solution of this equation corresponds to the (local)
minimum of the free energy. In our computations, chang-
ing initial values of Vi in the program does not change the
obtained values of Vi , so the solutions correspond to the abso-
lute minimum of the free energy. We use this method to obtain
the variational parameters for vorticity one and two.

We use this variational method to calculate the variational
parameters of the condensation states and magnetic field for
three types of superconductors: type I for which ξ = 51 nm
and λ = 25 nm and κ < 1/

√
2; type II for which ξ = 19 nm

and λ = 25 nm and κ > 1/
√

2; the Bogomoliny point where
ξ = 35 nm, λ = 25 nm and κ = 1/

√
2. For these types of

superconductors we use the variational parameters up to the
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Fig. 2 Free energy density and condensation state and magnetic field
profiles cross sections in a plane for the same G-L parameter as for
Fig. 1a–c for winding number n = 2. The energy of a vortex formation
decreases with increasing G-L parameter in the defined dimension of
energy. Increasing the winding number to n = 2, the maximum of the
free energy density leaves the origin core of the vortex to other values.
The results of our program show the same behavior for the free energy
density as in [3], which shows that by increasing the winding number,
the maximum of the free energy density is located at further distances
from the origin place of the core of the vortex

eighth polynomial terms. Using more terms and parameters
does not change the free energy value up to the decimal point.

Figure 1 shows the condensation and magnetic field
behaviors and also the free energy density for vorticity one for
these three types. The free energies are 24.7, 4.8, and 12.3,
respectively. Figure 2 shows the same functions for vortic-
ity two for the same parameters of superconductor types of
Fig. 1a–c. The free energies for winding number n = 2 are
42.9, 10.4, and 24.7, respectively. The dimension of energy
is E/(α2λ2/β). The free energy of a system consisting of
two vortices located far from each other is equal to the sum

Fig. 3 Energy versus distance between two vortices of type I and II
when they are far from each other and when they merge and form one
giant vortex with winding n = 2, using the Rebbi variational method.
For type I the energy of the giant vortex is smaller than two separate vor-
tices, so the interaction is attraction. For type II the situation is reversed
and the interaction is repulsion. For the case κ = 1/

√
2 there is no

interaction between the vortices

of the free energy of two separate vortices with vorticity one.
When they merge at zero distance, the energy is equal to
the energy of a vortex with vorticity two. Therefore, if the
energy of a vortex with vorticity two is larger than energy of
two vortices with vorticity one, the interaction is repulsion
and if the energy of a vortex with vorticity two is smaller
than energy of two vortices with vorticity one, the interaction
is attraction. Our results are 12.36828909 and 24.76771608
for n = 1 and n = 2, respectively, at the Bogomol’nyi
point. For the Bogomol’nyi point there is no interaction, As
24.76771608−2×12.36828909 = 0.0311379 the meaning-
ful number of our calculation is up to the decimal point in this
dimension of energy. Our results for a system of two vortices
are shown in Fig. 3, a repulsion for type II and an attrac-
tion for type I are observed and for κ = 1/

√
2 the vortices

do not interact with each other. The results of [5] also show
a monotonic type interaction type, attraction and repulsion
between the vortices for type I and type II superconductors,
respectively, at any arbitrary distances.

4 Interaction between the vortices in type 1.5
superconductor

In this case the magnetic penetration depth lies between the
two correlation lengths. Therefore, the interaction type of
attraction or repulsion is not clear by obtaining the asymptotic
value of free energy. This is called the type 1.5 superconduc-
tor. Therefore, the variational method which has been used
in the previous section must be applied considering details
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for this type of superconductor to study the interactions for
all distances. The free energy is of (3) type. For simplicity, it
is assumed that the phase transition temperature is the same
for both condensations. The G-L equations become

−Ψ1 + |Ψ1| 2Ψ1 +
(

1

iκ1
∇ − A

)
2Ψ1 − γΨ2− = 0, (22)

−α2

α1
Ψ2+ β2

β1
|Ψ2| 2Ψ2+ m1

m2

(
1

iκ1
∇ − A

)
2Ψ2 − γΨ1 =0,

(23)

∇ × ∇ × A = 1

2iκ1
(Ψ ∗

1 ∇Ψ1 − Ψ1∇Ψ ∗
1 )− |Ψ1| 2A

+m1

m2

(
1

2iκ1
(Ψ ∗

2 ∇Ψ2 − Ψ2∇Ψ ∗
2 )− |Ψ2| 2A

)
. (24)

Applying the London approximation to Eq. (24), one gets
to an effective London penetration depth for the two-band
superconductor:

λ = 1
/ (√

|Ψ10| 2 + m1

m2
|Ψ20| 2

)
. (25)

For γ > 0, called positive coupling coefficient, the two con-
densates must have the same vorticity [13]. MgB2 is an exam-
ple of this kind of superconductors.λ is going to be used in the
trial function of vector potential. When the winding numbers
for the two condensations are not equal, the flux of the vortex
is fractionally quantized and the energy diverges logarith-
mically [39]. These are not topologically stable structures.
Throughout this article we do not consider these fractional
vortices or a non-topological one. It is not possible to use
the variational method for the situations when the phase or
winding of all condensations are not equal.

Using the same vortex line ansatz as Sect. 3:

Ψi = fi (r)e
inθ and A = na(r)

κ1r
eθ . (26)

The G-L equations become

− f1(r)+ f 3
1 (r)− 1

κ2
1

(
∂2

r f1 + 1

r
∂r f1

)

+n2(a − 1)2

κ2
1 r2

f1 − γ f2 = 0, (27)

−α2

α1
f2(r)+ β2

β1
f 3
2 (r)

+m1

m2

(
− 1

κ2
1

(
∂2

r f2 + 1

r
∂r f2

)
+ n2(a − 1)2

κ2
1 r2

f2

)

−γ f1 = 0, (28)

∂2
r a − 1

r
∂r a +

(
f 2
1 + m1

m2
f 2
2

)
(1 − a) = 0, (29)

and for asymptotic behavior at r → ∞
−1 + f 2

10 − γ η = 0, (30)

−α2

α1
η + β2

β1
η3(1 + γ η)− γ = 0, (31)

f10 and f20 represent the behavior of the functions f1 and f2

at infinity. For simplicity f20 = η f10, where η is a constant
coefficient that relates two condensations to each other. To
satisfy the boundary conditions at r → ∞, one can choose
the functions as follows:

f1 = √
1 + γ η + cf1 exp

(
− r√

2ξv

)
, (32)

f2 =
√
β1

β2

(
α2

α1
+ γ

η

)
+ cf2 exp

(
− r√

2ξv

)
, (33)

a = 1 + ca exp

(
− r

λv

)
. (34)

ξν is equivalent to the length scale of a small fluctuation in
the bulk, and it is given by the largest solution to the equation(

2 + 3γ η − 1

2κ2
1 ξ

2
v

) (
2
α2

α1
+ 3

γ

η
− m1

m2

1

2κ2
1 ξ

2
v

)

− γ 2 = 0.

(35)

Using Eqs. (26), (32) to (34) in Eq. (25), the penetration depth
is

λv = 1
/√

m1

m2

β1

β2

(
α2

α1
+ γ

η

)
+ (1 + γ η). (36)

Suggesting polynomial forms for c f 1, c f 2, and ca , the trial
functions are

f1(r) = √
1 + γ η + exp

(
− r√

2ξv

) n∑
l=0

(
f1,lr

l/ l!
)
, (37)

f2(r) =
√
β1

β2

(
α2

α1
+ γ

η

)

+ exp

(
− r√

2ξv

) n∑
l=0

(
f2,lr

l/ l!
)
, (38)

a(r) = 1 + exp

(
− r

λv

) n∑
l=0

(
alr

l/ l!
)
. (39)

Boundary conditions determine some parameters and the
remaining ones are variational parameters. Figure 4 shows
the condensations and the magnetic field for a vortex with
ξ1 = 51 nm, ξ2 = 8 nm and λ1 = 25 nm, λ2 = 30 nm
parameters. Figure 5 shows the same fields for a vortex with
vorticity two. The free energies are larger than the type I and II
with the likely London penetration and condensation state.
The energies of a vortex structures are 67.4 and 148.6 for
winding numbers n = 1 and n = 2, respectively. The energy
of formation of a stable vortex in these kinds of materials is
larger than the one in type I and II.
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Fig. 4 Free energy density and condensations and magnetic field of a
vortex in a type 1.5 superconductor with ξ1 = 51 nm, ξ2 = 8 nm and
λ1 = 25 nm, λ2 = 30 nm with the winding number n = 1. The profile
functions reach their asymptotic values at large distance
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Fig. 5 Free energy density and condensations and magnetic field of
a vortex in a type 1.5 superconductor with ξ1 = 51 nm, ξ2 = 8 nm,
and λ1 = 25 nm, λ2 = 30 nm with the winding number n = 2. The
energies of the vortex structure are 67.4 and 148.6 for winding numbers
n = 1 and n = 2, respectively, in the defined unit of the free energy.
The energy of the structure in this scale is larger than type I and II
superconductors

So far we have obtained the trial functions for the con-
densation states and the magnetic field. Rebbi’s variational
method is applied to obtain these solutions. We used this
method for type I and II superconductors. Free energy values
for n = 1 and n = 2 are obtained (Fig. 3). We have obtained
the result that the free energy of a vortex with vorticity two
is smaller than two vortices with n = 1 for type I, so the
interaction in this type of superconductors is attraction. The
free energy of a vortex with n = 2 is found to be larger
than the free energy of two vortices with n = 1 in type II
superconductors. The interaction between these vortices is
repulsion.

Now we must apply the variational method to study the
interaction of type 1.5 superconductors in which there is no
monotonic interaction type for all range of distances. We
must obtain the vortex profiles and magnetic field for all range
of distances. To obtain trial functions of two vortices located
at an arbitrary distance, Jacobs and Rebbi used conformal
transformation of the complex plane z. z is defined as z =
x + iy. With this transformation [5], we have two image

vortex profiles centered at ±d/2 in z′ plane instead of zero
in z plane. For a phase change of 2π in z′ plane there is a phase
change of 4π in the z plane, so this is a map of one vortex
to two vortices profiles. The wave function in the complex
plane can be defined as

Ψi
(
z, z∗) =

{[
z2 −

(
d

2

)2
] / [

z∗2 −
(

d

2

)2
]}1/2

× fi
(
z, z∗) . (40)

For our calculation we consider the case with equal vortic-
ity of all the condensations. We use this projection between
two polar coordinates which is different from the Jacobs coor-
dinate system. With this projection or mathematical trick, one
can use the trial function of one vortex to obtain the trial func-
tion of two vortices in another plane called “r ′-plane”. Then
it is possible to calculate the interaction between the vortices
in this projected plane. The coordinate system of the vortices
in r ′-plane is defined by r = r ′2 − (d/2)2 and θ ′ = 2θ .
±d/2 represents the locations of the two vortices. The trial
function fi should describe not only the interaction between
two separate vortices but also the solution of a giant vortex
with vorticity two for the case when they merge [5,13]. Two
vortices are independent when d → ∞, while at d ∼ 0 they
merge and form one giant vortex with vorticity two. In addi-
tion, we also need another term to describe the interaction
between two vortices. Therefore, the trial function can be
constructed as

fi (r, θ) = ω f (1)i

(∣∣∣∣r − d

2

∣∣∣∣
)

f (1)i

(∣∣∣∣r + d

2

∣∣∣∣
)

+ (1 − ω)

∣∣∣r2 − ( d
2

)2
∣∣∣∣∣r2

∣∣ f (2)i (|r |)+ δ fi (r, θ),

(41)

δ fi accounts for the interaction and f (1)i and f (2)i are single-
vortex solutions with vorticity one and two, respectively, and
they are obtained by the method introduced for a single vor-
tex.ω interpolates between two independent vortices and one
giant-vortex solutions. The factor in the second term at the
right-hand-side of Eq. (41) ensures that the wave function
vanishes at the vortex cores r = ±d/2. The interaction con-
tribution may be constructed as follows:

δ fi (r, θ) =
∣∣∣∣∣r2 −

(
d

2

)2
∣∣∣∣∣

1

cosh
(√

2κ1|r |
)

×
n∑

l=0

l∑
j=0

fi,l j

∣∣r |2l

2

[(
e(2Iθ)

) j +
(

e(−2Iθ)
) j

]
. (42)

The first factor is to make sure that the wave function
vanishes at the vortex cores, and the second factor accounts
for the fact that the interaction vanishes when r → ∞. I
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in the exponentials represents i = √−1, which is typed
in capital form to avoid any confusion with the “i” in the
summation. When we put two vortices in a plane, the circular
symmetry would be lost. Only a reflection symmetry with
respect to the plane would remain. The polynomial in the
above equation preserves such a reflection symmetry.

The same procedure which is applied to fi for constructing
ψi applies to A:

A = ω

[
1

κ1 |r − d/2|a(1)
(∣∣∣∣r − d

2

∣∣∣∣
)

+ 1

κ1 |r + d/2|a(1)
(∣∣∣∣r + d

2

∣∣∣∣
)]

+ 2

κ1r
(1 − ω)a(2)(|r |)+ δa (r, θ) ,

(43)

where a(1) and a(2) are functions of the single-vortex solu-
tions with vorticities one and two. The asymptotic behavior
of vortices implies the interaction contribution and it has the
following form:

δa (r, θ) = 1

cosh(|r |) [ra1 (r, θ)+ ra2 (r, θ)] , (44)

with

ak (r, θ) =
n∑

i=0

i∑
j=0

ak,i j

∣∣r |2i

2

[(
e(2Iθ)

) j +
(

e(−2Iθ)
) j

]
,

(45)

where k = 1, 2. fi,l j and ak,i j are new variational param-
eters which must be obtained numerically. We consider the
variational parameters up to the coefficients of |r |6 in our
calculations.

Figure 6 shows the condensation states, magnetic fields,
and free energy density between two type 1.5 vortices at dif-
ferent distances. Figures 5 and 6 shows that by increasing
d the distribution of the magnetic field changes such that
for large d, each vortex has its own magnetic field, almost
independently. However, as d → 0, the magnetic field is
distributed along the vortex with vorticity two, as expected.
In Fig. 7 we show a three dimensional magnetic field of two
vortices at the distance d = 2. Only the so-called reflection
symmetry remains. Figure 8 shows the interaction energy ver-
sus distance between two vortices. As the distance between
the vortices decreases the energy decreases up to distance
2.7, so the interaction between two vortices in this range of
distances is attraction. The energy increases from distance
2.7 to zero, so the interaction is repulsion. Our results agree
with the results obtained in Ref. [13]. We also obtain the same
stability point by choosing the same penetration depth and
correlation length, but with other different parameters such
as γ . In addition, we use the polar coordinate system instead
of a Cartesian coordinate system. The polar coordinate sys-
tem simplifies calculations when we have only a vortex in

the plane with circular symmetry. When two vortices are
imposed in a plane, this circular symmetry is lost and only
a reflection symmetry with respect to the plane at the mid-
dle of the distance from the centers of the vortices survives.
Because of losing the circular symmetry, the θ dependence
of the functions is included again (Fig. 7).

5 Interaction between the vortices with three
condensation states

What about the situation with three condensation states? The
idea of a vortex with three condensation states can be used to
describe the iron-based superconductors. Also, Babaev and
Weston have recently studied the possibility of the existence
of more than three condensation states from a theoretical
point of view [21]. We use the method of previous section
for a case with three condensations. For simplicity, we study
the cases for which the interband scattering couplings are
equal. The equations of motions are obtained by using (6)
for the G-L free energy for the three states,

−Ψ1 + |Ψ1| 2Ψ1 +
(

1

iκ1
∇ − A

)
2Ψ1 − γΨ2 − γΨ3 = 0,

(46)

−α2

α1
Ψ2 + β2

β1
|Ψ2| 2Ψ2 + m1

m2

(
1

iκ1
∇ − A

)
2Ψ2

−γΨ1 − γΨ3 = 0, (47)

−α3

α1
Ψ3 + β3

β1
|Ψ3| 2Ψ3 + m1

m3

(
1

iκ1
∇ − A

)
2Ψ2

−γΨ1 − γΨ2 = 0, (48)

∇ × ∇ × A = 1

2iκ1
(Ψ ∗

1 ∇Ψ1 − Ψ1∇Ψ ∗
1 )− |Ψ1| 2A

+m1

m2

(
1

2iκ1
(Ψ ∗

2 ∇Ψ2 − Ψ2∇Ψ ∗
2 )− |Ψ2| 2A

)

+m1

m3

(
1

2iκ1
(Ψ ∗

3 ∇Ψ3 − Ψ3∇Ψ ∗
3 )− |Ψ3| 2A

)
. (49)

As mentioned above, γ1 = γ2 = γ3, which means that the
strength of all interband couplings are equal. Equation (49)
describes the screening of the magnetic field by the supercon-
ducting condensates. Again, using the London approxima-
tion, the effective London penetration depth for three-band
superconductors is

λv = 1
/√

|Ψ10| 2 + m1

m2
|Ψ20| 2 + m1

m3
|Ψ30| 2, (50)

where Ψi0 is the bulk value of the i th superconducting con-
densate. Since all the response of three-band superconduc-
tors to the magnetic fields is described by a single length
scale λ, all condensates couple to the same gauge field. The
interband coupling changes the bulk value, and it modifies
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Fig. 6 Free energy density, condensation states, and magnetic field
profiles cross sections in a plane when two vortices of type 1.5 are
located at different distances. As the separation between the vortices

increases the magnetic field profile function decreases between the vor-
tices. When the vortices are far from each other they are like two separate
vortices with no interaction
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Fig. 7 A three dimensional plot of the magnetic field of two vortices of
type 1.5 at distance d = 2. No circular symmetry is present any more.
Only a reflection symmetry with respect to the plane at the middle
distance between the vortices is present
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Fig. 8 Energy of two vortices of type 1.5, located at different distances.
This shows a stability point at 2.7. At larger distance than 2.7 this energy
increases, so at these separations the interaction is attraction. At smaller
distances than 2.7, the energy increases and leads to repulsion between
the vortices

the corresponding penetration depth. Again, we use the so-
called ansatz (10) and obtain the equations

− f1(r)+ f 3
1 (r)− 1

κ2
1

(
∂2

r f1 + 1

r
∂r f1

)
+ n2(a − 1)2

κ2
1 r2

f1

−γ f2 − γ f3 = 0, (51)

−α2

α1
f2(r)+ β2

β1
f 3
2 (r)+ m1

m2

×
(

− 1

κ2
1

(
∂2

r f2 + 1

r
∂r f2

)
+ n2(a − 1)2

κ2
1 r2

f2

)

−γ f1 − γ f3 = 0, (52)

−α3

α1
f3(r)+ β3

β1
f 3
3 (r)

+m1

m3

(
− 1

κ2
1

(
∂2

r f2 + 1

r
∂r f3

)
+ n2(a − 1)2

κ2
1 r2

f3

)

−γ f1 − γ f2 = 0, (53)

∂2
r a − 1

r
∂r a +

(
f 2
1 + m1

m2
f 2
2 + m1

m3
f 2
3

)
(1 − a) = 0.

(54)

In the limit when r → ∞, the wave functions are defined by
the bulk values f10, f20, and f30. Defining f20 = η f10 with
η > 0 and f30 = η′ f10 with η′ > 0, we have the equations
for f10, η, and η′:

−1 + f 2
10 − γ η − γ η′ = 0, (55)

−α2

α1
η + β2

β1
η3 (

1 + γ η + γ η′) − 2γ = 0, (56)

−α3

α1
η′ + β3

β1
η

′3 (
1 + γ η + γ η′) − 2γ = 0. (57)

The radial variation of the wave functions and the vector
potential in the asymptotic region for r → ∞ is found and
is given by

f1 = √
1 + γ η + γ η′ + cf1 exp

(
− r√

2ξv

)
, (58)

f2 =
√
β1

β2

(
α2

α1
+ γ + γ

η + η′

)
+ cf2 exp

(
− r√

2ξv

)
, (59)

f3 =
√
β1

β3

(
α3

α1
+ γ + γ

η + η′

)
+ cf3 exp

(
− r√

2ξv

)
, (60)

a = 1 + ca exp

(
− r

λv

)
. (61)
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Fig. 9 Free energy density and condensations and magnetic field of a
vortex with three condensation states with ξ1 = 51 nm, ξ2 = 8 nm, ξ3 =
25 nm, and λ1 = 25 nm, λ2 = 30 nm, λ3 = 51 nm, using the varia-
tional method, but a polar coordinate system is used. The energy of the

vortex is 85.2 for n = 1 and 189.5 for n = 2 in the defined dimension
unit. The energy of the structure in this scale is larger than type I and II
superconductors
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Fig. 10 Free energy density and condensation states and magnetic field
profiles cross sections in a plane for two vortices with three condensa-
tions at different distances using the variational method. As the distance
increases, the magnetic field profile function decreases between the vor-
tices. When the vortices are close to each other the magnetic field profile
function shows an increase. Repulsion between the vortices happens as

a result of the increase of the magnetic field. A change of the behavior
of the first condensation relative to the other condensations from the
distance d = 1 up to the distance d = 4 is observed. This shows that
the rate of change of energy versus the distance between two vortices
at such distances is not monotonic

At large distances, there is only one length scale for the
three condensates, called the penetration depth λv . It can
be obtained straightforwardly from Eqs. (58), (59), (60), and
(50):

λv = 1
/√√√√ ∑

p=2,3

m1

m p

β1

βp

(
αp

α1
+ γ + γ

η + η′

)
+ (1 + γ η + γ η′).

(62)
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To calculate the correlation length, we substitute the asymp-
totic limits of Eqs. (58) to (61) into Eqs. (49) to (53) and
linearize the equations by considering only the linear parts
of the terms. The following equation is obtained as a result
of these procedures:(

2 + 3γ η − 1

2κ2
1 ξ

2
v

)(
2
α2

α1
+ 3

γ

η
− m1

m2

1

2κ2
1 ξ

2
v

)

×
(

2
α3

α1
+ 3

γ ′

η′ − m1

m3

1

2κ2
1 ξ

2
v

)
− γ 3 = 0. (63)

ξv is equivalent to the length scale of the small fluctuations in
the bulk and is given by the largest solution to the equation.
ξv is an effective length which is in fact the correlation in
a system with interband coupling. With this new definition,
the trial functions become

f1(r) = √
1 + 2γ η + exp

(
− r√

2ξv

) n∑
l=0

(
f1,lr

l/ l!
)
, (64)

f2(r) =
√
β1

β2

(
α2

α1
+ γ

η

)
+ exp

(
− r√

2ξv

) n∑
l=0

(
f2,lr

l/ l!
)
,

(65)

f3(r) =
√
β1

β3

(
α3

α1
+ γ

η

)
+ exp

(
− r√

2ξv

) n∑
l=0

(
f3,lr

l/ l!
)
,

(66)

a(r) = 1 + exp

(
− r

λv

) n∑
l=0

(
alr

l/ l!
)
, (67)

where f1,l , f2,l , f3,l , and al are variational parameters. Fol-
lowing the procedure of the previous sections, we obtain the
variational coefficients, from which we can obtain the vor-
tex solution. We truncate the higher-order corrections of the
trial functions at n = 6 and find the solution of a single
vortex with vorticity one and two. The penetration depths
and correlation lengths we consider for our calculation are
ξ1 = 51 nm, ξ2 = 8 nm, ξ3 = 25 nm and λ1 = 25 nm, λ2 =
30 nm, λ3 = 51 nm. We take γ = γ ′ = 0.4 > 0 and also
η = η′ = 0.5 for our calculation.

We plot the free energy and the functions profiles in Fig. 9.
The energy of the vortex is 85.2 for n = 1 and 189.5 for
n = 2. We can see the role of increasing the number of con-
densations in increasing the energy of formation of a vortex
in these materials. The phenomenon has been observed when
we had two condensations compared with the case when we
had one condensation.

We plot the energy versus distance by the same method as
the previous section. Figure 10 shows the free energy den-
sity and vortex profiles of two vortices at different distances.
Figure 11 shows the free energy of two vortices versus dis-
tances. Again there is a repulsion between two vortices at
short distances and attraction when they are far from each
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12
λ 12 / β
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Fig. 11 Interaction energy dependence on distance between two vor-
tices with three condensation states obtained by the variational method.
There are two stability points at distances 1 and 4. At large distances
there is attraction between these vortices. At small distances the inter-
action is repulsion. Two stability points lead to more complex structure
for the location of vortices in these materials. Also it may have some
novel practical usage

other. There are two stability points for these vortices, one
in 4 and the other at 1. So, three condensations states can
be different with respect to the two condensation states: the
number of stability points is increased and the energy of the
vortex formation increases compared with the superconduc-
tors of type I and II and 1.5. Note that the presence of two
stable points depends on the value of the parameters of the
model. One could consider the correlation lengths and pene-
tration depths relative to each other such that it leads to only
one stable point.

Because of the existence of two stability points, quan-
tum tunneling may occur for the system of two vortices
between the two stability points if one considers the time
in the calculations. This may lead to the possibility of the
existence of another topological structure, such as an instan-
ton, in the superconductor materials with three condensa-
tion states. The possibility of the existence of Skyrme struc-
tures in these materials has recently been studied theoreti-
cally [40]. This evidence suggests that the Ginzburg–Landau
Lagrangian with three condensations has theoretical proper-
ties which do not have an analog in the ordinary supercon-
ductors.

6 Conclusion

We use a numerical method to obtain the vortex profiles and
the interaction between the vortices for a three condensa-
tion state superconductor. In this method, we use some trial
functions for condensations and the magnetic field. The vari-
ational parameters of these functions are obtained by mini-
mizing the free energy. We calculate the free energy density
integral which is the energy of vortex formation in a polar
coordinate system. The energy of a vortex with three conden-
sations is higher than the two condensation states. The energy
of two condensations is also larger than for type I and II super-
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conductors with the same penetration depth and correlation
length. Since these materials with two and three condensa-
tions are high temperature superconductors, it might be a hint
that there is a relation between the energy of this structure
and the higher phase transition temperature [41] in this type
of superconductor. We have figured out that there are dif-
ferent types of interactions between these vortices: In type
I and II superconductors, the interaction energy of a vortex
with winding n = 2 and two vortices with n = 1 can show
the type of interaction when they are far from each other.
We have obtained attraction for type I and repulsion for type
II superconductors. Using a full procedure of the variational
method for a type 1.5 superconductor in a polar coordinate
system, we obtain repulsion at smaller distances than 2.7/λ1

and attraction at larger distances. There is a stability point
for vortices at 2.7λ1 in this case. For three condensations, we
have seen the same behavior as the two condensations; but
there are two stability points at 4 and 1.

Currents and magnetic fields lead to a repulsion type of
interaction and also the core of the condensation can lead to
an attraction type of interaction when r � 1 [31,32]. For type
I where λ

ξ
< 1√

2
, the core of the magnetic field is smaller

than the core of the condensation. Thus, the winner of the
interaction is attraction [4,14–20]. For type II the situation is
reversed and a repulsion interaction exists. A type 1.5 super-
conductor with ξ1 
 λ1 and λ2 
 ξ2 can be considered as
superconductor of type II according to the ξ1, λ1 and a super-
conductor of type I according to ξ2, λ2. The size of the core of
one of the components is the largest length scale of the prob-
lem. Therefore a region domination of the repulsive interac-
tion mediated by currents and magnetic field and a region of
domination of the attraction mediated by the largest length
scale of the problem exist. A schematic view of this type of
superconductor is illustrated in [31,32]. The stability point
is at the border of these two regions. A superconductor with
three condensations with ξ1 � λ1, λ2 � ξ2, and λ3 � ξ3

can be considered as two type 1.5 superconductors. ξ1 � λ1

and λ2 � ξ2 represent a superconductor of type 1.5 with a
stability point at 2.7λ1. ξ1 � λ1 and λ3 � ξ3 represents
another type 1.5 with a stability point at another location.
When all of these length scales are present there is competi-
tion between these two type 1.5 superconductors. This may
lead to the existence of two stability points. There exists an
effective penetration depth for large distances. This length is
obtained from the London approximation. The effective pen-
etration length will be important when the gradients of the
condensations are negligible. This happens when r is in the
region where all the condensations obtain their asymptotic
values. However, the situation is different for smaller dis-
tances. Three individual penetration depths are introduced
because of the response of the magnetic field to each con-
densation. The competition between repulsion given by pen-
etration depths and attractive mechanisms given by conden-

sations changes the monotonic behavior of the energy for
three condensation superconductors, especially for interme-
diate distances (Fig. 11). However, the interband coupling
and the nonlinearity of the equations make the system more
complex than the above simple description. So the number
of stable points depends on the values of these three corre-
lation lengths and penetration depths of the model. Here we
use a penetration depth which conveys all other lengths of
the model. One could use parameters that do not lead to such
a system with two stable point. The existence of two stable
points may have novel applications. Because of the existence
of two stability points, quantum tunneling may occur for the
system of two vortices between the two stability points if
one considers the time in the calculations. This may lead to
the possibility of the existence of another topological struc-
ture, such as the instanton, in the superconductor materials
with three condensation states. The possibility of the exis-
tence of Skyrme structures in these materials has recently
been studied theoretically [40]. Recent experimental obser-
vation on the vortex behavior in these type of materials, which
can be described with three condensations, have been shown
to have different behavior of the vortices [42,43]. This evi-
dence suggests that the Ginzburg–Landau Lagrangian with
three condensations has theoretical properties which do not
have an analog in ordinary superconductors. If the energy of
these structures has something to do with the temperature,
then theoretically we can predict what values of the correla-
tion lengths and penetration depths lead to a higher energy
for the vortex formation and therefore a higher phase tran-
sition temperature. If, seen from the experimental point of
view, making or finding such materials with these penetra-
tion depths and correlation lengths is made possible, higher
critical temperature than the current ones can be reachable. It
may be possible to apply this numerical method to study the
interaction between special types of non-abelian vortices.
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