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Interference effects in the decay of resonance states in three-body Coulomb systems
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The lowest 1Se resonance state in a family of symmetric three-body Coulomb systems is systematically
studied as a function of the mass-ratioM for the constituting particles. The Siegert pseudostate method for
calculating resonances is described and accurate results obtained by this method for the resonance position
E(M ) and widthG(M ) in the interval 0<M<30 are reported. The principal finding of these calculations is
that the functionG(M ) oscillates, almost vanishing for certain values ofM, which indicates the existence of an
interference mechanism in the resonance decay dynamics. To clarify this mechanism, a simplified model
obtained from the three-body Coulomb problem in the limitM→` is analyzed. This analysis extends the range
of M up to M5300 and confirms thatG(M ) continues to oscillate with an increasing period and decreasing
envelope asM grows. Simultaneously it points to semiclassical theory as an appropriate framework for ex-
plaining the oscillations. On the basis of Demkov’s construction, the oscillations are interpreted as a result of
interference between two paths of the resonance decay on the Riemann surface of adiabatic potential energy,
i.e., as a manifestation of the Stueckelberg phase. It is shown that the implications of this interpretation for the
period and envelope of the oscillations ofG(M ) agree excellently with the calculated results.
@S1050-2947~99!09912-6#
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I. INTRODUCTION

Resonance phenomena have always attracted much i
est among theorists, and this is understandable. On the
hand, resonances occupy an intermediate position betw
bound states and true continuum scattering processes
deed, like bound states resonances are described by solu
of certain~Siegert! eigenvalue problem formulated in term
of the Hamiltonian of the system, and in contrast to scat
ing processes they are characterized by just two observ
parameters, the resonance positionE and widthG defined by
the complex energy eigenvalue

E5E2 iG/2. ~1!

At the same time, in contrast to bound states, resona
eigenfunctions are not localized in a restricted region of c
figuration space but like continuous energy wave functio
extend to infinity incorporating the influence of asympto
boundary conditions. Thus resonances convey a more in
mative message about the system’s dynamics than bo
states while remaining a simpler object for study than c
tinuum processes. On the other hand, there are feature
culiar to resonances which justifies placing them into a se
rate chapter of scattering theory. The very existence
resonances rests on a subtle balance in the energy exch
between different degrees of freedom in the system, and
two basic mechanisms of their decay, namely, the nona
batic transitions and tunneling, belong to the most com

*Electronic address: oleg@muon.imp.kiae.ru
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cated issues of quantum mechanics. All this makes the p
ics of resonances rich in content and keeps motivat
researchers.

The existing methods of resonance calculations can
classified according to whether the energyE in the Schro¨-
dinger equation is treated as real or complex. In the differ
variants of scattering calculations, Kohn variational and s
bilization methods, one stays on real energy axis. Re
nances in this approach are understood and sought as s
peaks in the energy dependence of the scattering matri
some other calculated quantity, and the resonance param
E andG are extracted indirectly via a fitting procedure. Com
plex variational calculations and complex rotation metho
are based on the definition of resonances as the solution
the Schro¨dinger equation satisfying the outgoing wav
boundary conditions. The consistent implementation of t
approach leads one to an eigenvalue problem which in o
to be solved requires considering complex energies. S
eigenvalue problem was first formulated by Siegert@1# and
its solutions are now known as Siegert states. The phys
resonances are represented by those of the Siegert s
whose eigenvalues lie close to real energy axis, and the r
nance parameters can be obtained directly from the eigen
ues via Eq.~1!. Finally, there exist mixed approaches such
perturbation theory and Feshbach formalism where the re
nance eigenvalue is firstly assumed to be purely real
only on the subsequent stage of calculations attains a s
complex correction characterizing the resonance shift
width. Each of these approaches has its own merits as we
demerits; they all have been demonstrated to be capab
producing accurate numerical results and the choice betw
them in any particular situation is a matter of computatio
convenience or even personal preference. In our opinion,
4673 ©1999 The American Physical Society
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4674 PRA 60TOLSTIKHIN, TOLSTIKHINA, AND NAMBA
approach based on the Siegert eigenvalue problem has
ceptual advantages and conceals yet undeveloped poten
ties. The point is that the set of Siegert states besides r
nances includes also bound and antibound~virtual! states and
possesses certain completeness properties that qualify it
basis suitable for expanding the continuum. This open
possibility to reformulate scattering theory in terms of
purely discrete set of states — a long standing ambition
whose numerical implementation, however, meets ser
difficulties and still remains an open problem. Perhaps a
lution to this problem can be found within the Siegert pse
dostate~SPS! formulation recently proposed in@2# and thor-
oughly developed for the one-channel case in@3#. The reader
is referred to these papers for a more detailed discussion
extensive bibliography on the subject, while for the pres
purposes it is sufficient to note that as a method for calcu
ing resonances the SPS formulation has been shown to
vide the highest precision in all studied cases, which inclu
a large number of one-dimensional models@3# and several
realistic three-body Coulomb systems@2#.

This work continues a series of studies on the three-b
Coulomb problem@4–7,2,8,9# whose common goal is to ad
vance the field via the synergism of new mathematical me
ods and modern computational resources. Here, we apply
SPS formulation to the systematic study of the lowest re
nance in a family of symmetric three-body Coulomb syste
as a function of the ratioM of the masses of the constitutin
particles. The atomic limitM→0 in this family is repre-
sented by the two-electron atomic ion H2. Understanding of
interelectron correlation in two-electron atoms is regarded
one of the most fundamental problems in atomic physics
is well known what a strong impetus for the theory w
given by the first experimental observation of resonance
helium @10#, and nowadays experimental studies of hig
lying doubly excited states in two-electron atoms, which b
came possible due to significant enhancement of the spe
brightness of modern light sources@11#, again challenge
theorists. A prototype system in the molecular limitM→`
of the mass-ratio spectrum is the diatomic molecular
H2

1. This system is a counterpart of H2, with protons and
electrons being interchanged. Both systems are abunda
hydrogenic plasmas and seem to be equally available
laboratory observations. However H2

1 is still much less
studied experimentally and, on the theoretical side, fe
words are heard aboutinterproton correlation in H2

1 than
aboutinterelectroncorrelation in H2 although, in our opin-
ion, the former is a no less fundamental problem than
latter. We believe the situation will change when spect
scopic studies of H2

1 and its isotopomers will be extende
from the ground@12# to excited electronic states, and cou
terparts of the resonances that have played so important
in studying two-electron atoms will be observed in the
molecular systems. In between these two extreme limits
the mass-ratioM there exist many more exotic three-bod
Coulomb systems. In this work, concentrating on one p
ticular resonance state and tracing it as a function ofM from
H2 to H2

1, we wish to discuss a very general mechani
which reveals itself in the dynamics of all these vastly d
ferent systems.

The paper consists of three parts. In Sec. II we rep
accurate results for the resonance positionE(M ) and width
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G(M ) as functions of the mass-ratioM in the interval 0
<M<30. The principal and rather unexpected finding he
is that the functionG(M ) oscillates, almost vanishing at ce
tain values ofM. In order to provide convincing evidence fo
the correctness of this numerical result we give a deta
account of the hyperspherical elliptic — slow/smooth va
able discretization~HSE-SVD! representation@4–6# and the
SPS method@2,3# used in the calculations. Accuracy of th
calculations matters, so a special effort is paid to demons
ing convergence of the results on the example of sev
realistic three-body Coulomb systems that fall in the cons
ered interval ofM. Section III serves as a bridge betwee
heavy calculations reported in Sec. II and qualitative int
pretation of their results to be given in Sec. IV. Here, w
discuss a simplified model obtained from the three-bo
Coulomb problem in the limitM→`. The perturbation
analysis of this model extends the considered interval of
mass-ratio up toM5300 and qualitatively confirms the re
sults of Sec. II. Meanwhile, this model depends onM in a
more transparent manner which makes it clear that an ex
nation of the oscillations ofG(M ) should be sought in term
of semiclassical theory. In Sec. IV, without actually deve
oping the semiclassical analysis of the problem, on the b
of Demkov’s construction we show that the major features
the calculated dependenceG(M ) agree excellently with tha
dictated by semiclassical theory. This leads us to the in
pretation of the oscillations ofG(M ) as a result of interfer-
ence between two paths of the decay of the resonance
on the Riemann surface of adiabatic potential energy, i.e
a manifestation of the Stueckelberg phase. Summary of
results and a brief discussion of possible implications of t
interference mechanism conclude the paper in Sec. V.

II. ACCURATE CALCULATIONS BY THE SIEGERT
PSEUDOSTATE METHOD

Let us begin by specifying more precisely the family
systems and the state to be dealt with in the following. C
sider a system of three Coulomb point particles two of wh
are identical and the third one having a charge of the sa
absolute value but of opposite sign. Letm15m2 andm3 be
masses andZ15Z252Z3 be charges of the particles. It i
convenient to introduce modified atomic units~to be abbre-
viated as m.a.u.! defined bym35uZ3u5\51; this system of
units will be used throughout the paper unless explic
stated otherwise. Then the mass-ratioM[m1 /m35m2 /m3
is the only dimensionless parameter characterizing the
tem. In Table I we list several realistic three-body Coulom
systems of this type. Some of them are routine objects
experimental studies while some others have not been
tected in a laboratory as yet. The list includes systems c
posed mostly of stable particles and only muonsm6 are un-
stable; it can be extended if we admit more exotic unsta
particles such as pionsp6, kaonsK6, etc., as constituents
The parameterM in these systems varies over more than
orders of magnitude which produces a tremendous chang
the physical properties on the way from two-electron ato
to diatomic molecules. But what is more important in t
present context is that the real physical systems are ra
densely distributed over this interval ofM. So it seems to be
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TABLE I. Some realistic three-body Coulomb systems belonging to the family considered in this
These systems are characterized by a single dimensionless parameterM giving the ratio of the masses of th
constituting particles. The values ofM were obtained using the particles’ masses taken from@13#.

System M System M

eet(T2) 0.181 920 0031023
ddp̄ 1.999 0075

eed(D2) 0.272 443 7131023
tt p̄ 2.993 7170

eep(H2) 0.544 617 0131023 ppm 8.880 2445
eem1 0.483 633 2231022 ddm 17.751 675
mmt 0.376 152 8331021 ttm 26.584 939
mmd 0.563 327 1231021 mme1 206.768 26
mmp 0.112 609 51 ppe(H2

1) 1836.152 7

p̄p̄t 0.334 032 91 dde(D2
1) 3670.483 0

p̄p̄d 0.500 248 25 tte(T2
1) 5496.921 6
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sensible instead of focusing on individual systems to st
continuousvariation of their physical properties as a functio
of M, and this is the approach adopted in this work. T
defines the systems and now we turn to the state. We s
consider the lowest resonance state of the1Se symmetry,
where S stands for zero total angular momentum,L50; 1
indicates that the state is symmetric under permutation of
identical particles, by analogy with two-electron atom
where this notation would mean ‘‘singlet’’; ande stands for
even parity indicating that the state is symmetric under
inversion of space, which is the only option for anSstate. In
other words, we shall consider the state whose approxim
classification changes, asM increases, from 2s2 in terms of
the independent electron quantum numbers in the ato
limit M→0 to 3dsgv50 in terms of the united atom quan
tum numbers defining the electronic state and the vibratio
quantum number defining the internuclear motion in the m
lecular limit M→`. An alternative classification of this
resonance state in terms of hyperspherical elliptic quan
numbers that applies universally throughout the whole ra
of M is discussed below.

In this section, first we give a summary of the HSE-SV
representation specifically for the one-parametric family
symmetric three-body Coulomb systems defined above,
we reduce the problem of calculating resonances in such
tems to an algebraic eigenvalue problem for Siegert ps
dostates, and finally we present our numerical results.

A. Hyperspherical elliptic—slow/smooth variable discretization
„HSE-SVD… representation

The Schro¨dinger equation for a three-body system af
the separation of the center-of-mass motion for states w
zero total angular momentum of interest here contains th
independent variables. A common strategy in solving s
multidimensional equations numerically consists in expa
ing the solution in terms of some set of basis functions. T
choice of the basis and the particular structure of the exp
sion defines a representation. This is the point where
matters of physics and calculation meet in the sense tha
more a priori knowledge about the system is built into th
representation the more numerically efficient it is. In th
y
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work we use the HSE-SVD representation introduced
@4–6#. This representation has proven to be very efficient a
accurate for calculating bound states, resonances, elastic
rearrangement scattering processes in various three-b
Coulomb systems@4–7,2,8,9# and recently it has been ex
tended to studying atom-diatom chemical reactions@14,15#.
However, in spite of numerous applications a consistent
count of this approach and its potentialities still waits to
written. Here, we summarize necessary details specific
for systems of the type defined above.

The HSE-SVD representation rests on two pillars: a go
coordinate system which reveals an approximate symm
of the three-body Coulomb problem and the idea of adiab
separability between hyperradius and hyperangular varia
for systems with Coulomb interactions. We begin with t
coordinate system. Letr i , i 51,2,3, give the positions of the
particles in the center-of-mass frame, with the particles 1
2 being identical, and letr i j 5ur i2r j u be the interparticle
distances. Note that the vectorsr i are linear dependent,

M ~r11r2!1r350. ~2!

We introduce two sets of mass-scaled Jacobi coordinate

x15A112M

111/M
r1 , y15

r32r2

A111/M
, ~3a!

x25A112M

111/M
r2 , y25

r12r3

A111/M
. ~3b!

These sets are related to each other by the Smith kinem
rotation @16#

S x2

y2
D 5S 2cosg 2sing

sing 2cosg D S x1

y1
D , ~4!

where the rotation parameterg is a function ofM defined by

tang5
A112M

M
, 0<g<

p

2
. ~5!
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For each of the sets we introduce the corresponding hy
angle:

tan~x1/2!5
y1

x1
5

r 32

A112Mr 1

, 0<x1<p, ~6a!

tan~x2/2!5
y2

x2
5

r 13

A112Mr 2

, 0<x2<p. ~6b!

This definition differs from that of Delves@17# by the factor
1/2 which is due to Kuppermann@18#. Now we introduce the
hyperradius

R5AM ~r 1
21r 2

2!1r 3
25Ax1

21y1
25Ax2

21y2
2, ~7!

0<R<`,

and the hyperspherical elliptic~HSE! coordinates@4#

j5x11x2 , 2g<j<2p22g, ~8!

h5x12x2 , 22g<h<2g. ~9!

In terms of the variablesR, j, and h the interparticle dis-
tances are expressed by

r 325A111/MRsinS j1h

4 D , ~10a!

r 135A111/MRsinS j2h

4 D , ~10b!

r 215
R

AM
A11~111/M !cos~j/2!cos~h/2!, ~10c!

thusR defines the size of the three-body triangle and (j,h)
define its shape. As was demonstrated by previous exp
ence @4–7,2,8,9#, these variables are especially convenie
for treating the three-body Coulomb problem and we sh
use them as coordinates in configuration space. The surf
of constantR are hyperspheres, and the hyperangular v
ables (j,h) define the position of a point on hypersphe
The volume element in these coordinates is given by

dV5
p2

4 sin 2g
R5~cosh2cosj!dRdjdh, ~11!

where the normalization factor is chosen to yieldp3/6, i.e.,
the volume of unit sphere in 6D space, upon integrating o
the regionR<1. The Schro¨dinger equation reads@4,5#

S 2
1

2

]2

]R2
1

Had~R!115/8

R2
2ED R5/2C~R,j,h!50,

~12!

where

Had~R!5 1
2 L0

21RC~j,h! ~13!
r-

ri-
t
ll
es

i-
.

r

is the hyperspherical adiabatic~HSA! Hamiltonian,

L0
25

216

cosh2cosj

3F ]

]j
~cos 2g2cosj!

]

]j
1

]

]h
~cosh2cos 2g!

]

]h G
~14!

is theL50 component of the Smith’s grand angular mome
tum operator squared@19#,

C~j,h!5
28 sin~j/4!cos~h/4!

A111/M

cos~j/2!1cos~h/2!

cosh2cosj

1
AM

A11~111/M !cos~j/2!cos~h/2!
, ~15!

is the effective charge representing the Coulomb poten
energy

2
1

r 32
2

1

r 13
1

1

r 21
[

C~j,h!

R
, ~16!

and E is the total energy of the system measured from
three-body breakup threshold. Note that the first term in
~15! comprises both 1–3 and 2–3 attractive interparticle
tentials, and the second term describes repulsion betwee
identical particles 1 and 2.

The boundary conditions for Eq.~12! consist of the con-
dition of regularity of the wave functionC everywhere in
configuration space and the physical asymptotic bound
condition atR→`. The latter depends on the problem und
consideration and for the present case will be specified in
next section. The former amounts to the requirement forC
to be regular at singular points of Eq.~12!. These singulari-
ties must be properly treated in the numerical solution an
is important to realize their location. There are two types
singularities: those of the kinetic energy, which are singula
ties of the coordinate system, and those of the potential
ergy. The coordinate system (R,j,h) produces singularities
at the points where the volume element~11! vanishes, that is
at the origin R50 and on four rays emanating from th
origin and crossing hypersphere at (j,h)5(2g,62g) and
(2p22g,62g), i.e., at the apexes of the (j,h) rectangle
defined by Eqs.~8! and ~9!. The Coulomb potential~16! is
singular at the points of interparticle collisions, that is aga
at the originR50, which is the three-body coalescent poin
and at the two-body coalescent points lying on three r
emanating from the origin and crossing hypersphere
(j,h)5(2g,22g) and (2g,12g) for the case of collisions
in the pairs 2–3 and 1–3, respectively@the first term in Eq.
~15!#, and at (j,h)5(2p22g,0) for collisions between the
particles 1 and 2@the second term in Eq.~15!#. The Coulomb
singularities on the rays (j,h)5(2g,62g) are attractive;
these rays form the skeleton of the region of localization



on
in
th

te
a

le

g
e

e
o-
he
l-

rre

e-
th
u
A

n
n

o

the
e
ing

of

-
ill
q.
e

f
ates

,
c-
-

PRA 60 4677INTERFERENCE EFFECTS IN THE DECAY OF . . .
the wave function shaping its large-scale structure in c
figuration space and their coincidence with two of four s
gular rays of the coordinate system greatly facilitates
numerical solution. The third Coulomb singular ray (j,h)
5(2p22g,0) lies apart from singularities of the coordina
system which creates a local problem for numerical tre
ment, however, this singularity is repulsive and produces
an effect on the spacial structure of the wave function.

Equation~12! is written in a form that suggests treatin
the variablesR and (j,h) separately. Indeed, following th
hyperspherical method@20–22# in solving this equation we
are going to exploit the idea of adiabatic separability b
tweenR and (j,h). Among several currently used technol
gies of implementing this idea in practical calculations t
one proposed in@6# has proven to be the most efficient. Fo
lowing @6# we seek the solutions to Eq.~12! in the form of
the slow/smooth variable discretization~SVD! expansion

C~R,j,h!5
1

R3/2 (
i 51

NDVR

(
n

cinp i~R!Fn~j,h;Ri !. ~17!

Here the radial part is represented by a finite set of inte
lated pointsRi and basis functionsp i(R), i 51, . . . ,NDVR ,
whose most essential property is

E p i~R!Had~R!p j~R!dR5d i j Had~Ri !, ~18!

where the integration goes over the interval ofR where ex-
pansion~17! applies. The particular choice of this set d
pends on the asymptotic boundary condition and for
present case will be specified in the next section. The ang
part in Eq.~17! is represented by the solutions of the HS
eigenvalue problem

@Had~R!2Un~R!#Fn~j,h;R!50. ~19!

This equation subject to the regularity boundary conditio
has only a discrete spectrum of solutions which depend oR
as a parameter. The eigenvaluesUn(R) converted to

Wn~R!5
Un~R!115/8

R2
~20!

and the eigenfunctionsFn(j,h;R) numbered by n
51,2, . . . inorder of increasingUn(R) are called the HSA
potentials and channel functions, respectively. For anyR, the
HSA channel functions form a complete orthogonal basis
hypersphere. We normalize it by
-
-
e

t-
ss

-

-

e
lar

s

n

^FnuFm&5dnm , ~21!

where the notation̂•••& means

^F&[E
2g

2p22g

djE
22g

2g

dh~cosh2cosj!3F~j,h!

~22!

for an arbitraryF(j,h). Substituting expansion~17! into Eq.
~12! one can obtain a set of algebraic equations defining
coefficientscin . This will be done in the next section, whil
of the tasks here it remains to describe our method of solv
the HSA eigenvalue problem~19!.

The method is based on the recently found symmetry
the three-body Coulomb problem@4# which affords approxi-
mate separation of the variablesj and h in Eq. ~19!. The
idea is to substitute Eq.~19! by an auxiliary separable prob
lem which is much easier to solve and whose solutions w
provide a basis for subsequent variational solution of E
~19!. To implement this approach, first of all it should b
noted that the grand angular momentum operator~14!, which
plays a role of the kinetic energy in Eq.~19!, is separable in
the HSE coordinates (j,h). A general functional structure o
the potential energy which is separable in these coordin
simultaneously withL0

2 is

C(s)~j,h!5
a~j!1b~h!

cosh2cosj
, ~23!

wherea(j) and b(h) are arbitrary functions. We split the
effective charge~15! into two parts,

C~j,h!5C(s)~j,h!1C(r)~j,h!, ~24!

whereC(s)(j,h) is given by Eq.~23! and thus is separable
andC(r)(j,h) is the residue. Let us proceed leaving the fun
tions a(j) and b(h) undefined for the moment. We intro
duce separable approximations to the HSA Hamiltonian~13!,

Had
(s)~R!5

1

2
L0

21RC(s)~j,h!, ~25!

and to the HSA eigenvalue problem~19!,

@Had
(s)~R!2Uns

(s)~R!#Fns

(s)~j,h;R!50. ~26!

Seeking the solutions to this equation in the form

Fns

(s)~j,h;R!5 f ns
~j;R!gns

~h;R!, ~27!

for the functionsf ns
(j;R) andgns

(h;R) one obtains
F8
d

dj
~cos 2g2cosj!

d

dj
2Ra~j!1Uns

(s)~R!~cos 2g2cosj!2Ans
~R!G f ns

~j;R!50, ~28a!

F8
d

dh
~cosh2cos 2g!

d

dh
2Rb~h!1Uns

(s)~R!~cosh2cos 2g!1Ans
~R!Ggns

~h;R!50, ~28b!
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whereAns
(R) is the separation constant. Thus each solut

~27! can be characterized by a pair of eigenvaluesUns

(s)(R)

and Ans
(R) giving the integrals of motion of the separab

problem~26! or, alternatively, by a pair of the hyperspheric
elliptic quantum numbersnj and nh giving the numbers of
zeros of the solutions to Eqs.~28a! and ~28b!, respectively.
This specifies the indexns labeling the solutions~27! as

ns5~nj ,nh!, nj ,nh50,1, . . . . ~29!

Functions~27! provide a basis for expanding the HSA cha
nel functions,

Fn~j,h;R!5(
ns

vnsn
Fns

(s)~j,h;R!. ~30!

Substituting this expansion into Eq.~19! one obtains an al-
gebraic eigenvalue problem defining the HSA potenti
Un(R) and the coefficientsvnsn

:

(
ms

$RCnsms

(r) 1@Uns

(s)~R!2Un~R!#dnsms
%vmsn

50, ~31!

where

Cnsms

(r) 5^Fns

(s)uC(r)uFms

(s)& ~32!

and it is assumed that the separable basis~27! is normalized
by the same condition~21!.

Now we have to define the potential functionsa(j) and
b(h). The evident goal in choosing them is to minimize t
term Cnsms

(r) in Eq. ~31!, i.e., to minimize the role of the non

separable part of the potential~24!. The best separable ap
proximation would be obtained by defining these functio
self-consistently@5#. However our experience shows that it
much more convenient in practice to use the asymptotic
adapted potentials defined by@5#

a~j!5~cosh2cosj!C~j,h!uh52g , ~33a!

b~h!5@~cosh2cosj!C~j,h!2a~j!#uj52g . ~33b!

This causes no a substantial loss in the quality of separa
ity. Indeed, as was already mentioned above, except at s
R the HSA channel functionsFn(j,h;R) are localized near
two attractive Coulomb singularities at (j,h)5(2g,62g),
therefore for good separability function~23! must approxi-
mate the effective chargeC(j,h) most importantly in the
vicinity of these points. It can be shown that fora(j) and
b(h) defined by Eqs.~33!

~cosh2cosj!C~j,h!u(j,h)→(2g,62g)5a~j!1b~h!

1O@~j22g!~h72g!#. ~34!

Thus functions~33! not only correctly reproduce the consta
terms in the expansion of the left hand side in Eq.~34! which
define the two-body Coulomb spectrum of the asympto
values of the HSA potentials~20! at R→`, but also the
linear terms which define the Stark splitting. The relations
between the HSA eigenvalue problem~19! and the separable
approximation to it~26! can be summarized as follows: Th
n

s

s

ly

il-
all

c

p

separability becomes exact in each of the limitsR→0 and
R→` and holds approximately in between. Besides,
separability depends onM and, as will be shown in Sec
III A, becomes exact in the molecular limitM→`. Thus
HSA potentials and channel functions can be approxima
classified by the HSE quantum numbers~29!, and this clas-
sification applies universally throughout the whole range
R and to all the systems.

Let us comment on the accuracy of this method of solv
Eq. ~19!. It is relatively easy to solve Eqs.~28! with the
accuracy of the eigenvaluesUns

(s)(R) andAns
(R) approaching

the machine precision. Thus obtained separable basis~27! is
in one-to-one correspondence with the solutions of Eq.~19!,
that is for each HSA channel function there is a single do
nant term in expansion~30! whose contribution to the norm
approaches 1 atR→0 andR→` and is typically of the order
0.9 in between, excluding the localized regions of t
avoided crossings of the HSA potentials~20!. So the varia-
tional error caused by inevitable truncating expansion~30! to
a finite number of terms is not essential and can be ea
reduced. In our calculations the number of separable b
functions usually exceeds the desired number of HSA ch
nel functions by a factor 2–3. It should be noted that
symmetric systems and states of ‘‘singlet’’ symmetry of i
terest here only terms with evennh should be included in
expansion~30!. The principal source of errors in the prese
numerical scheme is the repulsive Coulomb singularity a
ing from the second term in Eq.~15!. This singularity pre-
vents achieving high precision in calculating matrix eleme
~32! which limits the final accuracy of the HSA potentials b
a relative error;1028.

We finish discussing the HSE-SVD representation by
following remark. Taking into account good separability
Eq. ~19! one could skip the step of solving Eq.~31! and
switch in the SVD expansion~17! from HSA to separable
angular basis,

C~R,j,h!5
1

R3/2 (
i 51

NDVR

(
ns

c̃ins
p i~R! f ns

~j;Ri !gns
~h;Ri !.

~35!

This approach would open the possibility to perform a sel
tive choice of the separable basis functions to be include
expansion~35! depending on their HSE quantum numbe
~29!, which may greatly simplify treating states belonging
higher HSA channels. However for the present purposes
preferable to stick to Eq.~17!.

B. Siegert pseudostate„SPS… eigenvalue problem

The HSE-SVD representation summarized above p
vides a framework which enables one to calculate differ
properties of and processes in three-body Coulomb syste
In this section we show how using this representation
combination with the SPS method introduced in@2# and
more fully developed in@3# one can calculate resonances. T
this end we have to complete the previous formulation
specifying those its elements which depend on the prob
and have been left undefined above.

First, we discuss the asymptotic boundary condition. F
lowing the approach pioneered by Siegert@1# we shall seek
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resonances among the solutions to the Schro¨dinger equation
~12! which contain only outgoing waves atR→`. Taking
into account the requirement of regularity of the wave fun
tion C, such solutions may exist only for a discrete set
generally complex energiesE, thus we are dealing with an
eigenvalue problem. The solutions to this problem are ca
Siegert states. For practical purposes it is convenient to
troduce Siegertpseudostatesdefined as solutions to Eq.~12!
satisfying the outgoing wave boundary condition imposed
a finite distance from the origin@2#,

S ]

]R
2 ik DR5/2C~R,j,h!U

R5Rm

50. ~36!

Here the momentumk is related with the energyE that ap-
pears in Eq.~12! by

E5E01k2/2, ~37!

where

E052m/2 ~38!

is the ground state energy for each of the pairs 1–3 and
giving the boundary of the continuum for the present pro
lem, and

m5
M

11M
~39!

is the reduced mass of the particles 1~or 2! and 3. Equation
~36! restricts the region of configuration space to be cons
ered in calculations by the interior of the hypersphere
radiusRm , which renders the SPS method practical. Ho
ever simultaneously this makes the results dependent on
cutoff radiusRm , and it should be understood that for o
taining physically meaningful results one must analyze c
vergence asRm increases. As was demonstrated in@3#, the
SPS eigenvalues corresponding to individually observa
states of the system, which includes bound, weakly a
bound, and narrow resonance states, rapidly stabilize asRm
grows; the others never do. Thus resonances can be c
lated by solving the SPS eigenvalue problem, Eqs.~12! and
~36!, and looking for such solutions that become independ
of Rm for sufficiently large values of this parameter. Oth
computational possibilities in scattering theory opened by
SPS formulation are discussed in@2,3#.

Next, we define the radial basis in the SVD expans
~17!. In order to satisfy Eq.~18! it is convenient to use a
discrete variable representation~DVR! basis@23# constructed
of suitable orthogonal polynomials@6#. The polynomials
should be chosen taking into account that the wave func
~17! must satisfy the regularity boundary condition atR50
and the outgoing wave boundary condition~36! at R5Rm .
Restricting ourselves to classical orthogonal polynomia
these conditions define the radial basis uniquely. For num
cal treatment it is convenient to introduced a new variablx
instead ofR,

x52R/Rm21, R5 1
2 Rm~11x!, ~40!
-
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which transforms the interval 0<R<Rm into 21<x<1.
Then the radial basis is defined by

p i~x!5~11x!3/2 (
n51

NDVR

Av i P̃n21
(0,3)~xi !P̃n21

(0,3)~x!. ~41!

HereP̃n
(0,3)(x), n50,1, . . . , areJacobi polynomials orthogo

nal on the intervalxP@21,1# with the weight (11x)3,
where the tilde means that the polynomials are normaliz
so that

E
21

1

p i~x!p j~x!dx5d i j , ~42!

andxi , v i , i 51,2, . . . ,NDVR , are abscissas and weights
the correspondingNDVR-point Gauss-Jacobi quadrature. Th
basis satisfies Eq.~18!, where the integration overR
P@0,Rm# should be replaced by the integration overxP
@21,1#. The pointsRi in Eqs.~17! and~18! are defined byxi
via Eqs.~40!.

Substituting expansion~17! into Eq. ~12! and using Eqs.
~18!, ~19!, ~36!, and~42! we obtain the HSE-SVD represen
tation of the SPS eigenvalue problem,

@~K1L1U2E0r!2 ikRmL2 1
2 k2r#c50. ~43!

Herec is the vector of coefficients in Eq.~17!, and the bold-
face characters denote the SVD matrices defined by t
matrix elements:

K in, j m5Ki j Oin, j m —radial kinetic energy, ~44a!

rin, j m5r i j Oin, j m —radial weight, ~44b!

L in, j m5Li j Oin, j m —Bloch operator, ~44c!

Uin, j m5Un~Ri !d in, j m —HSA potential energy,
~44d!

where

Ki j 5
1

2E21

1 dp i~x!

dx
~11x!2

dp j~x!

dx
dx1

15

8
d i j , ~45a!

r i j 5
1

4
Rm

2 E
21

1

p i~x!~11x!2p j~x!dx, ~45b!

Li j 5p i~1!p j~1! ~45c!

are the DVR matrices, and

Oin, j m5^Fn~j,h;Ri !uFm~j,h;Rj !& ~46!

is the overlap matrix. The DVR matrices~45! can be calcu-
lated analytically, see Appendix C in@3#. They have the
dimensionNDVR . The HSA potentials~44d! and the overlap
matrix ~46! can be obtained by solving the HSA eigenval
problem~19!. Retaining theNch lowest HSA channels in the
SVD expansion~17!, the SVD matrices~44! will have the
dimensionNSVD5NDVRNch. Having thus defined all the ma
trices in Eq.~43!, it remains to solve the equation. Notic
that this is a quadratic eigenvalue problem with respect tk.
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The desired resonance eigenvalue can be found iterati
which, however, requires to know a good initial guess. A
ternatively, Eq.~43! can be linearized by reducing to th
form

S 0 I

22r21~K1L1U!12E0 2r21RmL D S c

ikcD
5 ikS c

ikcD , ~47!

where0 and I are zero and unit matrices of the dimensio
NSVD. This is a linear eigenvalue problem with respect tok
of the doubled dimension 2NSVD and it can be solved by
standard routines.

C. Results

Before discussing results, let us summarize the basic s
of the present numerical procedure. For a given value of
mass ratioM one has:

~i! To fix the parametersRm andNDVR of the SVD expan-
sion ~17! and to solve the HSA eigenvalue problem~19! for
theNDVR values of hyperradiusR5Ri retaining theNch low-
est solutions.

~ii ! To calculate the overlap matrix~46! and to construct
the matrices in Eq.~43!.

~iii ! To solve the SPS eigenvalue problem in either of
forms Eq.~43! or Eq. ~47!.

~iv! To repeat the previous steps for increased value
Rm , NDVR , andNch until convergence of the eigenvalue re
resenting the desired resonance state with respect to ea
these parameters is achieved.

This procedure yields the resonance positionE and width
G for the givenM. Repeating it for different values ofM one
obtains the functionsE(M ) andG(M ) which are in the focus
of the present study. In this section we report the numer
results.

1. Hyperspherical adiabatic potentials

Figure 1 shows two lowest HSA potentials defined
Eqs.~19! and~20! calculated for three representative syste
ranging from the atomic (M→0) to the molecular (M
→`) limit of the mass-ratio spectrum, see Table I. T
M-dependent factors multiplyingWn(R) and R are intro-
duced in order to bring systems corresponding to vastly
ferent values ofM to a common scale in this figure. Thes
factors result from the following consideration. In the syste
of units we use here~m.a.u.! a characteristic energy is give
by the reduced massm of the particles 1~or 2! and 3, see Eq
~39!. Dividing Wn(R) by m makes the curves shown in Fig
1 to converge to the same ‘‘hydrogenic’’ thresholds atR
→`, namely, to20.5 for n51 and to20.125 for n52,
independently ofM. We shall use this reduced energy sca
for presenting all the results in this section. A characteris
interparticle distance is 1/m and, as follows from Eqs.~2!
and ~7!, a characteristic value of the hyperradiusR then is
AM /m. Dividing R by this factor leads to a good coinciden
between the positions of the minimum of the lowest cu
ly
-

ps
e
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of

of
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s
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e

for all values ofM. The additional factorA2 is introduced to
make the abscissa in Fig. 1 equal to the distance between
heavy particles 1 and 2 in the molecular limitM→`, see
Sec. III A. The potential curves shown in Fig. 1 provide t
minimum theoretical input needed for discussing the re
nance state of interest here. This state can be defined a
lowest Feshbach resonance supported by the upper (n52)
potential curve, while the lower (n51) curve represents th
only decay channel. Then51 andn52 HSA channels can
be classified by the HSE quantum numbers (nj ,nh) of the
dominant separable component in expansion~30! as (0,0)
and (0,2), respectively. So the resonance state of inte
here can be identified by the triple (nj ,nh ,v)5(0,2,0),
wherev is the vibrational quantum number defining the m
tion in R.

2. Siegert pseudostate eigenvalues

Figure 2 gives an example of the distribution of the S
eigenvalues in complex energy plain calculated for theeee1

system with some particular values of the parametersRm ,
NDVR , andNch. The eigenvalues were obtained by solvin
Eq. ~47! and converting from the momentumk to the energy
E domain using Eq.~37!. Some general features of this di
tribution common to all systems studied can be summari
as follows.~i! For the lowest HSA channel, there is a fini
number of real eigenvalues lying on the left of the chan
threshold20.5 ~notice the reduced energy scale in the fi
ure! which represent bound~exponentially decaying! or an-
tibound ~exponentially growing without an admixture of th
decaying solution! states supported by this channel. In t
case shown in Fig. 2, there is one bound and one antibo

FIG. 1. Two lowest hyperspherical adiabatic potentialsWn(R)
defined by Eqs.~19! and ~20! as functions of the hyperradiusR
defined by Eq.~7! for three representative systems ranging from
atomic (M50) to the molecular (M5`) limit of the mass-ratioM,
see Table I. The upper potential supports the resonance sta
interest here, while the lower one represents the only decay cha
m is the reduced mass for each of the pairs which can form a bo
state, see Eq.~39! . Here and in all the following figures and table
in this paper, m.a.u. stands for modified atomic units defined in
beginning of Sec. II.
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eigenvalue lying on the top of each other indicated by
leftmost arrow. Besides these real eigenvalues, there
parabola-like branch formed by complex eigenvalues ly
on the right of the channel threshold which represent
discretized continuum of the lowest channel.~ii ! This struc-
ture repeats itself for higher HSA channels with one diff
ence: the eigenvalues lying on the left of the channel thre
old acquire an imaginary part and represent resonance s
supported by the channel. Because of the Coulomb de
eracy, there aren HSA channels converging to thenth hy-
drogenic threshold20.5/n2 at R→` and, consequently
there aren parabola-like branches representing discretiz
continua, one for each of the channels. In Fig. 2 one
clearly distinguish the described structure around the th
lowest thresholdsn51, 2, and 3; to resolve higher thres
olds the cutoff radiusRm must be increased.

Now we discuss how this distribution depends on the
rametersRm , NDVR , and Nch. The latter two parameter
define the size of the basis in the SVD expansion~17!. All
the SPS eigenvalues rather rapidly converge asNDVR andNch
increase, and the farther on the left they lie in Fig. 2
faster they converge. Thus all the eigenvalues shown in
figure are converged with respect toNDVR and Nch. The
dependence of the eigenvalues on the cutoff radiusRm is
quite different. In accordance with the results of@3#, only the
bound and resonance state eigenvalues converge asRm
grows; all the others never do, becoming instead more
more densely distributed along the continuum branches.
converging eigenvalues are indicated by arrows in Fig
The lowest resonance lying on the left of the second hyd
genic threshold20.125 and indicated by the bold arrow
the one we are interested in here. In the following, only t
resonance state will be discussed.

3. Convergence

Tables II–VI demonstrate convergence of the resona
parametersE andG calculated for several representative r

FIG. 2. The distribution of the Siegert pseudostate energy eig
values defined by Eqs.~37! and~43! @or ~47!# for the eee1 system
(M51) calculated with the parametersRm5100, NDVR560, and
Nch540. All the eigenvalues shown are converged with respec
NDVR andNch. The arrows indicate the eigenvalues that also c
verge asRm grows. The bold arrow indicates the resonance stat
interest here. Notice that the vertical scale in the box is exten
with respect to that in the rest of the figure by the factor of 20.
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alistic systems. The corresponding values of the mass-r
M used in the calculations are given in Table I. In all t
cases, the resonance positionE converges rather easily within
at least six significant digits. This level of accuracy agre
with that of our earlier calculations of bound and resonan
states in various three-body Coulomb systems. As was m
tioned above, in the present numerical scheme it is limited
the accuracy of calculating matrix elements~32!. As can be
seen from the tables, the accuracy of calculating the re
nance widthG rapidly deteriorates asM grows, and this is
understandable. In the present methodE andG are obtained
via Eq. ~1! from the real and imaginary parts of the sam
complex number giving the SPS energy eigenvalue. So
ratio G/E is limited from below by round-off errors which
are not less than 10212 using the double precision arithmetic
As M grows,G rapidly decreases whileE stays almost con-
stant, and the ratioG/E reaches this limit already forM
'30. This sets an upper boundary on the values ofM which
can be treated by the present method. Accordingly, in
following we restrict ourselves to reporting results only f
the interval 0<M<30. It should be noted that this interva
includes most of the realistic systems listed in Table I. B
sides demonstrating convergence, Tables II–VI present
converged results which are the best reported estimate
the resonance parameters for the considered systems a
be seen from the comparison with other calculations, wh
available.

4. Final results

Our final results for the functionsE(M ) and G(M ) are
presented in Table VII and shown by solid circles a
squares in Fig. 3. They were calculated with the parame
Rm , NDVR , andNch varying with M, as dictated by the test
of convergence discussed above. The resonance pos
E(M ) is a featureless function. Multiplied bym21, it is
bounded by the second hydrogenic threshold20.125 from
above and by the minimum of then52 curve in Fig. 1 taken
as a function ofM from below. The arrow in Fig. 3~a! indi-
cates the position of this minimum in the limitM→`; the
corresponding numerical value is given in the last entry
Table VII. AsM grows,E(M ) monotonically approaches thi
value from above. Such behavior ofE(M ) could be expected
a priori looking at Fig. 1, and the heavy calculations r
ported here merely provide accurate numbers. The situa
with the resonance widthG(M ) is quite different. The decay
of the resonance occurs via nonadiabatic coupling betw
HSA channels which corresponds to energy exchange
tween different degrees of freedom in the system. AsM
grows, two of the particles become much heavier than
third one, and the energy exchange becomes less efficien
thatG(M ) must decrease vanishing in the limitM→`, as is
indicated in the last entry of Table VII. However along wi
this expected decreasing the functionG(M ) exhibits rather
unexpected oscillations. It has five distinct minima in t
interval 0<M<30 at M'1.54, 5.77, 11.6, 19.1, and 28.
where it becomes vanishingly small. For locating their po
tions we have performed additional calculations whose
sults are not included in Table VII but are shown in Fi
3~b!. As can be seen from the figure, the values ofG(M ) at
adjacent minima and maxima differ by several orders
magnitude, so the oscillations are very pronounced. Disc
ering these oscillations is the principal result of the calcu
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TABLE II. Convergence of the present calculations of the lowest1Se resonance state ineepwith respect
to the cutoff radiusRm and the numbers of the radial basis functionsNDVR and the HSA channel function
Nch in the SVD expansion~17!. The resonance positionE and widthG were obtained from the correspondin
SPS energy eigenvalue via Eq.~1! and are given in m.a.u. The numbers in parentheses give the uncer
in the last digit quoted. The converged values of the resonance parameters areE520.148695(1) a.u. and
G50.1731(1)31022 a.u., in agreement with Ref.@2#. We are not aware of any other calculations of th
resonance state for a finite value of the proton mass.

2m21E
Rm NDVR/Nch 10 20 30
40 40 0.148 774 7 0.148 775 3 0.148 7756
— 50 0.148 774 7 0.148 775 3 0.148 7755
50 40 0.148 774 6 0.148 775 2 0.148 7754
— 50 0.148 774 7 0.148 775 2 0.148 7754
— 60 0.148 774 7 0.148 775 2 0.148 7754
60 60 0.148 775 0 0.148 775 6 0.148 7758
70 60 0.148 774 8 0.148 775 4 0.148 7756
Converged 0.148 775~1!

1023m21G

Rm NDVR/Nch 10 20 30
40 40 0.173 21 0.173 17 0.173 17
— 50 0.173 21 0.173 17 0.173 17
50 40 0.173 20 0.173 18 0.173 19
— 50 0.173 22 0.173 19 0.173 19
— 60 0.173 22 0.173 18 0.173 19
60 60 0.173 19 0.173 17 0.173 18
70 60 0.173 18 0.173 13 0.173 14
Converged 0.1732~1!

TABLE III. The same as in Table II, but foreee1. The converged values of the resonance parameters
E520.076 0304(1) a.u. andG50.4304(1)31024 a.u. The complex rotation results for this resonan
state areE520.07 60304 a.u. andG50.4331024 a.u. @24#.

2m21E
Rm NDVR/Nch 10 20 30 40 50
100 40 0.152 0581 0.152 0605 0.152 0608 0.152 0608 0.152 06
— 50 0.152 0582 0.152 0605 0.152 0608 0.152 0608 0.152 06
— 60 0.152 0581 0.152 0605 0.152 0608 0.152 0608 0.152 06
150 50 0.152 0586 0.152 0608 0.152 0611 0.152 0611 0.152 06
— 60 0.152 0582 0.152 0605 0.152 0608 0.152 0608 0.152 06
— 70 0.152 0582 0.152 0605 0.152 0608 0.152 0608
Converged 0.152 061~1!

1043m21G

Rm NDVR/Nch 10 20 30 40 50
100 40 0.860 87 0.860 62 0.860 71 0.860 58 0.860 60
— 50 0.859 01 0.860 76 0.860 67 0.860 57 0.860 59
— 60 0.859 95 0.860 64 0.860 66 0.860 60 0.860 59
150 50 0.861 25 0.862 73 0.862 31 0.862 06 0.861 67
— 60 0.858 85 0.860 72 0.860 80 0.860 71 0.860 73
— 70 0.859 12 0.860 76 0.860 79 0.860 75
Converged 0.8607~1!
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TABLE IV. The same as in Table II, but forppm. The converged values of the resonance parameters
E520.146 404(1)m a.u. andG50.304(1)31026m a.u.

2m21E
Rm NDVR/Nch 10 20 30
70 40 0.162 8874 0.162 8903 0.162 8909
— 50 0.162 8874 0.162 8903 0.162 8909
— 60 0.162 8874 0.162 8903 0.162 8909
90 50 0.162 8874 0.162 8903 0.162 8909
— 60 0.162 8874 0.162 8903 0.162 8909
— 70 0.162 8874 0.162 8903 0.162 8909
130 80 0.162 8874 0.162 8903 0.162 8909
Converged 0.162891~1!

1063m21G

Rm NDVR/Nch 10 20 30
70 40 0.3391 0.3388 0.3383
— 50 0.3383 0.3387 0.3383
— 60 0.3373 0.3386 0.3382
90 50 0.3384 0.3383 0.3378
— 60 0.3364 0.3374 0.3369
— 70 0.3361 0.3378 0.3379
130 80 0.3365 0.3380 0.3378
Converged 0.338~1!

TABLE V. The same as in Table II, but forddm. The converged values of the resonance parameters
E520.157 099(1)m a.u. andG50.69(1)31029m a.u., in agreement with Ref.@2#. The variational result for
the position of this resonance state isE520.15 7 099m a.u. @25#.

2m21E
Rm NDVR/Nch 10 20 30
90 50 0.165 9466 0.165 9483 0.165 9487
— 60 0.165 9466 0.165 9483 0.165 9487
— 70 0.165 9466 0.165 9483 0.165 9487
110 60 0.165 9466 0.165 9483 0.165 9487
— 70 0.165 9466 0.165 9483 0.165 9487
— 80 0.165 9466 0.165 9483 0.165 9487
160 90 0.165 9466 0.165 9483 0.165 9487
Converged 0.165 949~1!

1093m21G

Rm NDVR/Nch 10 20 30
90 50 0.731 0.743 0.729
— 60 0.748 0.744 0.727
— 70 0.723 0.744 0.726
110 60 0.750 0.742 0.727
— 70 0.723 0.743 0.725
— 80 0.718 0.743 0.726
160 90 0.721 0.743 0.725
Converged 0.73~1!
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TABLE VI. The same as in Table II, but forttm. The converged values of the resonance parameters
E520.161 370(1)m a.u. andG50.3(1)310210m a.u.

2m21E
Rm NDVR/Nch 10 20 30
90 60 0.167 4386 0.167 4396 0.167 4399
— 70 0.167 4386 0.167 4396 0.167 4399
110 70 0.167 4386 0.167 4396 0.167 4399
— 80 0.167 4386 0.167 4396
160 90 0.167 4386 0.167 4396 0.167 4399
Converged 0.167440~1!

10103m21G

Rm NDVR/Nch 10 20 30
90 60 0.65 0.76 0.64
— 70 0.65 0.75 0.60
110 70 0.21 0.38 0.20
— 80 0.21 0.34
160 90 0.21 0.39 0.19
Converged 0.3~1!
is
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tional part of this work. The remaining part of the paper
devoted to clarifying the underlying physical mechanism.

III. PERTURBATION ANALYSIS OF A SIMPLIFIED
MODEL

The oscillations of the resonance widthG(M ) found nu-
merically in the previous section certainly require som
qualitative interpretation. As a step towards such an interp
tation, we believe it will be useful to consider a simplifie
model obtained from Eq.~12! in the limit

M→`. ~48!
e-

As will be shown in this section, this model preserves all t
major features of the dependence onM of the full-scale
three-body Coulomb problem discussed above but, at
same time, it is more transparent and unambiguously po
to the direction where an explanation of the oscillatio
should be sought.

A. Born-Oppenheimer model

Consider equations of Sec. II A in the limit~48!. In the
following, all the quantities obtained in this limit from the
counterparts in Sec. II A and properly rescaled, if need
will be denoted by the same notation with a bar. But we sh
e

TABLE VII. Present accurate results for the positionE(M ) and widthG(M ) of the lowest1Se resonance
in a family of symmetric three-body Coulomb systems as functions of the mass-ratioM. The results~in
m.a.u.! are rounded to six and three significant digits forE(M ) andG(M ), respectively, independently of th
actual accuracy.a@b#5a310b.

M 2m21E(M ) m21G(M ) M 2m21E(M ) m21G(M )

0 0.148 776 0.173@202# 16 0.165 530 0.619@208#

1 0.152 061 0.861@204# 17 0.165 776 0.228@208#

2 0.155 143 0.168@204# 18 0.166 004 0.437@209#

3 0.157 221 0.319@204# 19 0.166 215 0.286@211#

4 0.158 756 0.118@204# 20 0.166 412 0.140@209#

5 0.159 953 0.131@205# 21 0.166 596 0.329@209#

6 0.160 915 0.531@207# 22 0.166 768 0.366@209#

7 0.161 709 0.573@206# 23 0.166 930 0.319@209#

8 0.162 380 0.586@206# 24 0.167 083 0.231@209#

9 0.162 956 0.302@206# 25 0.167 227 0.111@209#

10 0.163 458 0.867@207# 26 0.167 363 0.539@210#

11 0.163 901 0.766@208# 27 0.167 493 0.110@210#

12 0.164 295 0.201@208# 28 0.167 616 0.162@211#

13 0.164 650 0.118@207# 29 0.167 733 0.595@211#

14 0.164 970 0.151@207# 30 0.167 846 0.787@211#

15 0.165 262 0.115@207# ` 0.175049 0
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not put a bar overr i j since the interparticle distances do n
depend on the particles’ masses. From Eq.~5! we have

guM→`5A 2

M
→0, ~49!

so the limit ~48! can be also understood asg→0. It is con-
venient to introduce new rescaled coordinates in configu
tion space,

R̄[gRu
M→`

5r 21, 0<R̄<`, ~50!

j̄[
j

2g U
M→`

5
r 321r 13

r 21
, 1<j̄<`, ~51!

h̄[
h

2g U
M→`

5
r 322r 13

r 21
, 21<h̄<1. ~52!

FIG. 3. Bold circles and squares: accurate results for the r
nance positionE(M ) and width G(M ) calculated by the Sieger
pseudostate method, the same as in Tables II–VII. Solid and da
curves: the results obtained by perturbation analysis of the B
Oppenheimer model.~a! The solid curve shows the results forE(M )
obtained by solving Eqs.~68!. The arrow indicates the valueE(`)
given in the last entry of Table VII.~b! The solid and dashed curve
show the results forG(M ) calculated by Eqs.~71a! and ~71b!,
respectively.
a-

Here R̄ is the distance between the heavy particles 1 and
and (j̄,h̄) are plane elliptic coordinates defining the positi
of the light particle 3 in the coordinate system with foci
the particles 1 and 2. Note that the new coordinates (R̄,j̄,h̄)
do not depend on the mass-ratioM, in contrast to the coor-
dinates (R,j,h) used above. The volume element~11! in
these coordinates becomes

dV̄[g3dVuM→`5p2R̄5~ j̄22h̄2!dR̄dj̄dh̄, ~53!

and the Schro¨dinger equation~12! takes the form

S 2
1

M

]2

]R̄2
1

H̄ad~R̄!

R̄2
2ED R̄5/2C~R̄,j̄,h̄ !50. ~54!

Here

H̄ad~R̄![g2Had~R!uM→`5 1
2 L̄0

21R̄C̄~ j̄,h̄ !, ~55!

L̄0
2[g2L0

2uM→`

5
24

j̄22h̄2 F ]

]j̄
~ j̄221!

]

]j̄
1

]

]h̄
~12h̄2!

]

]h̄
G , ~56!

and

C̄~ j̄,h̄ ![gC~j,h!uM→`5
24j̄

j̄22h̄2
115

ā~ j̄ !1b̄~ h̄ !

j̄22h̄2
,

~57!

where

ā~ j̄ ![
a~j!

2g U
M→`

52124j̄1 j̄2, ~58a!

b̄~ h̄ ![
b~h!

2g U
M→`

512h̄2. ~58b!

In the operator~56! one can easily recognize the thre
dimensional Laplacian multiplied by2R̄2 expressed in
terms of the coordinates (j̄,h̄), so L̄0

2/(2R̄2) is the kinetic
energy of the light particle 3. It should be noted that t
azimuthal degree of freedom corresponding to the rotation
this particle about the axis joining the particles 1 and 2
absent for the present caseL50, which explains the absenc
of the azimuthal term in Eq.~56!. Function~57! is the po-
tential energy of the system~16! multiplied by R̄. Thus the
second term in Eq.~54! gives the total energy of the ligh
particle 3 moving in the potential field created by the tw
heavy particles 1 and 2 clamped in space at the distancR̄
from each other plus the potential energy of interaction
tween them. This term does not depend onM. The first term
in Eq. ~54! is the kinetic energy of the relative motion of th
heavy particles 1 and 2 where, again, the centrifugal ene
corresponding to the rotation of the interparticle axis 1–2
absent for the present caseL50. This term is inversely pro-
portional to the reduced massM /2 of the heavy particles and
this is where all the dependence of Eq.~54! on M left in the
limit ~48! is concentrated.
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For evident reasons, the system described by Eq.~54! will
be called the Born-Oppenheimer~BO! model. Similarly to
Sec. II A, we introduce the Born-Oppenheimer adiaba
~BOA! eigenvalue problem

@H̄ad~R̄!2Ū n̄~R̄!#F̄ n̄~ j̄,h̄;R̄!50. ~59!

This equation allows separation of the variablesj̄ and h̄,
which confirms the made above statement regarding e
th
-
-
ro
ur

s

ns
n

u

tw

ur
c

ct

separability of the HSA eigenvalue problem~19! in HSE
coordinates in the limit~48!. Seeking the solutions to Eq
~59! in the form

F̄n̄~ j̄,h̄;R̄!5 f̄ n̄~ j̄;R̄!ḡn̄~ h̄;R̄!, ~60!

for the functionsf̄ n̄( j̄;R̄) and ḡn̄(h̄;R̄) one obtains
F2
d

dj̄
~ j̄221!

d

dj̄
2R̄ā~ j̄ !1Ū n̄~R̄!~ j̄221!2 1

2 Ān̄~R̄!G f̄ n̄~ j̄;R̄!50, ~61a!

F2
d

dh̄
~12h̄2!

d

dh̄
2R̄b̄~ h̄ !1Ū n̄~R̄!~12h̄2!1 1

2 Ān̄~R̄!G ḡn̄~ h̄;R̄!50. ~61b!
ng
lts
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ing
mic

lcu-
in
d
lp-

ibed
e

nce
ing
eso-
idth
to
le;

by

ely.
or-

n
her
d by
Apart from some inessential differences in notation and
definitions of the adiabatic potentialŪ n̄(R̄) and the separa
tion constantĀn̄(R̄), Eqs. ~61! coincide with equations de
scribing the two center Coulomb problem in prolate sphe
dal coordinates@26#. The differences are explained by o
wish to demonstrate the continuous transition from Eqs.~28!

to Eqs.~61! in the limit ~48!. The indexn̄ can be specified a

n̄[nuM→`5~nj̄ ,nh̄!, nj̄ ,nh̄50,1, . . . , ~62!

wherenj̄ andnh̄ give the numbers of zeros of the solutio
to Eqs.~61a! and~61b!, respectively. The exact classificatio
of the solutions to Eq.~59! by the plane elliptic quantum
numbers (nj̄ ,nh̄) naturally results in the limit~48! from the
approximate classification of the solutions to Eq.~19! by the
hyperspherical ellipticquantum numbers (nj ,nh). However
to comply with convention adopted in the two center Co
lomb problem@26#, in the following instead of (nj̄ ,nh̄) we
shall use the united atom quantum numbers. Thus the
lowest solutions to Eq.~59! corresponding to (nj̄ ,nh̄)
5(0,0) and (0,2) will be denoted by 1ssg and 3dsg , re-
spectively. The eigenvalues of Eq.~59! converted to

W̄n̄~R̄![Wn~R!uM→`5
Ū n̄~R̄!

R̄2
~63!

and the eigenfunctions normalized by

^F̄n̄uF̄m̄&BO5dn̄m̄ , ~64!

where

^F&BO[E
1

`

dj̄E
21

1

dh̄~ j̄22h̄2!3F~ j̄,h̄ ! ~65!

for an arbitraryF( j̄,h̄), will be called the BOA potentials
and channel functions, respectively. Without going into f
ther details we note that the difference betweenWn(R) and
W̄n̄(R̄) for largeM is ;1/M .
e

i-

-

o

-

We could continue this analysis of the BO model alo
the lines of Sec. II A and II B and obtain accurate resu
similar to that reported in Sec. II C. This development wou
be interesting in itself since though the BO model is kno
to be very useful and has many applications in study
bound states and various scattering processes in diato
molecules, we are not aware of any its applications to ca
lating resonances. However this would not clarify the orig
of the oscillations ofG(M ) which is sought here. So instea
we turn to perturbation theory which proves to be more he
ful for the present purposes than accurate calculations.

B. Fermi-Fano-Feshbach perturbation analysis

We are interested in the lowest resonance state descr
by Eq. ~54!. As M grows, the motions of the heavy and th
light particles represented in Eq.~54! by the variablesR̄ and
( j̄,h̄), respectively, become decoupled and the resona
width G(M ) vanishes. An adequate approach for treat
such narrow resonances consists in first assuming the r
nance state to be purely bound and then calculating its w
by perturbation theory. Apparently the earliest recipe
implement this approach was given by Fermi’s Golden Ru
later on, its physical content was enriched by Fano@27# and
its consistent mathematical formulation was developed
Feshbach@28#. Following @27#, the resonance width for the
BO model~54! can be estimated as

G52pU E
0

`K cEU2
1

M

]2

]R̄2
1

H̄ad~R̄!

R̄2 Uc0L
BO

dR̄U2

,

~66!

wherec0 andcE are two approximate solutions to Eq.~54!
corresponding to the same energyE5E and belonging to the
discrete and continuous parts of the spectrum, respectiv
Unless one goes into complexities associated with the rig
ous definition of Feshbach’sP and Q spaces@28#, these
functions remain undefined and can be chosen basing oad
hoc arguments. In the present situation the choice is rat
evident. The resonance state of interest here is supporte
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the second BOA channel 3dsg . Accordingly, we define the
bound state wave functionc0 by

c0~R̄,j̄,h̄ !5F0~R̄!F̄3dsg
~ j̄,h̄;R̄!, ~67!

where the radial functionF0(R̄) satisfies the equation

S d2

dR̄2
1M @E2W̄3dsg

~R̄!# D F0~R̄!50, ~68a!

the boundary conditions

F0~0!5F0~R̄!uR̄→`50, ~68b!

and the normalization condition

E
0

`

F0
2~R̄!dR̄51. ~68c!

The resonance positionE is given by the lowest eigenvalu
of Eqs.~68!. The decay of the resonance can occur only i
the lowest BOA channel 1ssg . So similar equations defin
ing the continuous energy wave functioncE read

cE~R̄,j̄,h̄ !5FE~R̄!F̄1ssg
~ j̄,h̄;R̄!, ~69!

where

S d2

dR̄2
1M @E2W̄1ssg

~R̄!# D FE~R̄!50, ~70a!

FE~0!50, FE~R̄!uR̄→`5A M

pK
sin@KR̄1d#, ~70b!

E
0

`

FE~R̄!FE8~R̄!dR̄5d~E2E8!. ~70c!

Here K5AM (E11/2) andd is the phase shift for elasti
scattering by the lowest BOA potential.

Substituting functions~67! and~69! into Eq. ~66! and ne-
glecting terms containing the second derivatives of the B
channels with respect toR̄, one obtains

G'
8p

M2U E0

`dFE~R̄!

dR̄
P1ssg,3dsg

~R̄!F0~R̄!dR̄U2

~71a!

'
8p

M2U E0

`

FE~R̄!P1ssg,3dsg
~R̄!

dF0~R̄!

dR̄
dR̄U2

, ~71b!

where

P1ssg,3dsg
~R̄!5u^F̄1ssg

u]/]R̄uF̄3dsg
&BOu

5U4^F̄1ssg
u j̄~ j̄22h̄2!21uF̄3dsg

&BO

Ū1ssg
~R̄!2Ū3dsg

~R̄!
U

~72!
o

A

characterizes the strength of nonadiabatic coupling betw
the channels 1ssg and 3dsg . The two formulas~71a! and
~71a! differ by the second derivative terms neglected in t
derivation. These terms contain an additional small fac
1/AM , as compared with the first derivative term retained
Eqs. ~71!, and they should be neglected in the limit~48!.
Formulas~71a! and~71a! would be identical if function~72!

were independent ofR̄.
Thus the procedure of calculating the resonance par

etersE(M ) and G(M ) in the present simplified treatmen
consists of the following steps:~i! constructing the two low-
est BOA channels 1ssg and 3dsg and the nonadiabatic cou
pling between them~72! by solving Eqs.~61!, and~ii ! solv-
ing Eqs. ~68! and ~70! and calculating integrals~71! for
different values of the mass-ratioM.

C. Results

The two lowest BOA potentials defined by Eqs.~59! and
~63! relevant to discussing the resonance state of inte
here are shown by the solid curves in Fig. 4. The absciss
this figure coincides with that in Fig. 1 in the limit~48!. The
solid curves in Fig. 4 would be indistinguishable by the e
from that in Fig. 1 if plotted together, the difference being
the order 1/M;1024 for the ppe system. The dashed curv
in Fig. 4 represents function~72!. The maximum of this
function atR̄'5.4 indicates the center of the region of stro
nonadiabatic coupling between the involved states.

The resonance positionE(M ) obtained by solving Eqs
~68! is shown by the solid curves in Figs. 3~a! and 5~a!. At
small M, there is a considerable difference between the
results and the accurate results reported in Sec. II C, as
be seen from Fig. 3~a!. But this difference disappears in th

FIG. 4. Solid curves: two lowest adiabatic potentialsW̄n̄(R̄) for
the Born-Oppenheimer model defined by Eqs.~59! and ~63! as

functons of the distanceR̄ between the identical particles defined b
Eq. ~50!. Dashed curve: the nonadiabatic coupling between

states 1ssg and 3dsg defined by Eq.~72!. R̄0 is the position of the

minimum of the 3dsg potential;R̄t is the turning point on the 1ssg

potential for the energyE5E; R̄b is the closest to the real axi
branch point connecting the sheets 1ssg and 3dsg .
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limit ~48! where the functionE(M ) defined by any of Eqs
~12!, ~54!, and~68! approaches from above the minimum
the 3dsg BOA potential indicated by the arrows in Figs. 3~a!
and 5~a! and given in the last entry of Table VII.

The resonance widthG(M ) calculated according to Eqs
~71a! and ~71b! is shown by the solid and dashed lines, r
spectively, in Figs. 3~b! and 5~b!. As can be seen from Fig
3~b!, the BO results are very similar to the accurate res
reported in Sec. II C. In both cases, the functionG(M ) os-
cillates with an increasing period and decreasing envelop
M grows. A more detailed inspection of the figure shows t
the periods and envelopes of these oscillations are ra
close for the two cases. The main difference is that there
phase shift between the oscillations which, however, a
exists between the BO results obtained from Eqs.~71a! and
~71b!. Because now we calculate notG(M ) directly but the
integrals in Eqs.~71!, with the same intrinsic accuracy o
calculations we can treat much smaller values ofG(M ), thus
being able to essentially extend the considered interval oM.
In fact, with the present numerical procedure for solving E
~68! and~70! which is based on the Numerov method we c
extend our calculations up toM5300, which restricts the
interval of M shown in Fig. 5. For even largerM, the inte-

FIG. 5. Solid and dashed curves: results for the resonance p
tion E(M ) and widthG(M ) obtained from the Born-Oppenheime
model, i.e., the same as the corresponding curves in Fig. 3, bu
a wider interval of the mass-ratioM. Dotted curves: the semiclas
sical results obtained~a! from Eq. ~75! and ~b! by fitting the enve-
lope of the Born-Oppenheimer results by that dictated by Eqs.~78!
and ~79!.
-

ts

as
t
er
a
o

.

grands in Eqs.~71! oscillate too rapidly and the integral
become too small.

To summarize this section, the main conclusion which
would like to make here is that both the full-scale three-bo
Coulomb problem~12! and the BO model~54! obtained from
Eq. ~12! in the limit ~48! lead to a very similar behavior o
the resonance widthG(M ). Therefore an explanation of th
oscillations ofG(M ) could be sought on the basis of E
~54!. But the motion inR̄ described by this equation, whic
couples the BOA channels and causes the decay of the r
nance state, becomessemiclassicalin the limit ~48!. Indeed,
it is well known that the case of large masses is forma
equivalent to the semiclassical situation\→0: in both cases
the coefficient of the second derivative term in the Sch¨-
dinger equation goes to zero. Thus an explanation of
oscillations ofG(M ) should be sought in terms of semicla
sical theory.

IV. QUALITATIVE DISCUSSION IN TERMS
OF SEMICLASSICAL THEORY

The physics defining the existence of a resonance is q
different from and generally speaking much simpler than t
defining its decay. For existence of a resonance state, as
as for existence of a bound state, certain quantization co
tions imposed on a finite classically accessible region of c
figuration space must be satisfied. One can imagine a
bouncing between walls in a box which gives a good int
tive picture of the underlying dynamics. On the other ha
decay of a resonance consists in passing from a finite to
infinite classically accessible region through a classically
accessible barrier or a narrow classically accessible tun
Such passing or tunneling is beyond our intuition since
do not have classical laws of motion under the barrier. In t
situation one often resorts to mathematical abstracti
which help to restore an intuitive picture of the dynamic
One of such abstractions that proves to be essential in s
classical theory is complex coordinate. Complexification o
coordinate implies analytical continuation of the correspo
ing potential energy function. For multichannel scatteri
problems this leads to the concept of adiabatic potential
ergy as a single multivalued analytical function of the sc
tering coordinate. Thus, for the three-body Coulomb probl
~12!, Eqs.~19! and~20! define the HSA potentialW(R) as a
multivalued function of complex hyperradiusR, andWn(R)
give different branches of this function. Similarly for the B
model ~54!: Eqs. ~59! and ~63! define the BOA potential
W̄(R̄) as a multivalued function of complex distanceR̄ be-
tween the particles 1 and 2, andW̄n̄(R̄) give its different
branches. The Riemann surface of such multivalued poten
functions consists of as many sheets as many channels a
the problem. The sheets are connected by branch po
forming a single potential energy surface. This surface is
key object in semiclassical theory providing an arena wh
the dynamics of the system takes place, while the dynam
itself is viewed as traveling over the surface. Such a vie
point on the dynamics was pioneered in classical papers
Landau@29# and later on it has been used by many autho
especially in theory of chemical reactions@30–33#. In Ref.
@34# this viewpoint was formulated as a research progr
and recently it has become known as Demkov’s construct

si-

or
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The Demkov’s construction is currently receiving wide re
ognition via the framework of the hidden crossing theo
proposed by Solov’ev@35#, see Refs.@36–40#. Here, we shall
use it for interpreting the oscillations ofG(M ). But let us
first return a step back and show how complex coordina
and a multivalued potential energy naturally arise in
theory.

Consider equations of Sec. III B in the limit~48!. First we
discuss the behavior of the resonance positionE(M ). Let R̄0
be the position of the minimum of the upper BOA potent
shown in Fig. 4, and let

W̄3dsg
~R̄!uR̄→R̄0

5v01v2~R̄2R̄0!21•••, ~73!

where v05W̄3dsg
(R̄0) and v25 1

2 W̄3dsg
9 (R̄0). Substituting

this expansion into Eq.~68a! and treating the higher term
perturbatively, in the lowest order we obtain

F0~R̄!uM→`5
~Mv2!1/8

p1/4
exp@2 1

2 ~Mv2!1/2~R̄2R̄0!2#

~74!

and

E~M !uM→`5v01S v2

M D 1/2

. ~75!

Equation~75! gives the two leading terms of the expansi
of E(M ) in powers of 1/M1/2. The first term here is the valu
of the potential in the minimum, and the second term i
half of the vibrational quantum corresponding to oscillatio
near the minimum. We remark that these terms are the s
for E(M ) defined by Eqs.~12!, ~54!, and~68!; the difference
arises in the term;1/M . The numerical values of the coe
ficients in Eq.~73! obtained in the present calculations a
R̄0'8.834 164 50, v0'20.175 049 036, and v2
'0.182 380 85231022, which coincide in all digits quoted
with the values given in@41#. The function defined by Eq
~75! is plotted by the dotted curve in Fig. 5~a!. Except at
small M, this curve is very close to the solid curve obtain
by solving Eqs.~68! numerically.

Now we turn to the resonance widthG(M ). Consider the
three factors defining the integrands in Eqs.~71! separately.
As follows from Eq.~74!, function F0(R̄) is localized near
the point R̄5R̄0 having the widthuR̄2R̄0u;1/M1/4 which
vanishes in the limit~48!. For largeM, an approximate semi
classical solution of Eqs.~70! in the regionR̄.R̄t is given by

FE~R̄!5A M

pK~R̄!
sinF E

R̄t

R̄
K~R̄8!dR̄81p/4G , ~76!

where

K~R̄!5AM @E2W̄1ssg
~R̄!#, ~77!

and R̄t is the turning point defined byK(R̄t)50. Thus
FE(R̄) oscillates with the period;1/M1/2 which for largeM

becomes smaller than the width of the functionF0(R̄). The
third factor, namely, the nonadiabatic coupling~72!, is a
-

s
e

l

a
s

e

slow varying function independent ofM. Thus the integrands
in Eqs.~71! are oscillatory functions with a bell-shaped e
velope. The phase of these oscillations with respect to
envelope varies withM. This results in oscillations of the
integrals~71!, which technically explains the oscillations o
G(M ). In fact, the integrals~71! become equal to zero fo
certain values ofM which means zero resonance wid
G(M ), i.e., for such values ofM the resonance state turn
into bound state embedded into continuum. However thi
an artifact of approximations assumed by Eqs.~66! and~71!.
As M grows, integrands in Eqs.~71! become highly oscillat-
ing functions and the integrals rapidly decrease. This cau
essential difficulties in calculating the integrals numerical
which is a common problem in calculations of semiclassi
matrix elements. A solution to this problem was given
@29# and consists in using the saddle point method. This
quires to analytically continue the integrand into compl

values of the integration variable,R̄ in the case of Eqs.~71!,
and this is how complex coordinate comes into play. If bo

functionsF0(R̄) andFE(R̄) in Eqs.~71! were substituted by
semiclassical approximations like that given by Eq.~76!,
then it can be shown@29,43# that the saddle points of th
integrand are defined byW̄1ssg

(R̄)5W̄3dsg
(R̄), i.e., they are

branch points of the BOA potentialW̄(R̄). This is how one
comes to the concept of a multivalued potential energy fu
tion.

Now we return to Demkov’s construction and outline
physically transparent although somewhat speculative
ture of the resonance decay dynamics. Suppose a state
the wave function~67! is prepared and placed into the upp
potential well in Fig. 4. Because this wave function is not
exact solution of Eq.~54!, the state will spread with time
seeking a way to escape from the region where it is initia
localized. But it cannot just jump from the upper to the low
potential curve, since this would cause an abrupt chang
the wave function. So it descends continuously flowing do
along the path on the Riemann surface of the BOA poten
W̄(R̄) that starts from the real axis atR̄'R̄0 on the upper
sheet, goes around a branch pointR̄b connecting the sheet
1ssg and 3dsg , and returns back to the real axis atR̄

'ReR̄b which approximately corresponds to the position
the maximum of the nonadiabatic coupling~72!, but now on
the lower sheet. Then there are two ways to proceed: re
ing the real axis the flux can go to the right or to the left
Fig. 4. The former path leads directly to fragmentation
gion R̄→`, while choosing the latter path the flux firstl
experiences reflection at the turning pointR̄t on the lower
BOA potential, and only then goes to fragmentation regi
The two paths lead to the same final state and their con
butions to the outgoing flux atR̄→` add coherently. This
results in interference pattern seen as the oscillations of
resonance widthG(M ).

Thus the oscillations ofG(M ) can be interpreted as
result of interference between two paths of the decay of
resonance state. Let us provide some additional argumen
support this interpretation. Basing on the outlined above p
ture the functional structure ofG(M ) can be specified as
follows:
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G~M !5a~M !e2a(M )sin2f~M !. ~78!

The three factors in this formula have different origins a
we discuss them separately.

The exponential factor in Eq.~78! arises from the fact tha
the semiclassical action accumulated along any path conn
ing two sheets of the Riemann surface of potential ene
inevitably acquires imaginary part which is the larger t
farther from the real axis lies the corresponding branch p
R̄b . The presence of such exponential factor in the exp
sion for probability of any nonadiabatic transition was fi
realized in@29#. This factor is the most important in Eq.~78!
since it defines the order of magnitude ofG(M ). The expo-
nent a(M ) is usually called the Massey parameter. In t
present case it is a function ofM which can be expanded a

a~M !uM→`5a1M1/21a01
a21

M1/2
1 . . . . ~79!

Fitting the envelope of the BO results forG(M ) obtained
from Eqs.~71! by the function}e2a1AM, which corresponds
to retaining only the first term in Eq.~79!, we find a1
'3.9160.01. The dotted curve in Fig. 5~b! shows this fit.
One can see that, indeed, it very well reproduces the e
lope of G(M ). Using this fit, the estimate of the resonan
width for the molecular ion H2

1 is G}10273 a.u. meaning
the lifetime}1048 years which is essentially longer than th
age of universe. Thus the considered resonance state in2

1

and other molecular systems listed in the end of Table I
be with confidence treated as truly bound.

The oscillatory factor in Eq.~78! describes interferenc
effects which always exist in the presence of turning poin
The origin of this factor was first realized in@44# andf(M )
is called the Stueckelberg phase. This factor varies betwe
and 1 and in many situations, e.g., in calculations of to
cross sections of nonadiabatic transitions, it can be repla
by its average value 1/2. However this is not always the c
and in situations where Stueckelberg phase is close to a
tiple of p this factor may become essential. Thus destruc
interference explains the small values of theS-wave cross
sections for Ps formation ine11H collisions @39# and for
muon transfer in thedtm system@9,42#; destructive interfer-
ence produces a dip in recombination probability for the
action 4He14He14He→4He14He2 @40#; and, eventually, it
is destructive interference which causes the widthG(M ) of
the resonance discussed in this work to almost vanish at
tain values ofM. The Stueckelberg phasef(M ) is approxi-
mately equal to the real part of the difference between
tions accumulated along two paths on the Riemann sur
of potential energy, but it also includes an additional ter
the so-called dynamical phase@30#. In the present case
f(M ) can be expanded as

f~M !uM→`5f1M1/21f01
f21

M1/2
1 . . . . ~80!

The solid @open# circles in Fig. 6 show the values ofM
5Mn for which the integral~71a! @~71b!# vanishes. This hap
pens whenf(M )5pn, which definesMn . Retaining the
first two terms in Eq.~80! we obtainMn5(pn2f0)2/f1

2.
ct-
y

t
s-
t

e-

n

.

0
l

ed
e,
ul-
e

-

r-

c-
ce
,

Fitting the numerical results forMn by this function, we find
f1'3.4560.01 andf0'23.1460.01. This fit is shown by
the dotted curve in Fig. 6; it excellently reproduces the c
culated values ofMn .

These two factors in Eq.~78! have a very general natur
and are well understood. Thus, for example, the hidd
crossing theory@35# should be able to yield the correct va
ues of the Massey parametera(M ), as was demonstrated b
a number of applications@36–40#. Perhaps it could also pre
dict the values of the Stueckelberg phasef(M ), although in
this case to achieve good quantitative agreement with a
rate results will be more difficult becase of the dynamic
phase which is not accounted for by the theory. Indeed,
calculations reported in@40# demonstrate strong dependen
of the position of the dip in recombination probability o
details of the theoretical model. It should be noted that
spite of this difficulty the hidden crossing theory seems to
the most appropriate framework for calculatinga(M ) and
f(M ), at least it is hardly possible to do this staying on re
coordinate axis, see the Appendix. The nature of the th
factor in Eq.~78!, i.e., the preexponenta(M ), is more subtle.
It is defined by the Stokes’ phenomenon and is not gener
known, except for a few exactly solvable problems; see, e
a recent review@45#. In particular, this factor is not ac
counted for by the hidden crossing theory@35#. However
a(M ) is usually a slow varying function as compared wi
the two other factors and replacing it by a constant does
produce any visible changes in log-scale plots such as F
3~b! and 5~b!.

To conclude this section, we have seen that semiclass
theory may be very helpful providing a transparent quali
tive picture of the phenomenon. Whether it is capable
providing its quantitative description remains an open qu
tion to answer which goes beyond the scope of this pape

V. SUMMARY OF RESULTS AND DISCUSSION

In this paper we have analyzed the lowest1Se resonance
state in a family of symmetric three-body Coulomb syste

FIG. 6. Mn gives the position of thenth minimum of the reso-
nance widthG(M ) for the Born-Oppenheimer model. Solid an
open circles—numerical results obtained from Eqs.~71a! and~71b!,
respectively. Dashed line is a fit to the numerical results accord
to Eqs.~78! and ~80!.
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as a function of the ratioM of the masses of the constitutin
particles. The results of accurate calculations by Sieg
pseudostate method of the resonance positionE(M ) and
width G(M ) in the interval 0<M<30 are reported. This
interval includes several realistic three-body Coulomb s
temseep, eee1, ppm, ddm, and ttm for which the most
accurate to date estimates of the resonance parameters
been obtained. But the principal finding of these calculatio
is thatG(M ) oscillates as a function ofM, which reveals an
interference mechanism in the resonance decay dynam
The perturbation analysis of a simplified model obtain
from the three-body Coulomb problem in the limitM→`
extends the considered interval of the mass-ratio up toM
5300, confirming thatG(M ) continues to oscillate with an
increasing period and decreasing envelope asM grows. Si-
multaneously it suggests that the mechanism of the osc
tions could be interpreted in terms of semiclassical theo
The key role in such interpretation belongs to what is c
rently known as the Demkov’s construction@34#. Decay of a
resonance in this approach amounts to passing from the
tial Riemann sheet of the adiabatic potential energy co
sponding to the closed channel to a lower sheet corresp
ing to the open channel around a branch point connecting
sheets. Then the oscillations ofG(M ) can be interpreted as
result of interference between two paths of the resona
decay, one of which goes directly to fragmentation regi
while the other one first passes through the turning point
the lower sheet. In other words, the oscillations ofG(M ) are
a manifestation of the Stueckelberg phase@44# well known
from analysis of different two-state models@30–33,45#. The
dependences onM of the envelope of the functionG(M ) and
of the period of its oscillations obtained on the basis of t
interpretation agree excellently with the present numer
results. This warrants more detailed study of the multivalu
adiabatic potential energy for the three-body Coulomb pr
lem and further development of the Demkov’s construct
in the framework of the hyperspherical method.

The discussed interference mechanism of the oscillat
of G(M ) clearly has a very general nature. Similar oscil
tions should exist also in the dependence of resonance w
on some other parameters, for example, the vibrational qu
tum number of the resonance state and the total angular
mentum of the system. At the same time, variation of not a
parameter can cause oscillations. Thus the width of
2s2 1Se resonance state in two-electron atoms is known to
a monotonic function of the nuclear charge@46#. The oscil-
lations found in this work raise a very interesting question
whether it is possible by varying some parameters of
system to achieve exactlyzero resonance width, which
would mean the existence of bound states embedded in
continuum of the three-body Coulomb problem. Note th
there is not any general law that would forbid such a po
bility. The oscillations also have a more practical implic
tion: calculations of resonance width by approximate me
ods, like Fermi’s Golden Rule, although giving the corre
envelope for a wide range of some parameter can yie
completely wrong result for any its particular value.

We conclude by noting that although the mass-ratioM in
rt

-

ave
s

cs.
d

a-
y.
-

i-
-
d-

he

ce
,
n

s
l

d
-

n

s
-
th
n-
o-
y
e
e

f
e

he
t
i-
-
-
t
a

realistic three-body Coulomb systems is not, of course
continuous parameter, the results of this work can be app
also to charged excitons in semiconductors@47#. The effec-
tive masses of electrons and holes in such systems can
considerably and the oscillations ofG(M ) could be probably
observed experimentally.
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APPENDIX: MISLEADING TEMPTATION

We suspect that reading Sec. IV a temptation might a
to derive a formula for the resonance widthG(M ) in the
limit ~48! by substituting functions~74! and ~76! into Eqs.
~71! and estimating the integrals. Indeed, there is no do
that function ~74! provides a very good point-to-point ap
proximation to the exact solution of Eqs.~68! for sufficiently
largeM. The same holds for function~76! in respect to Eqs.
~70!, at least in the vicinity of the pointR̄5R̄0 where inte-
grals in Eqs.~71! seem to accumulate. The nonadiabatic co
pling ~72! is a slow varying function and can be replaced
the constantP05P1ssg,3dsg

(R̄0). Acting this way, one

would obtain forG(M ) formula of the form~78!, where the
leading terms in the expansions of the preexponent fa
a(M ), the Massey parametera(M ), and the Stueckelberg
phasef(M ) for largeM are given by

a~M !516P0
2p1/2K0

v2
1/4

1

M5/4
'

0.29

M3/4
, ~A1!

a~M !5
K0

2

~Mv2!1/2
'7.64M1/2, ~A2!

f~M !5E
R̄t

R̄0
K~R̄8!dR̄8'4.82M1/2, ~A3!

whereK(R̄)5AM @v02W̄1ssg
(R̄)# and K05K(R̄0). Com-

paring this equations with expansions~79! and ~80! one can
see that the values of the parametersa1'3.91 and f1
'3.45 obtained from fitting the numerical results, as d
cussed in Sec. IV, are quite different from the valuesã1

'7.64 andf̃1'4.82 that follow from Eqs.~A2! and ~A3!.
This is not surprising because in order to obtain correct v
ues of the exponentially small integrals~71! functions ~74!
and ~76! must approximate the exact solutions of Eqs.~68!
and ~70! with exponentially small error, which is not th
case. Thus the discussed temptation is misleading and sh
be avoided.
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@47# G. Munschy and B. Ste´bé, Phys. Status Solidi B64, 213

~1974!.


