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Abstract

Complexome profiling is a novel technique which uses shotgun proteomics to establish protein migration profiles from
fractionated blue native electrophoresis gels. Here we present a dataset of blue native electrophoresis migration profiles for
953 proteins by complexome profiling. By analysis of mitochondrial ribosomal complexes we demonstrate its potential to
verify putative protein-protein interactions identified by affinity purification – mass spectrometry studies. Protein complexes
were extracted in their native state from a HEK293 mitochondrial fraction and separated by blue native gel electrophoresis.
Gel lanes were cut into gel slices of even size and analyzed by shotgun proteomics. Subsequently, the acquired protein
migration profiles were analyzed for co-migration via hierarchical cluster analysis. This dataset holds great promise as a
comprehensive resource for de novo identification of protein-protein interactions or to underpin and prioritize candidate
protein interactions from other studies. To demonstrate the potential use of our dataset we focussed on the mitochondrial
translation machinery. Our results show that mitoribosomal complexes can be analyzed by blue native gel electrophoresis,
as at least four distinct complexes. Analysis of these complexes confirmed that 24 proteins that had previously been
reported to co-purify with mitoribosomes indeed co-migrated with subunits of the mitochondrial ribosome. Co-migration of
several proteins involved in biogenesis of inner mitochondrial membrane complexes together with mitoribosomal
complexes suggested the possibility of co-translational assembly in human cells. Our data also highlighted a putative
ribonucleotide complex that potentially contains MRPL10, MRPL12 and MRPL53 together with LRPPRC and SLIRP.
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Introduction

Protein-protein interactions are essential for many different

cellular processes. Perturbed protein-protein interactions can have

strong negative effects on cell viability, which in turn may have

devastating effects in an organism. This is exemplified by the

severe clinical syndromes that are associated with assembly defects

of the mitochondrial oxidative phosphorylation (OXPHOS)

complexes [1,2]. Other examples of disease that involve gained,

lost or perturbated protein-protein interactions are Charcot-

Marie-Tooth disease, Alzheimer’s disease, Huntington’s disease,

multiple acyl-CoA dehydrogenation deficiency, MCAD deficien-

cy, hereditary spastic paraplegia, and pathogen-host interactions

[3–5]. Cataloguing of protein-protein interactions not only

contributes to the fundamental understanding of cellular biology

but also provide insight into the pathogenic mechanisms that

underlie disease. Ultimately, such data can be used to develop

pharmaceutical interventions in selected cases via targeted

disruption of protein-protein interactions by antibodies, peptides,

or even small molecules [3]. It is therefore important for

fundamental-, clinical-, and pharmaceutical-research to unravel

protein-protein interactions.

Blue native gel electrophoresis (BNE) has been developed to

study native protein complexes [6–8]. In this procedure, protein

complexes are solubilised in their native state, decorated with the

charged dye Comassie Blue, and separated by size using

electrophoresis in gradient acrylamide gels. Large-scale analysis

of protein-protein interactions by BNE was previously performed

by two dimensional blue native/ sodium dodecyl sulphate

polyacryl amide gel electrophoresis (2D BN SDS-PAGE) com-

bined with mass spectrometry. Protein complexes are separated in

a first dimension BNE followed by a second denaturing SDS-

PAGE step to resolve protein complexes into their respective

subunits. Stained protein spots are excised and submitted to tryptic

digestion to identify each protein via its proteolytic peptides by

mass spectrometry [9]. We have reported a method that omits the

second dimension SDS-PAGE and spotpicking-based mass spec-

trometric identification of proteins by direct analysis of fraction-
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ated BNE gel lanes by liquid chromatography – tandem mass

spectrometry [10]. This method applies labelfree semi-quantitative

shotgun proteomics to blue native gel lanes that are cut into gel

slices of equal size. The acquired mass spectrometry data is used

for protein identification and to determine the relative abundance

of each respective protein in the gel slices to cover the entire blue

native separation length. This information is then used to assemble

the in-silico protein migration profiles. The outline of this method is

schematically shown in figure 1. Following its introduction,

different groups have successfully applied the methodology to

study protein-protein interactions [11–14]. By the application of

hierarchical clustering Heide et al [11] extended this method to a

true bottom-up proteomics approach coined complexome profil-

ing.

One of the advantages of complexome profiling over the

classical 2D BN SDS-PAGE method is that the electrophoretic

profiles are stored in a data matrix of proteins (rows) with gel slices

(columns) where each cell contains the respective relative

abundance. This allows the unambiguous analysis of protein co-

migration by computational methods such as protein correlation

profiling [10,15,16] and clustering methods [11,12,14]. Once

acquired, the dataset can be used to identify potential de novo

protein-protein interactions or drive validation of predicted

protein-protein interactions from e.g. affinity purification – mass

spectrometry (AP-MS) experiments. The latter application is of

particular interest as the mass spectrometric identification of co-

purified proteins on itself does not provide physicochemical

information about the actual interactions themselves or the size

of the complexes [11].

In this paper we present the first complexome profiling dataset

from human cells which can be used by researchers to support

alleged protein-protein interactions, identify novel protein-protein

interactions, or to prioritize candidate protein interactors. A small

subset of the protein profiles generated via different quantitation

methods was previously used to deliver the proof-of-principle for

the approach [10] and identified at least two complex I assembly

chaperones [10,17,18]. Following further advances in data

processing methods (such as peptide selection based on profile

similarity rather than intensity to construct protein profiles), we

here describe the complete dataset of 953 protein migration

profiles from a mitochondrial HEK293 fraction in two acrylamide

(AA) gradient gels of 4–12% and 5–15% AA. Hierarchical

clustering (HCL) was used to order the protein migration profiles

for ease of use, which is also provided as a supplementary data

with supporting evidence from STRING [19–21] and DAVID

[22,23] for protein relationships within each cluster.

Four of the HCL clusters were of particular interest as they

contained proteins of the 28 S and 39 S mitochondrial ribosome

(mitoribosome) which has not been analyzed by BNE thus far.

Recent publications reported interactions between many different

proteins and the mitoribosome based on AP-MS results [24–27].

To demonstrate the potential of our dataset to underpin AP-MS

results we have analyzed the protein migration profiles from

recently reported mitoribosome-interacting proteins for co-migra-

tion with mitoribosomal subunits.

Methods

Sample preparation
HEK293 cells grown in DMEM (Biowhitaker) supplemented

with 10% (v/v) FCS and 1% (v/v) penicillin/streptomycin were

harvested at ,80% confluency using PBS. Cells were disrupted by

pottering in isotonic buffer and a mitochondrial enriched fraction

was obtained by centrifugation according to Vogel [28]. Native

protein complexes were extract from the mitochondria-enriched

pellet by resuspension of the pellet in 200 ml ACBT (1.5M

aminocaprioc acid, 75 mM Bis-Tris pH 7.0) and 22 ml of 20% (w/

v) n-dodecyl b-d-maltoside(approximately 1 gr/gr protein). The

suspension was incubated for 10 minutes on ice to solubilize

proteins and subsequently centrifuged at 10 0006g for 25 minutes

at 4uC. The concentration of solublilized proteins in the

supernatant was determined using the MicroBCA protein assay

Figure 1. Schematic overview of the complexome profiling approach. Protein complexes are separated according to size by blue native gel
electrophoresis after which the gel lane is cut into gel slices at even distance. Each gel slice is separately processed by tryptic in-gel digestion and
subsequently analyzed by liquid chromatography combined with online tandem mass spectrometry. In the final steps, the peptide identifications
with according relative abundance from each individual LC-MS/MS analysis are combined to reconstruct the migration profile for each protein that
span the complete length of the blue native separation. Please note that two subunits of the large red complex were also available as a smaller
complex in this example to include proteins that form multiple complexes.
doi:10.1371/journal.pone.0068340.g001
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kit (Pierce) prior to addition of BN sample buffer. BN gels (4–12%

and 5–15% acryl amide gradient gels) were cast using Bio-Rad

mini PROTEANH II systems in combination with 1.5 mm

spacers. Both gels were loaded with 80 mg of protein per lane

and run till the dye front reached the end of each respective gel.

The resulting gel lanes were cut into 24 gel slices at even

distance and each gel slice was subjected to in-gel tryptic digestion

essentially according to Heide [11]. Briefly, gel slices were cut into

161 mm cubes and transferred to a fresh 96-well plate. The gel

particles were washed successively three times with 50 mM

ammonium bicarbonate (AHC), 50% (v/v) acetonitrile (ACN)

and 100% (v/v) ACN for 20 minutes under gentle agitation. Gel

particles were swelled in 10 mM dithiotreitol and incubated for

30 minutes at 56uC to reduce protein disulfide bonds. After

removal of the reduction buffer, gel particles were shrunk in ACN

for 20 minutes at room temperature under gentle agitation.

Figure 2. LC-MS/MS data processing and protein profile generation. Figure 2A provides an overview for the main steps in LC-MS/MS data
processing. The acquired mass spectrometry data is used to identify peptides and protein for each gel slice via database searches using the Mascot
search engine. Resulting peptide identifications together with the LC-MS data are used as input for the label-free quantitation by the Ideal-Q software
that integrates the chromatographic peak surfaces for each peptide from respective extracted ion currents. Quantitative information from all LC-MS/
MS analyses is then used to determine the relative abundance for each peptide in every gel slice. The final step in data processing uses the peptide
profiles to reconstruct the migration profile for each individual protein in the blue native gel separation. Details for the reconstruction of the protein
migration profiles are shown in figure 2B with data for the cytochrome c oxidase subunit 6 C protein. First, all peptide profiles of a protein are used
to generate a similarity matrix that contains the Pearson’s correlation coefficients between each peptide profile. This information is then used to
calculate a similarity score for each peptide which is defined as the sum of all the Pearson’s correlation coefficients for the peptide from the similarity
matrix. The next step uses a Grubb’s outlier test on the calculated similarity scores to discard peptide profiles that poorly correspond with the general
peptide migration profile. Finally, the peptide migration profiles are ranked in descending order of their similarity score of which the 5 highest
scoring peptide profiles are used to construct the protein migration profile by averaging.
doi:10.1371/journal.pone.0068340.g002
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Alkylation of reduced cysteine residues was performed by

incubating the gel particles for 30 minutes in alkylation buffer

(50 mM chloroacetamide in 50 mM AHC) at room temperature

in the dark. Following the alkylation step, gel particles were

washed successively with 50 mM AHC and ACN prior to the

addition of 50 ml 12.5 ng/ml trypsin (Promega: V511C) and

overnight protein digestion at 37uC. Proteolytical peptides in the

digestion buffer were recovered by transfer of the buffer solution to

a fresh 96-well plate. Remaining proteolytical peptides in the gel

pieces were recovered by shrinking the gel particles in ACN for

30 minutes at room temperature under gentle agitation and

subsequent transfer of the peptide-containing ACN solution to the

96-well plate. The combined peptide extracts were subjected to in

vacuo centrifugation to remove acetonitrile. Subsequently, stop and

go elution (STAGE) tips [29] were used to desalt and concentrate

the peptide mixtures prior to LC-MS/MS measurements.

Liquid chromatography – tandem mass spectrometry
Duplicate measurements for each gel slice were performed by

nanoflow reversed-phase C18 liquid chromatography (Agilent

1100 series) coupled online to a 7T linear ion trap Fourier-

Transform ion cyclotron resonance mass spectrometer (LTQ FT,

Thermo Fisher Scientific) [30,31]. Chromatographic separations

were performed using a 15 cm long6100 mm ID fused silica

electrospray emitter (New Objective, PicoTip Emitter, FS360-100-

8-N-5-C15) packed in-house at 100 bar with ReproSil-Pur C18AQ

3 mm 140 Å resin (Dr. Maisch) resuspended in methanol.

Proteolytical peptides were loaded directly onto the analytical

column using 0.5% (v/v) acetic acid at a flow rate of 600 nl/min.

A linear gradient of 12–46% acetonitrile (ACN) with 0.5% (v/v)

acetic acid as ion pair reagent was used to gradually elute peptides

from the column at a flow rate of 300 nl/min. Following each

analysis, the column was washed for 10 minutes with 80% ACN at

600 nl/min and conditioned using 0.5% acetic acid for 10 min-

utes at 600 nl/min. Intermittent blank injections were performed

to minimize carry-over effects between samples.

The mass spectrometer was operated in positive ion mode and

programmed to acquire a single full MS survey scan in the ICR

cell with up to four data dependent collision induced dissociation

(CID) fragmentation spectra in parallel by the linear ion trap. The

mass spectrometer was tuned on MRFA peptide (m/z 524) at

300 nl/min and calibrated using caffeine (m/z 195), MRFA (m/z

524) and Ultramark 1621 (m/z 1122, 1222, 1322, 1422, 1522,

1622, 1722 and 1822) standards from the MSCAL5 Proteo-

MassTM LTQ/FT-Hybrid ESI Positive Mode CalMix kit (Sigma

Aldrich). The ICR cell precursor scans were performed using a

single microscan at 50 000 resolving power (FWHM at m/z 400)

on 1E6 ions or 500 ms maximum injection time (whichever came

first). Data dependent acquisition of MS/MS spectra by the linear

ion trap used a single microscan at normal scan speed. The

automatic gain control was set to 1E4 ions for MS/MS with

400 ms maximum injection time. Collision induced dissociation of

precursor ions was performed at 27% normalized collision energy

for 30 msec and activation Q = 0.250. An isolation width of 3 Th

was used to trap and isolate precursor ions for MS/MS

experiments. Dynamic exclusion was enabled to minimize re-

analysis of precursor ions (list size: 500, exclusion time: 300 sec, 1

repeat count, 1.5 amu precursor mass tolerance).

Database searches
Raw mass spectrometry data was converted into Mascot search

engine compatible peak lists by ExtractMsn (Thermo Fisher

Scientific) and an in-house developed Perl script. Mascot database

searches were performed against the Homo sapiens RefSeq (release

44) database [32,33] with added sequences of known contaminant

proteins (e.g. trypsin). The decoy database used for false discovery

rate (FDR) validation contained the reversed protein sequences.

Mascot (Matrix Science) [34] database searches were performed

with 15 ppm and 0.5 Da mass tolerance for precursor ions and

fragment ions, respectively. Carbamidomethylation (Cys) was

specified as fixed modification whereas acetylation (protein N-

terminus) and oxidation (Met) were selected as variable modifica-

Figure 3. Distributions of transmembrane domains and cellular compartments of proteins in the dataset. Figure 3A shows the
tornado diagram of transmembrane domains in proteins from both the complexome profiling dataset and the complete RefSeq Homo sapiens
database. A relative enrichment of 8% more proteins with transmembrane domains was observed for the complexome dataset with respect to the
RefSeq Hs database. The tornado diagram for the cellular compartment distribution of proteins in figure 3B show an enrichment of mitochondrial
proteins in our dataset compared to the RefSeq Hs database. Please note that proteins may have multiple cellular compartment GO annotations.
doi:10.1371/journal.pone.0068340.g003
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tions. A single missed tryptic cleavage was tolerated. Mascot

database search results were exported as peptide XML files and

validated according to Weatherly [35] to achieve a maximum 1%

FDR at the protein level.

Quantitation and generation of protein abundance
profiles

Quantitative information was extracted for valid protein

identifications as integrated ion current chromatograms of

respective peptides by IDEAL-Q software [36] using mzXML

files generated by the ReadW software tool [37]. Parameters used

for IDEAL-Q data processing specified 30 ppm mass tolerance, a

minimal Mascot ion score of 25, and unique peptides only.

Quantitative data were exported as peptide level results. An in-

house developed Perl script was used to generate protein abundance

profiles from IDEAL-Q output data. Figure 2 illustrates the

different processing steps that were used to generate protein

abundance profiles. For each protein, the integrated ion current

chromatograms for all identified peptides were extracted from

each gel slice. The peptide abundance profiles were scaled

between 0 and 1 to ensure equal weight of each peptide

abundance profile. Next, a similarity matrix was constructed from

all peptide abundance profiles for each protein using Pearson’s

correlation coefficients. Similarity scores for all peptides of a

protein were calculated as the sum of all Pearson’s correlation

coefficients from the similarity matrix. Aberrant peptide abun-

dance profiles for each protein were excluded from further

processing by a Grub’s outlier test (with significance p.0.9) and

remaining peptide abundance profiles were ranked by descending

similarity score. Finally, the protein abundance profiles were

generated as the average profile from the top 5 peptide abundance

profiles with highest similarity scores. Protein abundance profiles

from duplicate gel slice measurements were averaged for each

acryl amide gradient. Finally, a core dataset of 953 protein

abundance profiles was compiled that consists of proteins that

were detected in both acryl amide gradients.

Metadata
Protein identifiers, gene ontology information, and official gene

symbols were obtain via DAVID [22] and ProteinCenter (Thermo

Fisher Scientific). MITOP2 [38] was used to identify mitochon-

drial reference proteins and to map predicted mitochondrial

proteins by the MITOP2 SVM algorithm. For each experiment,

the number of peptides and the average Pearson’s correlation

Table 1. Co-localization and hierarchical clustering details for known protein complexes in the dataset.

Co-localized
subunits

Protein complex
Detected
subunits

4–12%
AA

5–15%
AA

Proteins clustered
together by HCL

Complex I – NADH dehydrogenase 28 28 28 HCL27: 22 (79%)

Complex II – Succinate dehydrogenase 2 2 2 HCL 14: 2 (100%)

Complex III – Cytochrome bc1 complex 7 7 7 HCL 26: 6 (86%)

Complex V – ATP synthase 11 11 11 HCL 32: 10 (91%)

TCP containing chaperone complex 8 8 8 HCL27: 7 (100%)*

Isocitrate dehydrogenase 4 4 4 HCL 25: 4 (100%)

propionyl-CoA carboxylase 2 2 2 HCL 27: 2 (100%)

Prohibitin complex 2 2 2 HCL 28: 2 (100%)

Proteasome 7 7 7

Integrin complex 6 6 6

V-type proton ATPase: V1 part 3 3 3

V-type proton ATPase: V0 part 3 3 3

beta-hexosaminidase 2 2 2

2-oxoisovalerate dehydrogenase 2 2 2 HCL 14: 2 (100%)

electron transfer flavoprotein 2 2 2 HCL 15: 2 (100%)

Trifunctional enzyme 2 2 2 HCL 25: 2 (100%)

28S mitochondrial ribosome 24 23 23
HCL 28: 13 (54%), HCL 29: 3 (13%), HCL 31: 6
(25%)

Complex IV - Cytochrome C oxidase 7 6 6 HCL 21: 5 (71%)

dolichyl-diphosphooligosaccharide--protein glycosyltransferase 6 5 5

39S mitochondrial ribosome 29 22 22 HCL1: 17 (59%), HCL23: 3 (10%)

40S Ribosome 16 13 10

2-oxoglutarate dehydrogenase 3 2 3 0%

60S Ribosome 32 19 26

Pyruvate dehydrogenase 3 0 0 0%

This table shows the number of available subunits in the dataset for each annotated protein complex with the according number of subunits that co-localize in each
acryl amide gradient. Presented here are also the number of subunits that reside within the same cluster(s) for each mitochondrial protein complex from the hierarchical
clustering analysis of the data. *Of the eight TCP complex subunits seven were predicted to be mitochondrial and were included in the HCL analysis.
doi:10.1371/journal.pone.0068340.t001
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coefficient from the selected top 5 peptide abundance profiles per

protein are listed. Additionally, the Pearson’s correlation coeffi-

cients for duplicate protein abundance profiles from each acryl

amide gradient are provided as additional quality control measure.

Mass ranges as well as the average mass of each gel slice were

calculated using the known molecular masses of OXPHOS

complexes [39].

Hierarchical clustering analyses
Hierarchical clustering for all mitochondrial protein abundance

profiles was performed by the multiple experiment viewer (MEV)

software [40]. Uncentered Pearson’s correlation coefficients were

used as distance metric for clustering in combination with

complete linkage distance and optimized leaf order. Clusters were

defined in MEV software using an arbitrary distance cut-off of

0.540892 for further analysis. Proteins from each cluster were

analyzed by STRING and DAVID tools to mine available data

sources for known protein relationships within clusters. To

investigate the rate at which proteins cluster together by mere

chance we compared the hierarchical clustering results for a set of

16 known mitochondrial complexes from the dataset with results

obtained from 10 decoy matrices that contained shuffled

abundance profiles. Here, the average number of clusters that

contained two or more subunits as well as the average number of

clustered proteins for each complex were used to assess the

hierarchical clustering results.

Co-migration of mitoribosomal proteins with previously report-

ed interactors from affinity purification – mass spectrometry

experiments were analyzed by hierarchical clustering. Proteins

reported by Rorbach [26], Richter [27], and He [24,25] together

with all detected mitoribosomal proteins were used to select

protein abundance profiles for further analysis. Here, exclusively

relevant gel slices for each of the four mitoribosomal complexes

detected in the initial hierarchical clustering analysis were used to

increase selectivity and sensitivity of the analysis for each

respective complex. Hierarchical clustering was performed using

Euclidian distance metric to minimize false positives from low

abundance data.

Results

Dataset description and characteristics
A combined total of 118760 MS/MS spectra were mapped to

3981 proteins or 1766 protein identification groups. Proteins were

identified at #1% FDR with an average of 9 non-redundant

peptides and an average summed Mascot ion score of 417 (min:

43, max: 5765). Minimum Mascot ion score thresholds to achieve

1% protein FDR or better were determined to be 50, 27, 21, 21,

19 and 16 for proteins with coverage of 1, 2, 3, 4, 5 and $6

peptides, respectively. Peptides were identified with an average

Mascot ion score of 41 (min: 16, max: 152) and an average

precursor ion mass error of 4.8563.03 ppm. Analysis of the

HEK293 mitochondrial fraction by complexome profiling using

two acrylamide gradients resulted in a dataset of 953 proteins

where migration profiles could be constructed for both the 4–12%

and 5–15% acrylamide (AA) gels. Here, the use of two AA

gradient gels allows for cross-validation of protein co-migration

and helps to distinguish between protein complexes of similar size.

Valid protein and peptide identification data is available from

file S1. For the set of 953 proteins we have analyzed the molecular

weight, isoelectric point and hydrophobicity (GRAVY) distribu-

tions with respect to the RefSeq Hs database to identify possible

enrichment of protein classes based on these physicochemical

properties. Results shown in file S2 indicate no selective enrich-

ment of proteins based on molecular weight or isoelectric point as

both relative distributions are virtually identical to those of the

RefSeq Hs database (Pearson’s r= 0.991 and r= 0.994, respec-

tively). However, the hydrophobicity distribution of proteins in our

dataset shows a slight shift towards more hydrophobic proteins.

This might be explained by the relative high abundance of

mitochondrial membrane proteins in combination with the protein

extraction and electrophoresis methods that were optimized for

the analysis of membrane proteins. This is supported by a

significant enrichment for proteins with one or more transmem-

brane domains with respect to the RefSeq Hs database (53.62%

versus 45.66%, FDR adjusted p-value = 7.35E-7). The distribution

of transmembrane domains for proteins in the dataset as well as

the RefSeq Hs database is shown in figure 3A. In addition, we

compared the hydrophobicity distribution of proteins in our

dataset to that of mitochondrial proteins in the RefSeq Hs

database (file S2). Interestingly, the hydrophobicity distribution of

proteins in our dataset is more identical to that of the subset of

mitochondrial proteins in the RefSeq Hs database compared to

the hydrophobicity distribution of all RefSeq Hs proteins

(Pearson’s r= 0.993 versus r= 0.927, respectively).

Because a mitochondria enriched fraction was used in this

study, the dataset not only contains mitochondrial proteins but

also provides migration profiles of proteins that reside in other

cellular organelles. Unfortunately, the mitochondrial localization

of many proteins is still unknown, and we therefore included

information from the MITOP2 database [38] besides GO

annotation [41] to annotate predicted mitochondrial proteins.

Proteins included in the MITOP2 mitochondrial reference dataset

as well as predicted to be mitochondrial by the MITOP2 support

vector machine approach were also considered as mitochondrial

proteins in this work. Based on GO annotations, proteins in our

dataset predominantly localized to mitochondria (437 proteins),

nucleus (250), cytosol (215 proteins), and endoplasmic reticulum

(176 proteins). The relative distribution of proteins over cellular

compartments is shown in figure 3B. Mitochondrial proteins were

significantly enriched in our dataset compared to the RefSeq Hs

database based on GO annotations (45.95% versus 8.98%, FDR

adjusted p-value = 5.65E–18).

The protein profiles dataset is provided as file S3 for download

and contains the protein abundance profiles with according meta-

information for BNE AA gradients. Meta-information includes

protein description, identifiers (protein Gi code, NCBI RefSeq ID,

Uniprot ID, official gene symbol), and cellular localization (Gene

Ontology, MITOP2 reference set, MITOP2 SVM prediction).

Additional information is provided that can be used to assess the

robustness of the protein migration profile. These include the

number of peptides used to reconstruct the protein migration

profile, average Pearson’s correlation coefficient of the peptide

profiles with respect to the average (protein) profile, and the

Figure 4. Representative hierarchical clustering results of mitochondrial protein profiles. Profiles from proteins with mitochondrial
annotation (MITOP2 reference dataset or Gene Ontology) or mitochondrial prediction (MITOP2 SVM) were subjected to hierarchical clustering
(uncentered Pearson’s correlation metric, optimized leaf order, and complete linkage distance). Five representative clusters are shown that contain
the five mitochondrial oxidative phosphorylation system (OXPHOS) complexes. Clusters that are referenced in the text are indicated in the HCL tree
with numbers that correspond with cluster numbers defined by the MEV software.
doi:10.1371/journal.pone.0068340.g004
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Pearson’s correlation coefficient for duplicate experiments from

the same acrylamide gradient gel.

Co-migration of subunits from known complexes
Out of the 953 proteins, 209 proteins could be assigned to 24

known heteromeric complexes based on protein description or

online information resources [5,11,42]. Subunits from protein

complexes should theoretically co-localize at the respective

migration distance of the protein complex in blue native gels.

This was observed for the majority (88%) of subunits from known

protein complexes in the dataset as shown in detail in file S4 and

summarized in table 1. However, some subunits (12%) of several

complexes did not co-localize as expected. This could be caused by

solubilization or electrophoresis effects since data from both acryl

amide gradients generally show similar profiles for most of these

subunits. Nevertheless, the majority of subunits from known

protein complexes co-localized as expected in both gradients,

confirming the reproducibility of the approach.

Hierarchical cluster analysis of mitochondrial protein
profiles

Some of the mitochondrial proteins in the dataset were expected

to form yet unknown protein complexes. Since the protein profiles

were stored in a data matrix, the dataset allowed for the use of

Figure 5. Identified mitochondrial ribosomal complexes by hierarchical clustering. Subunits of the mitoribosome were predominantly
found in 4 distinct complexes by the HCL analysis as shown in figure 5A. Known subunits of the mitoribosome are bold red whereas proven
interactors are in black and bold underlined. Proteins previously co-purified with mitoribosomal subunits are italic. The majority of detected MRPL
subunits co-migrate in a complex of about 3 MDa in size which is referred to as the 39 S mitoribosome complex in this paper. Besides MRP subunits,
six other proteins showed co-migration of which ICT1 is a proven interactor of the mitoribosome. The remaining three proteins DBT, STOML2, and
CAD have previously been reported to co-purify with mitoribosomal proteins in affinity purification – mass spectrometry studies. Similar to MRPL
proteins, all but one of the 28 S mitoribosomal MRPS subunits showed to co-migrate in a complex of about 1.6 MDa together with 12 other proteins
that include the known mitoribosome interactor PTCD3. Four of the remaining 11 proteins have been reported to co-purify with mitoribosomal
subunits in affinity purifications.This complex is referenced in the text as the 28 S mitoribosome complex.Figure 5A also shows a smaller complex of
about 300 kDa in size that includes 8 MRPS and 3 MRPL subunits of the mitoribosome together with SARM1.Finally, another complex of about
200 kDa in size was detected that appears to consist of five mitoribosomal proteins together with LRPPRC, C14ORF156 (SLIRP), and COX7A2.
Figure 5B shows the distribution of MRP subunits versus non-MRP proteins detected in any of the four complexes and Figure 5C shows the
distribution of the 21 non-MRP proteins in three classes: proven interactors, proteins co-purified with mitoribosomal proteins in affinity purification –
mass spectrometry studies, and proteins that have thus far not been described in literature related to the mitochondrial ribosome.
doi:10.1371/journal.pone.0068340.g005
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computer algorithms in the analysis of protein co-migration

profiles. We applied hierarchical cluster analysis (HCL) to

categorize the dataset for ease of use, similar to the approach of

Heide [11]. Figure 4 shows the HCL analysis results which are

provided as MS Excel file (file S5). The HCL_clusters.xls file

contains the large high-resolution version of the HCL tree,

individual clusters with according HCL and STRING images, as

well as an index to look up proteins of interest within clusters.

File S6 is the MEV analysis file that contains both the HCL

analysis as well as the analyzed data matrix for ease of use. The

MEV software is freely available [40] and should be used to open

this analysis file. As quality control measure for the HCL we

summarized the results for known complexes in table 1. Ideally,

one would expect that all subunits of a given complex would group

together in a single cluster. This holds true for the majority of

subunits listed in table 1. Subunits of complexes that did not group

together in the same cluster are explained by the presence of those

particular subunits at higher relative abundance in another gel

slice. Nevertheless, nearly all subunits of the mitochondrial

complexes in table 1 (except for the 2-oxoglutarate dehydrogenase

and pyruvate dehydrogenase complexes) were clustered correctly.

To investigate the rate at which proteins cluster together by

mere chance we constructed 10 randomized matrices in which the

abundance values were shuffled for each respective AA gradient

gel. For each randomized matrix we performed the same

hierarchical cluster analysis that was used for the ‘‘real’’ dataset.

To determine the rate at which proteins cluster together we

focussed on the 16 known mitochondrial complexes described in

table 1 and calculated the average number of clusters that contain

two or more subunits from each complex as well as the average

number of clustered proteins. Results in file S7 show that subunits

from complexes in the randomized data cluster together at a much

Table 2. Mitochondrial ribosomal complexes identified by hierarchical clustering of all mitochondrial protein profiles.

39S mitoribosome 28S mitoribosome 300 kDa subcomplex 200 kDa subcomplex

MRPL1* MRPL45* MRPL18* MRPS21*

MRPL15* MRPS10* MRPS30* MRPL45*

MRPL17* MRPS11* MRPL3* MRPL53*

MRPL18* MRPS14* MRPL2* MRPL10*

MRPL2* MRPS16* MRPS34* MRPL12*

MRPL21* MRPS17* MRPS18B* C14ORF156 (SLIRP)

MRPL22* MRPS18B* MRPS22* LRPPRC

MRPL23* MRPS2* MRPS27* COX7A2

MRPL24* MRPS21* MRPS25*

MRPL3* MRPS22* MRPS17*

MRPL37* MRPS23* MRPS16

MRPL38* MRPS25* SARM1

MRPL39* MRPS27*

MRPL4* MRPS28*

MRPL44* DAP3 (MRPS29)*

MRPL49* MRPS31*

MRPL9* MRPS34*

MRPS30* MRPS5*

AFG3L2 MRPS7*

ICT1 MRPS9*

DBT PTCD3

CAD SARM1

CLTC GPI

STOML2 MIA3

ATAD3A

DARS

PHB

PHB2

FAM82A2

EPRS

NDUFC2

PRDX6

This table summarizes results from the HCL analysis of all mitochondrial proteins in the dataset. Subunits of the mitoribosome are marked with an asterisk and proven
interactors are bold black and underlined. Proteins that were found to co-purify with mitoribosomal proteins in selected affinity purification – mass spectrometry
studies are black italic.
doi:10.1371/journal.pone.0068340.t002
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lower rate in comparison to the real dataset. On average, 12

subunits from three complexes in the randomized data clustered

together versus 108 subunits from 14 complexes in the original

dataset. The co-clustering of subunits in the randomized dataset

concerned proteins that showed multiple features in their

abundance profiles. Complex abundance profiles likely increase

the probability for these proteins to cluster together with respect to

proteins that are part of only a single protein complex.

Four clusters from the HCL analysis were of particular interest

as they contained multiple 28 S and 39 S subunits of the

mitoribosome which are shown combined in figure 5 and table 2.

Interestingly, the 28 S and 39 S HCL clusters contained 19

proteins of which eight were recently reported to associate or

interact with the mitoribosome [24–27]. The 28S subunits were

found to co-migrate with SARM1, GPI, PTCD3, MIA3,

ATAD3A, DARS, PHB, PHB2, FAM82A2, EPRS, PRDX6,

and NDUFC2. Of these twelve proteins, four are reported

interactors of the mitoribosome: PTCD3, ATAD3A, PHB, and

PHB2 [24–27]. Likewise, the 39 S cluster contained six co-

migrating proteins of which four were previously found to co-

purify with mitoribosomes: AFG3L2, DBT, ICT1, and STOML2

[24–27]. Interestingly, the 28 S HCL cluster also showed the

presence of a smaller complex of primarily 28 S subunits with an

approximate size around 300 kDa (figure 5 and table 2). Another

cluster was found that contained five MRP proteins (MRPL10,

MRPL12, MRPL45, MRPL53, MRPS21) together with

LRPPRC, SLIRP (C14ORF156) and COX7A2 (figure 5 and

table 2), with a total approximate molecular mass of about

200 kDa.

Detailed analysis of mitoribosomal complexes and
interactors

Results from the HCL analysis for mitoribosomal proteins

prompted us to look at these complexes in more detail with respect

to previously reported interacting proteins. All mitochondrial

proteins that were previously reported to interact with the

mitoribosome based on affinity purification studies by Rorbach

[26], Richter [27], and He [24,25] were exclusively selected for

further analysis. Selection of proteins that co-purified with

mitoribosomal proteins also provides supportive evidence for

putative interactions between co-migrating proteins in our

analysis. We focussed on four mitoribosomal complexes of interest:

the 28 S cluster, the 39 S cluster, the 300 kDa complex, and the

200 kDa complex. For the refined HCL analysis, we only used

data from gel slices that corresponded with the molecular mass

region of interest to prevent interference from data of non-relevant

gel slices.

For the analysis of the 28 S and 39 S HCL clusters we selected

slices 3–7 and 1–5 from the 4–12% AA and 5–15% AA gels,

respectively. The HCL analysis shows the co-migration of eight

and ten previously reported interactors with the 28 S and 39 S

complexes, respectively. This analysis identified two additional

proteins that co-migrate with the 39 S subunits that were not

readily identified via the HCL analysis of all mitochondrial protein

profiles: ERLIN2 and DLST (figure 6 and table 3). Hierarchical

clustering analysis for the 300 kDa subcomplex was performed

using slices 9–14 and 7–10 of the 4–12% AA and 5–15% AA gels,

respectively. The HCL analysis identified eleven additional

proteins that co-migrated with seven MRPS and a single MRPL

protein (figure 6 and table 3). All of these eleven protein were not

picked up in the HCL analysis of all mitochondrial protein

profiles. Analysis of the 200 kDa subcomplex by hierarchical

clustering was performed using slices 8–18 from the 4–12% AA gel

and slices 6–14 from the 5–15% AA gel. Three of the 39 S

mitoribosomal subunits apparently co-migrated with C14ORF156

(SLIRP), LRPPRC and two cytochrome c oxidase subunits

(figure 6 and table 3). This co-migration of cytochrome c oxidase

subunits with MRP subunits was not observed in the HCL analysis

of all mitochondrial protein profiles where the cytochrome c

oxidase complex was present in a separate cluster.

Discussion

The complexome profiling dataset provides a valuable resource

to identify putative protein-protein interactions or to prioritize

proteins of interest on the basis of protein co-migration.

Previously, protein co-migration has typically been analyzed by

2D BN SDS-PAGE in combination with western blotting.

Technical difficulties associated with immuno detection aside, this

approach suffers from low-throughput and high costs when many

proteins need to be analyzed. The complexome profiling dataset of

this study is essentially the equivalent of 3812 two dimensional BN

SDS-PAGE western blot detections (duplicate measurements of

953 proteins from two acryl amide gradient gels) and in addition

amenable to computational analysis. This allows simple compar-

isons of migration profiles between proteins of interest or the use of

computer assisted analyses to identify proteins with similar

migration profiles. This approach provides independent support-

ive evidence for protein-protein interactions suggested by other

methods (e.g. bioinformatic or co-purification studies) and may

thus be used for validation purposes and to prioritize candidate

protein-protein interactions for functional validation studies. In

addition, complexome profiling data can be used to identify

putative protein-protein interactions from an independent and

untargeted experiment. However, depending on the research

question and setup of the complexome profiling experiment,

additional experiments are likely required to prove protein-protein

interactions since co-migration of non-interacting proteins may

occur.

Here, we used our dataset to analyze co-migration profiles of

mitoribosomal proteins and previously described interactors from

co-purification studies. By now, several hundred proteins have

been suggested to interact with the mitoribosome based on AP-MS

studies. These are likely present in multiple complexes which

probably include secondary interactions and false positives. As a

first step to elucidate these interactions we looked for co-migrating

proteins to support alleged interactions. As expected, our analysis

showed that the majority of 28 S and 39 S mitoribosomal subunits

co-localize in high molecular mass complexes together with

previously reported (putative) interactors from AP-MS studies.

For the 28 S and 39 S complexes, eight and three previously

reported interactors from AP-MS studies were found to co-

migrate, respectively. Of these, two proteins (ICT1, PTCD3) are

known bona fide interactors or components of the mitoribosome

[27,43,44]. ICT1 is a functional peptidyl-tRNA hydrolase which

has been recruited into the mitochondrial ribosome [27] and

PTCD3 has been reported to associate with the small ribosomal

subunit to regulate translation [43]. The AFG3L2 protease was

found to co-migrate with the 39 S complex in our dataset. This

protease is known to regulate assembly of the mitoribosome and

biogenesis of its 39 S component [44], which could explain its co-

migration with the 39 S complex. The AFG3L2 protein is known

to form a heteromeric m-AAA protease complex together with

paraplegin [45], which we could not confirm since paraplegin was

not available in our dataset. Prohibitin (PHB), prohibitin 2 (PHB2)

and STOML2 were found to co-migrate with the 28S and 39 S

mitoribosomal complexes. STOML2 is a mitochondrial inner

membrane protein of unknown function that is suggested to recruit
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prohibitins to cardiolipin to form microdomains for optimal

assembly of OXPHOS complexes [46,47]. Interaction of PHB and

PHB2 with the mitoribosome was expected as He et al reported

that both proteins contribute to mitochondrial translation [25].

Interestingly, GADD45GIP1 was recently shown to be essential

for synthesis and insertion of mtDNA encoded OXPHOS

components [48]. In addition, knockdown of GADD45GIP1 was

shown to result in reduced mitochondrial protein synthesis [25].

Collectively, the co-migration and co-purification of these proteins

suggests that protein biogenesis and complex assembly are

Figure 6. Co-migration of mitoribosomal proteins with previously found interactors in selected affinity purification – mass
spectrometry studies. Hierarchical clustering was applied to identify co-migration of previously identified mitoribosome interactors with
ribonucleotide complexes. Only gel slices of interest that correspond with the detected mitoribosomal complexes were selected for HCL analysis of
each complex to increase sensitivity and specificity of the HCL analysis.
doi:10.1371/journal.pone.0068340.g006
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performed in close vicinity. Combined localization of these

processes would most likely occur for efficient generation of the

inner membrane proteins and complexes. However, further

research is required to confirm this hypothesis which is beyond

the scope of this paper.

The 300 kDa ribosomal complex is rather difficult to put into

context. First of all, several proteins were found to co-migrate

which might be part of other complexes of similar size. Both

VDAC proteins as well as PYCR1 and PYCR2 are known to form

homomeric complexes of about 300 kDa. Similarly, both

HADHA and HADHB are components of the hydroxacyl-CoA

dehydrogenase complex for which the determined size corre-

sponds with the a2b2 configuration of the enzyme. Interaction of

the CCDC109A protein product with the mitoribosome seems

unlikely from a biochemical point of view as it encodes the

mitochondrial calcium uniporter [49]. ACAD9 and TMEM126B

have recently been reported to form a complex I assembly

complex together with ECSIT and NDUFAF1 (NDUFAF1 and

TMEM126B were not detected in our study) with an approximate

size of 300 kDa as determined by complexome profiling [11].

Interestingly, ACAD9 was found here associated with

TMEM126A in the 300 kDa complex together with mitoriboso-

mal proteins. Please note that also ECSIT did co-migrate with

ACAD9 and TMEM126A in our dataset but was not included in

this refined analysis as it was not identified in the affinity

purification studies that were used to filter the dataset and is

therefore not shown in figure 5. TMEM126A and TMEM126B

share an 87% amino acid sequence similarity (32% identity)

which, together with its co-migration with ACAD9 and ECSIT,

suggests a possible role for TMEM126A in complex I assembly.

Detection of NDUFA4 at 300 kDa was rather surprising. This

particular protein was recently shown to be a subunit of complex

IV rather than complex I [50]. In the same paper the authors

show that NDUFA4 contributes to the activity and biogenesis of

the holocomplex. In our dataset however, we observed that

NDUFA4 was dominantly detected at 300 kDa with only minor

abundance at the height of complex I (,1 MDa) and complex IV

(,200 kDa). This discrepancy might result from the fact that

different detergents were used for solubilization between both

studies (lauryl maltoside versus digitonin) which requires further

research. Interaction of the protein HSPD1 with the 300 kDa

Table 3. Detected complexes of mitoribosomal proteins together with previously identified interactors by hierarchical clustering.

39S mitoribosome 28S mitoribosome 300 kDa subcomplex 200 kDa subcomplex

MRPL1* MRPL45* MRPL18* MRPL10*

MRPL13* MRPS10* MRPS16* MRPL12*

MRPL15* MRPS11* MRPS17* MRPL53*

MRPL17* MRPS14* MRPS18B* C14ORF156 (SLIRP)

MRPL18* MRPS15* MRPS25* LRPPRC

MRPL2* MRPS16* MRPS26* COX2

MRPL21* MRPS17* MRPS27* COX4L1

MRPL22* MRPS18B* MRPS34*

MRPL23* MRPS21* ACAD9

MRPL24* MRPS22* TMEM126A

MRPL37* MRPS23* NDUFA4

MRPL38* MRPS24* PYCR1

MRPL39* MRPS25* PYCR2

MRPL4* MRPS27* VDAC1

MRPL41* DAP3 (MRPS29)* VDAC3

MRPL43* MRPS31* CCDC109A

MRPL44* MRPS34* HADHA

MRPL49* MRPS35* HADHB

MRPL9* MRPS5* HSPD1

MRPS30* MRPS7*

AFG3L2 MRPS9*

DBT PHB

DLST PHB2

ERLIN2 PTCD3

FASTKD5

GADD45GIP1

ICT1

STOML2

Migration profiles from mitochondrial ribosomal proteins and previously identified interactors were subjected to hierarchical clustering analysis to examine possible co-
migration. Proteins from the mitoribosome are marked with an asterisk and functionally validated interactors are bold and underlined. Co-purified proteins from
selected AP-MS studies are italic.
doi:10.1371/journal.pone.0068340.t003
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ribonucleotide complex might be relevant given its chaperone

functionality [51].

Our analyses highlighted a putative 200 kDa ribonucleotide

complex that appears to contain three MRPL subunits together

with LRPPRC, SLIRP and cytochrome c oxidase (COX) subunits.

Recent studies demonstrated that LRPPRC and SLIRP interact in

a ribonucleoprotein complex involved in posttranscriptional gene

expression regulation in mitochondria [52–54]. Work of Sasarman

et al. showed that knockdown of LRPPRC results in an isolated

COX deficiency whereas further knockdown of LRPPRC induces

a generalized defect of OXPHOS complexes [52]. Co-purification

of LRPPRC and SLIRP was confirmed by immunodetection and

by 2D BN SDS-PAGE immunoblotting. These analyses showed

that LRPPRC and SLIRP form a complex of approximately

250 kDa, which is concordant with our data [52]. The data also

showed co-migration of the MRPL proteins with COX subunits

(figures 5 and 6) which is presumably caused by overlapping co-

localization of both complexes within some of the gel slices. The

minimal theoretical mass of a complex that consists of MRPL10,

MRPL12, MRPL53, SLIRP and LRPPRC, after removal of

mitochondrial transit peptides and assuming 1:1 stoichiometry for

all proteins, is 220 kDa which fits the estimated 200 – 231 kDa

mass of the complex in our data. Considering the function of the

LRPPRC/SLIRP complex to regulate post transcriptional gene

expression one could expect mRNA to be present in this complex.

The minimal theoretical mass of the putative MRPL10/

MRPL12/MRPL53/SLIRP/LRPPRC complex rules out the

possibility of any mitochondrial mRNA to be present in the

complex on gel, unless the electrophoretic mobility of the complex

is higher than expected. Interestingly, the approximate mass of a

complex composed of exclusively LRPPRC (152 kDa), SLIRP (12

kDa) and an average mitochondrial mRNA (300 kDa) is about

460 kDa in theory. Assuming normal electrophoretic mobility of

the LRPPRC/SLIRP complex, one would expect additional

proteins to be present rather than mRNA with respect to the

electrophoretic migration distance of the LRPPRC/SLIRP

complex. Nevertheless, further research is required to prove the

potential interaction between the MRPL subunits and the

previously established LRPPRC/SLIRP complex to rule out the

possibility that both complexes co-migrated as non-related,

individual complexes.

Our dataset provides the first available analysis of protein

complexes in human cells by complexome profiling. The complex-

ome profiling dataset presented in this paper is not exclusively

limited to the analysis of mitochondrial protein-protein interac-

tions since a mitochondrial enriched fraction was used. Data for

several hundred non-mitochondrial proteins is also available from

our dataset that can be used to analyze protein complexes in other

cellular compartments. Although this dataset contains a lot of

information, future complexome profiling experiments need to be

performed in different cell types, tissues, and differential conditions

to completely elucidate the composition of mitochondrial protein

complexes in humans. Ideally, future complexome profiling

datasets should be merged with existing datasets in order to fully

understand the complex dynamics of protein-protein interactions.

To this end, the fact that protein electrophoretic migration profiles

are stored within a data matrix readily facilitates the combination

of present and future datasets.

Conclusions

We have generated a collection of BNE profiles for 953 proteins

that can be used to identify novel protein-protein interaction and

to underpin or prioritize candidate protein-protein interactions. As

an example we have used our dataset to analyze mitoribosomal

complexes. Our analysis showed for the first time that mitor-

ibosomal complexes can be analyzed by blue native electropho-

resis as demonstrated via detection of at least four distinct

complexes that are composed of mitoribosomal subunits together

with potentially novel and previously reported interactors. In

addition, co-migration of multiple proteins associated with the

biogenesis of inner membrane complexes together with the 39 S

and 28 S mitoribosomal complexes is supportive of co-transla-

tional assembly in human cells. Our analysis also exposed a

putative 200 kDa ribonucleoprotein complex that potentially

contains LRPPRC and SLIRP together with three MRPL

subunits. Finally, our data highlights TMEM126A as a putative

complex I assembly factor based on co-migration with two known

CI assembly chaperones and its sequence similarity with the CI

assembly factor TMEM126B which is known to interact with the

same two CI assembly factors in other cell types.
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