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Abstract

Brook trout Salvelinus fontinalis have been used worldwide to stock fishless alpine lakes, negatively affecting native biota.
Understanding its spatial ecology in invaded ecosystems can provide information to interpret and contrast its ecological
impact. We opportunistically used capture points of brook trout gillnetted during an eradication campaign to assess the
distribution patterns of four unexploited populations inhabiting high-altitude lakes. The main eradication method implies
the use of many gillnets with several mesh sizes, which are selective for different fish sizes. For each lake we drew six capture
maps associated with as many different mesh sizes, and we tested whether the distance from the coastline (which in alpine
lakes is a reliable proxy of the most important spatial gradients, e.g. depth, temperature, prey availability, lighting conditions)
influences the proportion of captured fish belonging to different size classes and the number of fish captured by the nets with
different mesh sizes. To interpret the results, we also provide a cartographic description of the lakes’ bathymetry and littoral
microhabitats. We found (1) a negative relationship between brook trout distribution and the distance from the coastline in
all of the size classes, lakes and mesh sizes; (2) that large brook trout can thrive in the lakes’ center, while small ones are
limited to the littoral areas; and (3) that the distance from the coastline alone cannot explain all the differences in the catch
densities in different parts of the lakes. As in their native range, introduced brook trout populations also have littoral habits.
Microhabitats, prey availability and distance from the spawning ground are other likely factors determining the distribution
patterns of brook trout populations introduced in alpine lakes. The obtained results also provide useful information on how
to plan new eradication campaigns.

Keywords: Intensive gillnetting, kernel density estimation, Gran Paradiso National Park, Bioaquae LIFE+ project

Introduction worldwide in many alpine, boreal and austral aquatic

Brook trout (Salvelinus fontinalis Mitchill, 1814 is ~ |avitats (FishBase 2016), where it can exert a nega

. . tive ecological impact on the native vertebrate and
native to Eastern North America (Behnke 2010). . ..

.. . . . invertebrate communities (Knapp et al. 2001). On
However, its historical native range has been drasti- e .

. . . the whole, within its native range brook trout suffers
cally reduced due to habitat loss and introduction of the problem of non-native species introduction
alien species (EBTJV 2006). On the ther .hand,.as (EBTJV 2006), while out of its range it is considered
early as 1850, brook trout spread outside its native one of the most impacting alien fish (Savini et al
range through both institutional and illegal introduc- P g )

tions, under the rising demand of recreational 2010).

anglers (Garcia-Berthou et al. 2005). Many stocked Broqk trout inhabit a wide varl.ety of waters. T}.ley
. . .. thrive in lakes, streams, large rivers and estuarine
populations became viable and self-sustaining.

Currently brook trout has been introduced areas (FishBase 2016) and they flourish in alpine
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waters, where they can reach high densities, even if
often stunted in size (Hall 1991).

From a conservation point of view, a better under-
standing of the spatial ecology of brook trout within
lakes is an important achievement in the case of both
native and introduced populations. In the former
case, understanding the habitat use of residual popu-
lations is important to address their conservation
(Mucha & Mackereth 2008); in the latter, better
knowledge of how they thrive in invaded habitats
can provide information to interpret and contrast
their ecological impact.

In general, studies on the spatial ecology of brook
trout are biased toward habitat use of stream-dwell-
ing brook trout in their native range (e.g. Chisholm
et al. 1987; Baird & Krueger 2003). Similar studies,
focusing on brook trout dwelling either in lakes or
outside its native range, are rare or lacking. There
are some studies on the distribution of adult brook
trout in large and small lakes within its native range
(e.g. Lackey 1970; Bourke et al. 1997; Newman
et al. 1999; Moore 2008; Mucha & Mackereth
2008; Robillard et al. 2011); some others are limited
to the young-of-the-year (YOY) habitat use (e.g.
Snucins et al. 1992; Biro 1998; Borwick et al.
2006; Biro et al. 2008) or to the reproductive habitat
requirements (e.g. Blanchfield & Ridgway 1997;
Armstrong & Knapp 2004).

Our meager understanding of the spatial ecology
of brook trout in invaded ecosystems represents a
relevant gap of knowledge when the aim is under-
standing and contrasting the many ecological
impacts produced by this species. In particular, a
substantial number — the majority, in many regions
— of the high-altitude and boreal lakes have been
stocked with non-native fish (Bahls 1992; Knapp
et al. 2001; Miré & Ventura 2013, 2015), which
are likely to be the major direct anthropogenic stres-
sor in these habitats (Pister 2001). Here, a substan-
tial portion of river basins lie upstream of natural
barriers to fish colonization, where many peculiar
aquatic species and communities can find a fishless
refuge (Adams et al. 2001). These species evolved in
the absence of fish predation and have a low resis-
tance to introduced fish (Knapp et al. 2001), there-
fore deserving special attention from a conservation
point of view (Kernan et al. 2009). Brook trout is
known to be a particularly aggressive invader, produ-
cing dramatic ecological consequences in invaded
headwater habitats where it serves as a top predator
(Knapp et al. 2001). Its introduction in fishless lakes
is commonly associated with extirpation or reduction
of native species (e.g. invertebrates and amphibians)
and can have indirect effects on the whole ecosys-
tem, on its linkage with the surrounding terrestrial

habitats (Eby et al. 2006 and references therein), and
on the downstream aquatic habitats (Adams et al.
2001). Fishing and stocking bans are the most effec-
tive measures to stem the spread of non-native fish in
mountain areas (Wiley 2003; Mir6é & Ventura 2013,
2015). Moreover, in the last 20 years, several eradi-
cation attempts using gillnetting and electrofishing
have been successfully carried out both in lakes and
rivers in mountain protected areas to reverse the
effects of introduced fish (Knapp & Matthews
1998; Knapp et al. 2001; Parker et al. 2001;
Hoffman et al. 2004; Granados et al. 2006; Pacas
& Taylor 2015). Detailed knowledge of the brook
trout distribution patterns could simplify future era-
dication attempts (e.g. focusing the gill-netting
efforts in the most densely populated areas) and
extend their applicability to a greater variety of eco-
systems (e.g. increasingly larger lakes and longer
river stretches).

The Gran DParadiso National Park (GPNP,
Western Italian Alps) recently undertook an eradica-
tion campaign of brook trout from four high-altitude
lakes, within the LIFE+ Project Bioaquae
(Biodiversity Improvement of Alpine Aquatic
Ecosystems, www.bioaquae.eu), aiming at reducing
the negative ecological effects of introduced fish.
Indeed, almost all of the post-invasion impacts men-
tioned above have been recorded also in the GPNP
lakes (Tiberti & Von Hardenberg 2012; Magnea
et al. 2013; Tiberti et al. 2014, 2016c¢). Brook trout
was introduced in the 1960s in several high-altitude
lakes of the GPNP. Even if only a few years later a
strict fishing regulation was adopted and angling and
fish stocking were banned from almost all of the
GPNP territory, many of the introduced populations
had already been established in several lakes.
Considering that brook trout reach sexual maturity
at 1-4 years (FishBase 2016), some tens of genera-
tions have succeeded one another since fish intro-
duction, suggesting that the studied populations are
well naturalized. The eradication methods used in
the Bioaquae project (intensive gillnetting and elec-
trofishing) are non-invasive, to minimize the effects
on non-target species (aquatic invertebrates and
semiaquatic vertebrates). These eradication methods
enabled the authors to record the capture point of
the fish with a good approximation, thus obtaining a
picture of their distribution patterns in the invaded
lakes. Moreover, the remoteness of the study lakes
(at least a 1-hour walk from the nearest road), the
GPNP fishing ban and an efficient surveillance ser-
vice mean that the studied fish populations can rea-
listically be considered unexploited (also considering
unlikely or, in any case, very rare poaching episodes
and the sampling mortality of the 2006-2012
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monitoring campaign that preceded the eradication
project; Tiberti et al. 2013) and therefore increase
the interest in the studied brook trout populations.
Indeed, studies on the ecology of unexploited fish
populations are rare in the fisheries literature (Toetz
et al. 1991).

Within this framework, the present study aims at
describing the spatial distribution of introduced
brook trout in four lakes treated for fish eradication,
using both qualitative and quantitative data. In parti-
cular, gillnetting capture data are used to assess
whether the proportion and the number of fish belong-
ing to different size classes or captured in the nets with
different mesh sizes are related to the distance from the
coastline, which, in these relatively homogeneous habi-
tats, is strongly related to the most important spatial/
environmental gradients (e.g. depth, water tempera-
ture, light reaching the bottom) and to the availability
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of the potential prey. To support the interpretation of
the obtained results, we also provide a cartographic
description of the lakes’ bathymetry and littoral micro-
habitats. Moreover, the present study aims to explain
how the spatial ecology and abundance/biomass of
introduced brook trout populations can affect the cap-
ture efforts that are needed to complete an eradication
campaign, highlighting some potential factors
strengthening/weakening the eradication strategy.
This latter represents a topic of growing interest in
the field of biological conservation (Drolet et al. 2014).

Methods
Assessment of study lakes and littoral microhabitats

The study lakes (Figure 1; Table I) are included in
the GPNP, a protected area located between 45°25’

LEGEND

Rocks
Gravel
Sand/silt

Aquatic emergent vegetation

e
£
| ]

Aguatic submerged vegetation

~__{_ Permanent/temporary inlet/outlet

Position on the Alps

Figure 1. Bathymetries of the study lakes (from Tiberti et al. 2010), littoral microhabitats, and position of the Gran Paradiso National Park

(GPNP) on the Alps.
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Table I. Main geographic, morphometric and chemical data of the Gran Paradiso National Park studied lakes. Geology — AG: catchment
entirely composed by acidic gneiss; CS: catchment dominated by thick covering of calcareous schists. TP: total phosphorus; %: photo-
synthetic active radiation (PAR) attenuation coefficient; DJO: Lake Djouan; DRE: Lake Dres; LEY: Lake Leynir; NER: Lake Nero.

Averaged variables are expressed as mean * standard deviation (SD).

DJO DRE LEY NER
Latitude N 45°33'27” 45°24'45” 45°30'28” 45°33'06”
Longitude E 07°10'43” 07°13'25” 07°09'08” 07°10'07”
Altitude (m) 2515 2087 2747 2671
Maximum depth (m) 3.0 7.4 22.1 6.0
Area (ha) 1.3 2.6 4.5 1.7
Catchment area (ha) 31 292 157 87
Geology CS AG CS CS
Maximum surface temperature (°C) ? 19.0 16.0 12.5 15.0
E® 0.35 £ 0.08 0.29 £ 0.07 0.18 £ 0.04 0.20 £ 0.02
pH ¢ 8.7+ 04 7.0 0.5 8.0+ 0.3 8.0+ 0.3
Total phosphorus — TP ¢ (ug L™") 35+£1.3 43 %25 3.0+ 0.9 23%1.6

% measured between 2006 and 2015, 1-4 measurements per ice-free season; b averaged over 11-18 measures between 2010 and 2015; ©

averaged over 22—25 measures between 2008 and 2015.

and 45°45' N and between 7° and 7°30" E in the
Western Italian Alps. In this paper, toponyms of the
lakes will be replaced by abbreviations: Djouan —
DJO; Dres — DRE; Leynir — LEY; Nero — NER.
The lakes are natural (non-dammed) and located
above (DJO, LEY and NER) or across (DRE) the
timberline. Thermal stratification occurs only in late
summer in the deepest lake, LEY, whereas the other
lakes are all polymictic. The lakes are well oxygenated
throughout the water column during the whole ice-
free season (Tiberti et al. 2010). The ice-cover period
lasts for 7-9 months, usually, from October to June—
July. All the lakes are fed by snowmelt and rainfall;
they are oligotrophic and the water transparency is
usually high (Tiberti et al. 2010). The GPNP has
strictly prohibited recreational angling and fish stock-
ing since the 1970s. However, fish introductions
occurred before the fishing ban. With the exception
of lake DRE, which was included in the GPNP only
in 1979, all of the brook trout populations derived
from a single stocking campaign in the 1960s. In lake
DRE it is likely that legal and unauthorized fish stock-
ing occurred also later.

Littoral microhabitats were assessed by visual
inspection while walking/rowing along the lakes’
perimeter. Five microhabitats were identified based
on the dominant substrate: (1) rocks (clast diameter
> 60 mm), (2) gravel (clast diameter < 60 mm and >
4 mm), (3) sand/silt (clast diameter < 4 mm), (4)
areas covered by emergent (e.g. Carex sp. and
Eriophorum sp.) and (5) submerged aquatic vegeta-
tion (even if a certain overlap between the last two
categories could sometimes occur). Very small
microhabitat patches were not mapped, even though
the survival of entire brook trout populations can

depend on very small (=2 m?) patches of suitable
reproductive grounds (Armstrong & Knapp 2004).

Fish abundance and estimation of biomass

The number of fish captures was accurately recorded
during the eradication process in all of the lakes
(Table II). However, due to the poor conservation
status of many captured fish and to the very large
number of small fish captured during some capture
sessions, it was sometimes impossible/impracticable
to measure all of the fish with the same precision.
Based on the quality of the measurements we distin-
guish the fish into:

— Group 1: 4762 brook trout (23.5% of the total
number of fish captures) for which both the total
length (accuracy * 1 mm) and the body weight
(accuracy * 1 g) were recorded.

— Group 2: 9267 brook trout (45.8%) for which
only the total length was recorded.

— Group 3: 5940 brook trout (29.3%) which were
not accurately measured, but which were
assigned to a size class (four classes from <
15 cm to > 25 cm, at 5 cm intervals, Table II),
e.g. when all the non-measured fish were YOY,
they were assigned with certainty to size class 1.

— Group 4: 301 brook trout (1.5%) in very bad
conservation status, for which there was no infor-
mation about their size.

Due to these missing data, both measured and
estimated weights were used to obtain a realistic
estimate of the fish biomass removed from each
lake. The length—weight relationships (data from
Group 1) were estimated separately for each lake,
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Table II. Number and estimated biomass (in brackets in kg) of brook trout belonging to different size classes caught with the fixed capture
devices or with other methods. Data from four alpine lakes of the Gran Paradiso National Park. DJO: Lake Djouan; DRE: Lake Dres; LEY:

Lake Leynir; NER: Lake Nero.

Lake DJO DRE LEY NER
Fixed capture devices

Class 1 (< 15 cm) 206 (3.2) 4362 (57.4) 426 (6.8) 18 (0.2)
Class 2 (= 15 cm and < 20 cm) 112 (6.5) 593 (27.9) 425 (22.1) 1 (0.0)
Class 3 (= 20 cm and < 25 cm) 655 (65.2) 320 (33.9) 1744 (161.2) 14 (1.2)
Class 4 (= 25 cm) 149 (19.4) 114 (19.7) 68 (9.2) 161 (31.8)
Not available 2 (0.1) 31 (1.3) 261 (17.2) 1(0.2)
Subtotal: 1124 (94) 5420 (140) 2924 (217) 195 (33)
Electrofishing, angling® and movable nets

Class 1 (< 15 cm) 241 (1.3) 7809 (89.6) 472 (4.8) 0

Class 2 (= 15 cm and < 20 cm) 1 (0.1) 263 (13.7) 9 (0.5) 0

Class 3 (= 20 cm and < 25 cm) 28 (2.9) 997 (98.2) 37 (3.2) 0

Class 4 (= 25 cm) 10 (1.3) 727 (133.9) 1(0.1) 6 (1.4)
Not available 1(0.1) 5(0.2) 0 (0) 0
Subtotal: 281 (6) 9801 (335) 519 (9) 6 (1)
TOTAL 1405 (100) 15221 (476) 3443 (225) 201 (35)
TOTAL X m™> 0.108 (0.008) 0.585 (0.018) 0.077 (0.005) 0.012 (0.002)

# Two angling sessions were organized at lake DRE on 22 and 23 June 2015 to start the eradication (see Tiberti et al. 2016¢).

fitting an exponential curve. For all the fish belong-
ing to Group 2, the parameters of the equation of the
curves were used to calculate their expected weights.
These measured and estimated weights were subse-
quently used to calculate the mean weight of the fish
belonging to each size class in each lake, and these
means were used as an estimate of the weight of all
the fish of Group 3. Finally, we used all the previous
measured/estimated weights to calculate the mean
fish weight in each lake, and these means were used
as an estimate of the weight of all the fish of Group 4.
This procedure enabled the direct measurement or
estimation of the weights of all the captured fish,
which were summed up to obtain an estimate of
the total fish biomass removed from each lake.

Eradication methods and field-data collection

Intensive gill-netting and electrofishing were used as
eradication methods (Knapp & Matthews 1998). In
addition, 2 days of experimental intensive angling
had already substantially contributed to the decline
of the population in lake DRE just before the start of
the eradication campaign (Tiberti et al. 2016b).
Depending on the lake, the eradication actions
started in June to August 2013. According to
Knapp and Matthews (1998), the eradications can
be considered concluded after 1 year without fish
captures. At the present time (autumn 2016) this
time has expired in lakes DJO (date of removal of
the last fish: 14 June 2014 after 245 days from the
settlement of the first net; date of removal of the
nets: 17 June 2016), DRE (date of removal of the

last fish: 11 August 2015, after 781 days from the
settlement of the first net; nets will be removed in
June 2017), and NER (date of removal of the last
fish: 7 June 2015 after 696 days from the settlement
of the first net; date of removal of the nets: 3 July
2016). While in Lake LEY this time has not yet
expired, just one fish was captured during the
2015-2016 ice-cover season (fish removed on 5
June 2016, after 1095 days from the settlement of
the first net). It would be necessary to wait for the
2017 ice-free season to confirm the completion of
the eradication also in lake LEY. Two types of nets
were used: (1) multi-mesh gillnets (36 X 1.8 m),
divided into six panels (6 X 1.8 m) with increasing
mesh sizes (10.0, 12.5, 18.5, 25.0, 33.0, 38.0 mm;
with smallest mesh size panels placed close to shore);
and (2) pelagic gillnets (from 36 X 1.8 m to
50 x 10 m) with a fixed mesh size = 25 mm, placed
in the central part of the lakes. The nets were held
vertically and fixed to the shore with ropes along
several fixed transects, each bearing 1-6 nets. Their
vertical displacement was regulated using floaters,
but colonization by algae — making the nets heavier
— sometimes changed their vertical displacement in
an unpredictable way. Since their positioning, the
nets were left in the lakes for the whole duration of
the project, including the ice-cover season: during
the summer they were usually positioned close to the
surface, while just before the onset of the winter ice-
cover they were moved deeper, to avoid them poten-
tially being trapped in the ice. All these nets repre-
sent the fixed capture devices. Their position in the
lakes was accurately mapped, and an individual
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alphanumeric code (net ID) was assigned to each of
them. During the 2013-2016 ice-free seasons, the
fish were regularly removed from the nets from a
dinghy rowing along the fixed transects. At the
same time, electrofishing (with an ELT62 II 160
GI backpack equipment) and some additional mova-
ble multi-mesh gillnets were used — with different
intensity depending on the lake features — in the
littoral area (e.g. among littoral vegetation) or along
the tributaries to support the eradication efforts.

The capture effort associated with each net
belonging to the fixed capture devices varied in rela-
tion to their surface (each panel of the multi-mesh
gillnets measures 10.8 m?, but the surface of the
pelagic gillnets ranged between 64.8 and 500.0 m?)
and to the fishing time. Indeed, settling the fixed
capture devices in the lakes took 8-45 days (depend-
ing on the lake size: 8 days in lake NER, 15 in lake
DJO, 41 in lake DRE, 45 in lake LEY). Therefore,
the nets which were first settled had the chance to
capture a larger number of brook trout, due to the
longer fishing effort and to the high initial densities
of the fish populations. On the contrary, the nets
were or will be removed from each lake all at the
same time. In the following analyses and in the pre-
paration of the capture maps, these issues are fully
taken into consideration (see below).

For each brook trout caught in the fixed capture
devices, we recorded its length, the capture mode
(wedged: held by the mesh around the body; gilled:
held by the mesh slipping behind the operculum;
tangled: held by teeth, maxillaries or other protru-
sions without the body penetrating the mesh), and
the net ID, so that we were able to track a proxy of
the location of the capture in the lake.

Limitations of an opportunistic sampling design

The capture data were opportunistically collected
during an eradication campaign using a non-random
sampling design. The nets were settled to maximize
the capture efficiency and the majority of the nets
with the smallest mesh size were placed near the
shore, based on the eradication methodologies ela-
borated by Knapp and Matthews (1998) and on a
preliminary study carried out in the GPNP (Tiberti
et al. 2013). The interpretation of the results should
therefore take into account this limitation. In parti-
cular, in smaller lakes DJO and NER, due to their
geometry and size, the nets with the same mesh size
are all settled at similar and short distances from the
coastline. Therefore in DJO and NER the capture
points with the same mesh size are distributed over a
restricted gradient of distance from the coastline.
When the aim is to test if there is a relationship

between the distance from the coastline and the
number of captured fish, such a small distance gra-
dient increases the risk of type II errors (false nega-
tive). However, in the larger lakes DRE and LEY,
this gradient is fairly large and the differences in the
number of captured fish clearly reflect the brook
trout distribution.

Due to the non-random distribution of the capture
devices, we can provide capture maps (and not dis-
tribution maps). Moreover, the distribution analyses
are based on gillnetting data from the fixed capture
devices only, but a part of the fish populations was
removed with alternative methods (electrofishing,
angling from the shore, movable gillnets). However,
all these methods can be used only in the littoral area
and — since the results indicate that brook trout live
mainly in the littoral area independent of their size —
we concluded that removing part of the littoral fish
populations with alternative methods can only
weaken this general finding, which, however,
remains rather clear alongside our study.

Fish caprure mapping

Using the software QGIS 2.12 (QGIS Development
Team 2015) and high-resolution satellite photos of
the lakes, all fixed capture devices were accurately
mapped. The photos were used to identify the exact
position of the end of the nets—transects along the
shoreline, while the position of the nets along the
transects was identified measuring their distance
from the end of the transects. This method demon-
strated to be more accurate than the use of our GPS
(Global Positioning System) device. The capture
point of each fish was approximated to be the net/
panel center. To highlight the relative density of
fishes captured by the different mesh sizes, a density
map was built, separately for each mesh size. In
particular we used a kernel density estimation
(KDE) method, starting from the fish capture points.
In its raw definition, a KDE is a non-parametric
estimate of the probability density function of a ran-
dom variable (Silverman 1986). In ecology it can be
used to define the home range of species (Fieberg
2007), or in general to identify areas where a puncti-
form phenomenon occurs with a higher probability.
Here this method was used to obtain relative density
maps, as a tool for graphically representing the zones
within each single lake in which the nets had a higher
capture efficiency. The functional shape and width
of the kernel is determined by the smoothing para-
meter, or bandwidth, denoted generally by /2 (Kie
2013), and its choice is often a crucial point in home
range analyses. To date many method have been
proposed; KDEs can be adaptive (in which the



kernel bandwidth varies according to density) or
fixed (same smoothing), and many statistical meth-
ods have been suggested to find the optimal band-
width (Silverman 1986; Worton 1989; Gitzen &
Millspaugh 2003). The present study is based on
an objective approach, choosing a fixed KDE and a
bandwidth that minimize the least-squares cross vali-
dation score (%) (Gitzen & Millspaugh 2003). This
method frequently results in undersmoothing, i.e. it
gives a KDE estimation, for example of home
ranges, that consists of multiple and separate poly-
gons (Kie 2013), so it was selected to highlight and
emphasize the differences among mesh sizes. Since
the nets were placed on different days and each panel
had a different size, a weighting value for each cap-
ture point was added and calculated as follows:

1/(hxsx107°),

where 7 is the number of hours that the net remained
in place through the whole study period and s is the
panel/net size, expressed in m? The density esti-
mates were then standardized by dividing by the
sum of the weight values. The analyses were per-
formed using R v. 3.1.1 (R Development Core
Team 2013) and the “ks” package (Duong 2016).
A KDE was produced for each lake and for each
mesh size as raster images that we used in QGIS to
produce the relative density maps, scaled from 0
to 1.

Statistical methods

A series of linear regressions were used to test if the
fish biomass per m” is related to the fish abundance
per m? and to some important environmental vari-
ables (altitude, light attenuation coefficient — %, pH,
and total phosphorus concentration — TP; Table I).

A simple size selectivity analysis was performed
using a Kruskal-Wallis test to compare the length
distributions of the fish captured with the different
mesh sizes.

To describe the relationship between the brook
trout distribution and the distance from the coastline
we used both generalized linear mixed models
(GLMMs) and general linear models (GLMs) in
the statistical environment R v. 3.1.1 (R
Development Core Team 2013): the former were
implemented to provide an overview of the general
distribution patterns of the brook trout belonging to
the different size classes; the latter to provide details
about their distribution within each lake.

We follow the indications of Crawley (2012) for
GLMMs with proportion data to run four mixed
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models to test — separately for each size class —
whether the distance from the coastline and the
mesh size (fixed effects) affect the ratio between the
number of brook trout captured in each net and the
total number of brook trout (dependent variable)
captured in each lake (random effect). To account
for some differences related to the fishing effort we
normalized the proportion data from each net using
two offsets (multiplied together and log transformed):
the surface of each net and a temporal factor equal to
(t; — tp)/t; ranging from O to 1, where t; is the number
of days elapsed between the starting date of the era-
dication (first net settled) and the date of removal of
the last fish, and t, is the number of days elapsed
between the starting date of the eradication (first net
settled) and the settlement of each net.

To provide more details about the previous mod-
els, 24 GLMs (one model per used mesh-size in four
lakes) with a Poisson error distribution were used to
test whether the number of fish captured in each
panel/net depends on the distance of the nets from
the coastline. The dependent variables were the
cumulative numbers of fish removed between 2013
and 2016 from each net, while the distance of the net
from the coastline (Distance) was added as covariate.
To account for the same differences of fishing effort
described above we normalized the count data using
the same offsets.

Results
Microhabitatr assessment

Littoral microhabitats are shown in Figure 1. Lakes
DJO, DRE and LEY have permanent tributaries,
while the tributaries of Lake NER are visible only
during the thaw. Lakes DRE and DJO are character-
ized by the presence of abundant aquatic vegetation,
which is absent in Lakes NER and LEY. Very small
microhabitat patches were not mapped, but some
very small patches of gravel and fine sediment can
be found among the coarser sediments and rocks.

Brook trout abundance, biomass and length—weight
relationship

Length—weight relationship and equations for brook
trout in each lake are provided in Figure 2. The
number and estimated biomass of brook trout cap-
tured in each lake were highly variable among lakes
(Table II). Despite of the small sample size, the
results of the linear regressions (equations and
graphs reported in Figure 3) suggest a positive rela-
tionship between biomass per m? of captured fish,
their abundance per m? (F,,2 = 21.3, P < 0.05), the
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Figure 2. Length—weight relationship for brook trout in four alpine lakes of the Gran Paradiso National Park.
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(*: p < 0.05).

lakes’ altitude (F;, = 12.5, P = 0.07) and the TP
concentration (F; , = 63.3, P < 0.05). In Lake NER
the population was rather rarefied and strongly
dominated by large fish, while in the remaining
lakes the brook trout populations were clearly size
structured. In lake DRE we captured a very large
number of small brook trout and also four marble
trout Salmo marmoratus Cuvier, 1829, one brown

trout Salmo trutta L., and one minnow

Phoxinus sp.

1758,

Size selectiviry of the capture devices

In general, larger mesh sizes (33 and 38 mm) were
inefficient and not very size selective. Notably, the
few fish found in the larger mesh sizes were frequently
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Figure 4. Length distribution of brook trout in relation to different
gillnet mesh sizes and capture modes; data from four alpine lakes
in the Gran Paradiso National Park.

tangled by the nets. The fish length distribution chan-
ged across nets/panels with different mesh sizes
(Kruskal-Wallis test = 6.271, df = 5, P < 0.001;
Figure 4), but pairwise comparisons showed non-sig-
nificant differences in the length distribution in the
larger mesh sizes (25, 33 and 38 mm). Also, the cap-
ture mode influenced the fish size distribution:
Figure 4 shows that wedged fish are smaller than gilled
fish and that both of these capture modes are strongly
size selective, whereas the different mesh sizes are not
very selective for tangled fish which shows a much
larger size variability. A lake-by-lake breakdown of the
capture frequency, size distribution and capture mode
in each mesh size is also provided in the histograms of
Figures 5 and 6. The fixed capture devices were unable
to capture or inefficient in capturing the brook trout
recently emerging in June—July from their redds (a
spawning nest that is built by brook trout in the gravel
of streams and lakes in autumn), whose size starts from
1.9 cm and which have been captured in large numbers
with the electrofishing equipment (Table II).

Brook trout distribution

In Figures 5 and 6 we provide the capture maps. Since
the nets (capture points) are usually spread all over the
lakes (in particular in the larger lakes DRE and LEY),
the capture maps can provide useful information on
the distribution of brook trout populations. The areas
with the highest capture densities are usually located
around the capture points in the nearshore areas.
GLMM results (Table III) show that the propor-
tion of captured fish belonging to all size classes is
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higher close to the coastline, and — as clearly shown
in the histograms of Figures 5 and 6 — strongly
depends on the mesh size. GLM results show that
also the frequency of fish captures with all of the
mesh sizes was negatively associated with the dis-
tance from the coastline, indicating that the catches
were more likely near the shore (Table IV).
However, this relation was not significant for the
largest mesh sizes (18.5-38 mm) in lakes DJO, or
for the smallest (10-12.5 mm) and larger (33—
38 mm) in lake NER. Consistent with the model
results and with the capture densities in Figures 5
and 6, small fish were only captured close to the
coastline (authors’ personal observation), while
adult fish were also captured in the lakes’ center,
although they remain more abundant in the near-
shore habitats.

On the basis of the observations performed during
the electrofishing sessions, the distribution of the
YOY brook trout was very localized in some very
shallow littoral areas of lakes DJO, DRE and LEY
(the northwestern rocks in lake DJO, all the perma-
nent triburaries and the southern rocks of lake DRE,
the two gravel areas in lake LEY; Figure 1), while in
lake NER the brook trout population was skewed
toward the larger size classes, and small brook trout
and YOY were almost absent.

Discussion

There is a negative relationship between brook trout
distribution and the distance from the coastline in all
size classes (see GLMM results, Table III), lakes and
mesh sizes (see GLM results, Table IV). Gillnets with
mesh sizes from 10 to 25 mm were highly size selective
(Figures 4—6). Therefore, the capture data from the
nets bearing these mesh sizes provide a good approx-
imation of the spatial distribution of the size classes
that they preferentially capture. On the contrary, lar-
ger mesh sizes (33 and 38 mm) were too large to
efficiently capture the relatively small brook trout
belonging to the studied populations, resulting in a
scattered size distribution of captured fish and provid-
ing distribution data which cannot be ascribed to any
particular size class. These findings are consistent
with those of studies of habitat use by lake-dwelling
brook trout from their native range, which indicate
that although this species may inhabit a range of
depths, it is generally located in nearshore areas
(Flick & Webster 1962; Lackey 1970; Newman et al.
1999; Mucha & Mackereth 2008). Curiously, because
of this predilection, brook trout native to large North
American lakes (e.g. Lake Superior, USA) were given
the name “coasters” (Newman & DuBois 1997).
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Table III. GLMM results summary: influence of the distance from the coastline and mesh size on the proportion of fish belonging to size
classes 1-4 captured in the nets settled for the eradication of brook trout in lakes Djouan - DJO, Dres - DRE, Leynir - LEY and Nero - NER
(Gran Paradiso National Park); F value and significance level p are reported; Wald Z-score [=B/SE(B)] is provided only for continuous

variables (distance from the coastline).

Size class 1 Size class 2

Size class 3 Size class 4

(< 15 cm) (= 15, < 20 cm) (= 20, < 25 cm) (= 25 cm)
V4 F P V4 F P V4 F P V4 F P
Intercept -16.1 - < 0.001 -13.9 - < 0.001 -14.8 - < 0.001 -12.9 - < 0.001
Distance -24.1 758.8 < 0.001 -14.8 193.1 < 0.001 -37.7 1421.3 < 0.001 -15.5 239.0 < 0.001
Mesh-size - 715.5 < 0.001 - 460.7 < 0.001 - 176.3 < 0.001 49.3 < 0.001

Table IV. GLM results summary: influence of the distance from the coastline on the number of fish captured in the nets with different mesh
sizes settled for the eradication of brook trout in lakes Djouan - DJO, Dres - DRE, Leynir - LEY and Nero - NER (Gran Paradiso National
Park); Wald Z-score [=B/SE(B)] and significance level p are reported.

Mesh size
10 mm 12.5 mm 18 mm 24 mm 33 mm 38 mm
A P VA P A P A P zZ P VA P
DJO -2.60 < 0.01 -2.79 < 0.01 0.88 NS —1.46 NS -0.89 NS -1.70 NS
DRE -17.51 < 0.001 -9.37 < 0.001 -3.31 < 0.001 -16.03 < 0.001 -3.78 < 0.001 -2.67 < 0.01
LEY -6.99 < 0.001 —6.64 < 0.001 —-14.30 < 0.001 -33.68 < 0.001 —7.86 < 0.001 -5.30 < 0.001
NER -0.81 NS -0.99 NS —-2.84 < 0.01 -8.44 < 0.001 -1.47 NS -1.74 NS

The study lakes are inhabited almost exclusively
by brook trout. The origin of the few fish belonging
to other species captured in DRE is probably related
to illegal introduction and to the use of live baits by
poachers. However, such a small number of fish
cannot compete with the large S. fontinalis popula-
tion inhabiting DRE and cannot alter its distribution
patterns. Therefore all the observed distribution pat-
terns are a typical feature of this species and are not
attributable to the spatial competition with sympatric
species, which is a potential factor influencing the
habitat use of brook trout (Dewald & Wailzbach
1992; McGrath & Lewis 2007).

In these relatively small and homogeneous habi-
tats, the distance from the coastline is strictly related
to other important abiotic variables (e.g. depth, tem-
perature, light reaching the bottom) and to the avail-
ability of the potential prey and refugia (e.g. littoral
vegetation and shelters, or “dark”, deep-water refu-
gia). The preference of brook trout for littoral areas
could be related to one or more of these gradients
and — limited to smaller size classes captured with
smallest mesh sizes — to the availability of spatial
refugia against cannibalistic fish.

Temperatures are known to influence the habitat
use of brook trout (Baird & Krueger 2003): for
example, after ice-out brook trout tend to gather in
very shallow nearshore areas, where they seek out the

warmest conditions (Biro 1998), while as summer
progresses brook trout are more concentrated in
deeper areas, where they can avoid temperatures
above their tolerance limits (Olson et al. 1988). For
the same reason, brook trout can also use ground-
water upwelling areas and the areas near the tribu-
taries as midsummer thermal refugia (Biro 1998).
However, the lakes under study are relatively cold
ecosystems and the surface temperatures (Table I)
never exceed the maximum thermal tolerance limit
for brook trout (=24°C; Wehrly et al. 2007). Only
the shallow lake DJO, characterized by little thermal
inertia, could approach this temperature limit during
a limited time period. Therefore, temperature is
likely just a secondary or very temporary factor influ-
encing the distribution of brook trout in the study
lakes.

A factor potentially explaining the observed distri-
bution patterns is related to the feeding behavior of
brook trout. The depth and depth-related lighting
conditions depend on the distance from the coastline
and are important factors influencing the ability of
visual predators, such as brook trout, to locate their
prey (Sweka & Hartman 2001; Marchand et al.
2002). All of the study lakes are very clear and the
photic zone usually extends to the lakes’ maximum
depth (Tiberti et al. 2010). Whereas brook trout is
able to maintain its prey-locating ability also at very



low light levels and can feed also during the night-
time (Forrester et al. 1994), it is likely that the lakes
are largely devoid of “dark refugia” against fish pre-
dation. On the contrary, in cloudy lakes, the foraging
areas can be limited to the surface and littoral waters
(Sweka & Hartman 2003), therefore affecting the
distribution of predatory fish.

On the other hand, food resources are known to
be higher in the littoral zone than farther away from
the coastline (in terms of diversity of benthonic
macroinvertebrates, magnitude of terrestrial prey
subsidy, and abundance of some aquatic or semi-
aquatic vertebrate preys, i.e. both juvenile fish and
common frog Rana temporaria; Vadeboncoeur et al.
2011). Prey availability and the generalist foraging
strategy dominating in the study lakes (Tiberti et al.
2016a) could together explain the observed prefer-
ence of brook trout for nearshore habitats.
However, feeding specialization can occur in brook
trout (Bourke et al. 1997). Due to their feeding
specialization for pelagic prey groups, a fraction of
the brook trout populations could show radically
different distribution patterns. For example, some
large pelagic zooplankton species (e.g. Daphnia sp.,
and Cyclops sp.) can provide important food
resources (Dawidowicz & Gliwicz 1983) and the
existence of zooplanktivorous brook trout morphs
is well documented in the literature (Bertrand
et al. 2008). These morphs thrive in the pelagic
area but, since the brook trout populations are
usually dominated by generalist individuals, the
habitat use of specialized morphs can be highlighted
only with individual-based studies (e.g. radiotrack-
ing; Mucha & Mackereth 2008) or with appropriate
analyses to distinguish the fish morphs (morpholo-
gical, dietary, parasitological and isotope analyses;
Bertrand et al. 2008; Zimmerman et al. 2009). Our
results are strongly influenced by the distribution of
dominant, generalist individuals, and they probably
miss highlighting possible deviations from the usual
brook trout distribution patterns derived from the
feeding specialization of some individuals.

A second major finding of the present study is
that smaller fish are limited to the littoral areas
while large brook trout can also thrive in the
lakes’ center. The multimesh gillnets of the fixed
capture devices were little selective, but very small
brook trout (approx. < 6 cm) were too small to be
wedged/gilled in the nets. For these very small
individuals there are just observational data,
derived from the electrofishing sessions, which
do, however, provide a fairly clear picture of their
distribution. In general, (1) the YOY are confined
in small and shallow areas or in the tributaries,
probably very close to the spawning grounds
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(Biro et al. 2008); (2) small brook trout (approx.
< 15 cm) are strictly littoral (with very few or no
catches in the offshore capture points) as inferred
by Tiberti et al. (2013); (3) larger fish can also
thrive in pelagic areas, although they remain more
abundant in the nearshore habitats. The distribu-
tion of YOY and small brook trout can be influ-
enced by their little dispersion from the spawning
ground, or by the predation risk confining small
fish in littoral antipredatory refugia (e.g. rock shel-
ters and aquatic vegetation). The distribution pat-
terns of large fish could be a consequence of the
displacement of brook trout [e.g. Mucha and
Mackereth (2008) describe some offshore move-
ments in otherwise littoral individuals] or of their
feeding specialization (see Bertrand et al. 2008 and
previous paragraph). The capture maps and the
GLM results (Figures 5 and 6; Table IV) indicate
that the lakes’ geometry can influence the strength
of these general rules, which are clearer in larger
lakes (DRE and LEY) ideally partitioned into lit-
toral and pelagic areas, while in smaller lakes the
edge effect associated with the coastline probably
affects the entire lake surface. Overall, it is clear
that the fish size is a very important predictor of
the habitat use and spatial ecology of lake-dwelling
introduced brook trout.

The capture maps (Figures 5 and 6) indicate that
the distance from the coastline is not the only factor
influencing the catch densities in different parts of
the lakes, and therefore the distribution of brook
trout. Indeed, the capture densities around the cap-
ture points at similar distances from the coastline can
be very different. This could be due to the effects —
or interacting effects — of microhabitats, tempera-
ture, availability of antipredatory refugia, prey avail-
ability or proximity to the spawning ground. For
example, the capture maps (Figures 5 and 6)
strongly suggest that the distribution of brook trout
in lake DRE is influenced by the littoral emergent
vegetation (in the northern and south-western part of
the lake’s perimeter, Figure 1), probably providing
an attractive shelter for small brook trout and a good
feeding ground for both small and large fish.

Besides providing spatial distribution data, the
eradication actions also provided an estimation of
the total biomass and abundance of the brook
trout populations, which are interesting parameters
that have rarely been quantified with precision.
The biomass of the brook trout populations is
related to their abundance and to the TP concen-
tration and altitude, which are related to the
trophic and thermal state of alpine lakes. It is likely
that, among the study lakes, the ones at lower
altitudes and with higher nutrient availability levels
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provide better physical conditions and more abun-
dant trophic resources, which enable brook trout
to reach considerable densities and biomasses.
Opverall, these distribution and biomass data pro-
vide basic autoecological information about one of
the most harmful species used for stocking fishless
alpine lakes and can be useful for everyone inter-
ested in the invasion and restoration ecology of
these habitats, in particular when an eradication
campaign is projected. Describing the distribution
patterns of brook trout and quantifying their abun-
dance and biomass enabled us to make some con-
siderations which could simplify future eradication
attempts in similar habitats. When deciding which
lakes should be conveniently targeted for similar
eradication actions, we suggest choosing small, oli-
gotrophic, cold lakes, without aquatic vegetation,
where the fish population is likely to be less abun-
dant and the probability of a successful eradication
is likely higher. Although very abundant popula-
tions (e.g. lake DRE) from relatively large lakes
(e.g. lake LEY) can be successfully eradicated as
well, in these cases it is necessary to put in place
remarkable capture efforts; the data provided in
the present study can help conservation authorities
to intervene in the most cost-effective manner and
to better predict the efforts needed to recover high-
altitude lakes. When deciding where and how to
place the capture devices in a particular lake, or
where it is convenient to concentrate the eradica-
tion efforts, we suggest taking into account that:
(1) as suggested by Knapp and Matthews (1998),
when using multimesh gillnets, smaller mesh sizes
should be placed nearshore; (2) the littoral area
should be more intensively fished; (3) the use of
large gillnets with an appropriate mesh size is an
efficient alternative to the use of multi-mesh gill-
nets in the pelagic area; (4) the use of low gillnets
with small mesh sizes along the nearshore habitats
could control the density of young fish and avoid
undesirable recruitment spikes; (5) concentrating
the capture devices and efforts in the spawning
areas could prevent reproduction; (6) concentrat-
ing the capture devices and efforts in proximity to
or within particular microhabitats and shelters (e.g.
aquatic vegetation) could be highly efficient.

This is the first time that an eradication campaign
has been used to describe the distribution of lake-
dwelling introduced fish. Compared to other meth-
ods for studying the distribution of fish, this method,
which could be considered an exhaustive sampling of
the entire fish population using gillnetting techni-
ques (see CEN 2005), is particularly expensive (in
terms of time, personnel and money). However, the

issue of a rational use of resources does not arise in
this case, since the eradication campaign was used as
an opportunistic method to gather ecological data
while pursuing a clear conservation goal, i.e. the
lakes’ restoration. This method has the same appli-
cation limits as the eradication campaigns using gill-
netting as the principal eradication technique. In
particular, it can be used only when the entire fish
community can be eradicated without concern for
native fish. Compared to radiotracking (e.g. Mucha
& Mackereth 2008), the present study does not pro-
vide an individual description of brook trout move-
ments, habitat use and habitat specialization, but it
has the merit to provide a unique picture of the
brook trout distribution, comprising all the popula-
tion, including juveniles, which cannot be tagged.
Compared to hydroacoustic methods (e.g. Lucas &
Baras 2000), the present study failed to describe
brook trout vertical distribution (although this type
of data could be achieved with an appropriate field
data collection), but it overcomes some of the limits
of these methods (e.g. difficulties in the location of
the fish close to the lakes’ surface and bottom, or in
small water bodies such as high-altitude lakes; Lucas
& Baras 2000).
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