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ABSTRACT
Objects of more than three dimensions can be used to model geographic phenomena
that occur in space, time and scale. For instance, a single 4D object can be used to
represent the changes in a 3Dobject’s shape across time or all its optimal representations
at various levels of detail. In this paper, we look at how such higher-dimensional space-
time and space-scale objects can be visualised as projections fromR4 toR3. We present
three projections that we believe are particularly intuitive for this purpose: (i) a simple
‘long axis’ projection that puts 3D objects side by side; (ii) the well-known orthographic
and perspective projections; and (iii) a projection to a 3-sphere (S3) followed by a
stereographic projection to R3, which results in an inwards-outwards fourth axis. Our
focus is in using these projections from R4 to R3, but they are formulated from Rn to
Rn−1 so as to be easily extensible and to incorporate other non-spatial characteristics.
We present a prototype interactive visualiser that applies these projections from 4D to
3D in real-time using the programmable pipeline and compute shaders of the Metal
graphics API.

Subjects Graphics, Scientific Computing and Simulation, Spatial and Geographic Information
Systems
Keywords Projections, Space-time, Space-scale, 4D visualisation, Nd gis

BACKGROUND
Projecting the 3D nature of the world down to two dimensions is one of the most
common problems at the juncture of geographic information and computer graphics,
whether as the map projections in both paper and digital maps (Snyder, 1987; Grafarend
& You, 2014) or as part of an interactive visualisation of a 3D city model on a computer
screen (Foley & Nielson, 1992; Shreiner et al., 2013). However, geographic information is
not inherently limited to objects of three dimensions. Non-spatial characteristics such as
time (Hägerstrand, 1970; Güting et al., 2000; Hornsby & Egenhofer, 2002; Kraak, 2003) and
scale (Meijers, 2011a) are often conceived and modelled as additional dimensions, and
objects of three or more dimensions can be used to model objects in 2D or 3D space that
also have changing geometries along these non-spatial characteristics (Van Oosterom &
Stoter, 2010; Arroyo Ohori, 2016). For example, a single 4D object can be used to represent
the changes in a 3D object’s shape across time (Arroyo Ohori, Ledoux & Stoter, 2017) or
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Figure 1 A 4Dmodel of a house at two levels of detail and all the equivalences its composing elements
is a polychoron bounded by: (A) volumes representing the house at the two levels of detail, (B) a pyra-
midal volume representing the window at the higher LOD collapsing to a vertex at the lower LOD, (C)
a pyramidal volume representing the door at the higher LOD collapsing to a vertex at the lower LOD,
and a roof volume bounded by (A) the roof faces of the two LODs, (B) the ridges at the lower LOD col-
lapsing to the tip at the higher LOD and (C) the hips at the higher LOD collapsing to the vertex below
them at the lower LOD. (D) A 3D cross-section of the model obtained at the middle point along the
LOD axis.

all the best representations of a 3D object at various levels of detail (Luebke et al., 2003;
Van Oosterom &Meijers, 2014; Arroyo Ohori et al., 2015a; Arroyo Ohori, Ledoux & Stoter,
2015c).

Objects of more than three dimensions can be however unintuitive (Noll, 1967; Frank,
2014), and visualising them is a challenge. While some operations on a higher-dimensional
object can be achieved by running automated methods (e.g. certain validation tests or
area/volume computations) or by visualising only a chosen 2D or 3D subset (e.g. some of
its bounding faces or a cross-section), sometimes there is no substitute for being able to
view a complete nD object—much like viewing floor or façade plans is often no substitute
for interactively viewing the complete 3D model of a building. By viewing a complete
model, one can see at once the 3D objects embedded in the model at every point in time
or scale as well as the equivalences and topological relationships between their constituting
elements. More directly, it also makes it possible to get an intuitive understanding of the
complexity of a given 4D model.

For instance, in Fig. 1 we show an example of a 4D model representing a house at two
different levels of detail and all the equivalences its composing elements. It forms a valid
manifold 4-cell (Arroyo Ohori, Damiand & Ledoux, 2014), allowing it to be represented
using data structures such as a 4D generalised or combinatorial map.
This paper thus looks at a key aspect that allows higher-dimensional objects to be visualised
interactively, namely how to project higher-dimensional objects down to fewer dimensions.
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While there is previous research on the visualisation of higher-dimensional objects, we aim
to do so in a manner that is reasonably intuitive, implementable and fast. We therefore
discuss some relevant practical concerns, such as how to also display edges and vertices
and how to use compute shaders to achieve good framerates in practice.

In order to do this, we first briefly review the most well-known transformations
(translation, rotation and scale) and the cross-product in nD, which we use as fundamental
operations in order to project objects and to move around the viewer in an nD scene.
Afterwards, we show how to apply three different projections from Rn to Rn−1 and argue
why we believe they are intuitive enough for real-world use. These can be used to project
objects fromR4 toR3, and if necessary, they can be used iteratively in order to bring objects
of any dimension down to 3D or 2D.We thus present: (i) a simple ‘long axis’ projection that
stretches objects along one custom axis while preserving all other coordinates, resulting in
3D objects that are presented side by side; (ii) the orthographic and perspective projections,
which are analogous to those used from 3D to 2D; and (iii) an inwards/outwards projection
to an (n−1)-sphere followed by an stereographic projection to Rn−1, which results in a
new inwards-outwards axis.

We present a prototype that applies these projections from 4D to 3D and then applies a
standard perspective projection down to 2D. We also show that with the help of low-level
graphics APIs, all the required operations can be applied at interactive framerates for the
4D to 3D case. We finish with a discussion of the advantages and disadvantages of this
approach.

Higher-dimensional modelling of space, time and scale
There are a great number of models of geographic information, but most consider space,
time and scale separately. For instance, space can be modelled using primitive instancing
(Foley et al., 1995; Kada, 2007), constructive solid geometry (Requicha & Voelcker, 1977) or
various boundary representation approaches (Muller & Preparata, 1978; Guibas & Stolfi,
1985; Lienhardt, 1994), among others. Time can be modelled on the basis of snapshots
(Armstrong, 1988; Hamre, Mughal & Jacob, 1997), space–time composites (Peucker &
Chrisman, 1975; Chrisman, 1983), events (Worboys, 1992; Peuquet, 1994; Peuquet & Duan,
1995), or a combination of all of these (Abiteboul & Hull, 1987; Worboys, Hearnshaw &
Maguire, 1990; Worboys, 1994; Wachowicz & Healy, 1994). Scale is usually modelled based
on independent datasets at each scale (Buttenfield & DeLotto, 1989; Friis-Christensen &
Jensen, 2003; Meijers, 2011b), although approaches to combine them into single datasets
(Gröger et al., 2012) or to create progressive and continuous representations also exist
(Ballard, 1981; Jones & Abraham, 1986; Günther, 1988; Van Oosterom, 1990; Filho et al.,
1995; Rigaux & Scholl, 1995; Plümer & Gröger, 1997; Van Oosterom, 2005).

As an alternative to the all these methods, it is possible to represent any number of
parametrisable characteristics (e.g. two or three spatial dimensions, time and scale) as
additional dimensions in a geometric sense, modelling them as orthogonal axes such that
real-world 0D–3D entities aremodelled as higher-dimensional objects embedded in higher-
dimensional space. These objects can be consequently stored using higher-dimensional
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1A coordinate system based on projective
geometry and typically used in computer
graphics. An additional coordinate
indicates a scale factor that is applied to
all other coordinates.

data structures and representation schemes Čomić & de Floriani (2012); Arroyo Ohori,
Ledoux & Stoter (2015b). Possible approaches include incidence graphs (Rossignac &
O’Connor, 1989; Masuda, 1993; Sohanpanah, 1989; Hansen & Christensen, 1993), Nef
polyhedra Bieri & Nef (1988), and ordered topological models Brisson (1993); Lienhardt
(1994). This is consistent with the basic tenets of n-dimensional geometry (Descartes, 1637;
Riemann, 1868) and topology (Poincaré, 1895), which means that it is possible to apply a
wide variety of computational geometry and topology methods to these objects.

In a practical sense, 4D topological relationships between 4D objects provide insights
that 3D topological relationships cannot (Arroyo Ohori, Boguslawski & Ledoux, 2013).
Also, McKenzie, Williamson & Hazelton (2001) contends that weather and groundwater
phenomena cannot be adequately studied in less than four dimensions, and Van Oosterom
& Stoter (2010) argue that the integration of space, time and scale into a 5D model for GIS
can be used to ease data maintenance and improve consistency, as algorithms could detect
if the 5D representation of an object is self-consistent and does not conflict with other
objects.

Basic transformations and the cross-product in nD
The basic transformations (translation, scale and rotation) have a straightforward definition
in n dimensions, which can be used to move and zoom around a scene composed of nD
objects. In addition, the n-dimensional cross-product can be used to obtain a new vector
that is orthogonal to a set of other n−1 vectors in Rn. We use these operations as a base
for nD visualisation and are thus described briefly below.

The translation of a set of points in Rn can be easily expressed as a sum with a vector
t = [t0,...,tn], or alternatively as a multiplication with a matrix using homogeneous
coordinates1 in an (n+1)× (n+1) matrix, which is defined as:

T =


1 0 ··· 0 t0
0 1 ··· 0 t1
...
...
. . .

...
...

0 0 ··· 1 tn
0 0 ··· 0 1

.

Scaling is similarly simple. Given a vector s= [s0,s1,...,sn] that defines a scale factor
per axis (which in the simplest case can be the same for all axes), it is possible to define a
matrix to scale an object as:

S=


s0 0 ··· 0
0 s1 ··· 0
...

...
. . .

...

0 0 ··· sn

.
Rotation is somewhat more complex. Rotations in 3D are often conceptualised

intuitively as rotations around the x , y and z axes. However, this view of the matter is
only valid in 3D. In higher dimensions, it is necessary to consider instead rotations parallel
to a given plane (Hollasch, 1991), such that a point that is continuously rotated (without
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changing the rotation direction) will form a circle that is parallel to that plane. This view is
valid in 2D (where there is only one such plane), in 3D (where a plane is orthogonal to the
usually defined axis of rotation) and in any higher dimension. Incidentally, this shows that
the degree of rotational freedom in nD is given by the number of possible combinations of

two axes (which define a plane) on that dimension (Hanson, 1994), i.e.

(
n
2

)
.

Thus, in a 4D coordinate system defined by the axes x , y , z and w , it is possible to define
six 4D rotation matrices, which correspond to the six rotational degrees of freedom in 4D
(Hanson, 1994). These respectively rotate points inR4 parallel to the xy , xz , xw , yz , yw and
zw planes:

Rxy =


cos θ −sin θ 0 0
sin θ cos θ 0 0
0 0 1 0
0 0 0 1

 Rxz =


cos θ 0 −sin θ 0
0 1 0 0

sin θ 0 cos θ 0
0 0 0 1



Rxw =


cos θ 0 0 −sin θ
0 1 0 0
0 0 1 0

sin θ 0 0 cos θ

 Ryz =


1 0 0 0
0 cos θ −sin θ 0
0 sin θ cos θ 0
0 0 0 1



Ryw =


1 0 0 0
0 cos θ 0 −sin θ
0 0 1 0
0 sin θ 0 cos θ

 Rzw =


1 0 0 0
0 1 0 0
0 0 cos θ −sin θ
0 0 sin θ cos θ

.
The n-dimensional cross-product is easy to understand by first considering the lower-

dimensional cases. In 2D, it is possible to obtain a normal vector to a 1D line as defined
by two (different) points p0 and p1, or equivalently a normal vector to a vector from p0

to p1. In 3D, it is possible to obtain a normal vector to a 2D plane as defined by three
(non-collinear) points p0, p1 and p2, or equivalently a normal vector to a pair of vectors
from p0 to p1 and from p0 to p2. Similarly, in nD it is possible to obtain a normal vector
to a (n−1)D subspace—probably easier to picture as an (n−1)-simplex—as defined by n
linearly independent points p0,p1,...,pn−1, or equivalently a normal vector to a set of n−1
vectors from p0 to every other point (i.e., p1,p2,...,pn−1) (Massey, 1983; Elduque, 2004).

Hanson (1994) follows the latter explanation using a set of n−1 vectors all starting from
the first point to give an intuitive definition of the n-dimensional cross-product. Assuming
that a point pi in Rn is defined by a tuple of coordinates denoted as (pi0,p

i
1,...,p

i
n−1) and a

unit vector along the ith dimension is denoted as x̂i, the n-dimensional cross-product EN of
a set of points p0,p1,...,pn−1 can be expressed compactly as the cofactors of the last column
in the following determinant:

EN =

∣∣∣∣∣∣∣∣∣∣
(p10−p

0
0) (p20−p

0
0) ··· (pn−10 ) x̂0

(p11−p
0
1) (p21−p

0
1) ··· (pn−11 ) x̂1

...
...

. . .
...

...

(p1n−1−p
0
n−1) (p2n−1−p

0
n−1) ··· (pn−1n−1) x̂n−1.

∣∣∣∣∣∣∣∣∣∣
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The components of the normal vector EN are thus given by the minors of the unit vectors
x̂0,x̂1,...,x̂n−1. This vector EN–like all other vectors—can be normalised into a unit vector
by dividing it by its norm

(
EN
)
.

Previous work on the visualisation of higher-dimensional objects
There is a reasonably extensive body of work on the visualisation of 4D and nD objects,
although it is still more often used for its creative possibilities (e.g., making nice-looking
graphics) than for practical applications. In literature, visual metaphors of 4D space were
already described in the 1880 sin Flatland: A Romance of Many Dimensions (Abbott, 1884)
and A New Era of Thought (Hinton, 1888). Other books that treat the topic intuitively
include Beyond the Third Dimension: Geometry, Computer Graphics, and Higher
Dimensions (Banchoff, 1996) and The Visual Guide To Extra Dimensions: Visualizing
The Fourth Dimension, Higher-Dimensional Polytopes, And Curved Hypersurfaces
(McMullen, 2008).

In amore concrete computer graphics context, already in the 1960s,Noll (1967)described
a computer implementations of the 4D to 3D perspective projection and its application in
art (Noll, 1968).

Beshers & Feiner (1988) describe a system that displays animating (i.e. continuously
transformed) 4D objects that are rendered in real-time and use colour intensity to provide
a visual cue for the 4D depth. It is extended to n dimensions by Feiner & Beshers (1990).

Banks (1992) describes a system that manipulates surfaces in 4D space. It describes
interaction techniques and methods to deal with intersections, transparency and the
silhouettes of every surface.

Hanson & Cross (1993) describes a high-speed method to render surfaces in 4D space
with shading using a 4D light and occlusion, while Hanson (1994) describes much of the
mathematics that are necessary for nD visualisation. A more practical implementation is
described in Hanson, Ishkov & Ma (1999).

Chu et al. (2009) describe a system to visualise 2-manifolds and 3-manifolds embedded
in 4D space and illuminated by 4D light sources. Notably, it uses a custom rendering
pipeline that projects tetrahedra in 4D to volumetric images in 3D—analogous to how
triangles in 3D that are usually projected to 2D images.

A different possible approach lies in using meaningful 3D cross-sections of a 4D dataset.
For instance, Kageyama (2016) describes how to visualise 4D objects as a set of hyperplane
slices. Bhaniramka, Wenger & Crawfis (2000) describe how to compute isosurfaces in
dimensions higher than three using an algorithm similar to marching cubes. D’Zmura,
Colantoni & Seyranian (2000) describe a system that displays 3D cross-sections of a 4D
virtual world one at a time.

Similar to the methods described above, Hollasch (1991) gives a simple formulation to
describe the 4D to 3D projections, which is itself based on the 3D to 2D orthographic and
perspective projection methods described by Foley & Nielson (1992). This is the method
that we extend to define n-dimensional versions of these projections and is thus explained
in greater detail below. The mathematical notation is however changed slightly so as to
have a cleaner extension to higher dimensions.
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In order to apply the required transformations, Hollasch (1991) first defines a point
from∈R4 where the viewer (or camera) is located, a point to∈R4 that the viewer directly
points towards, and a set of two vectors

−→
up and −−→over . Based on these variables, he defines a

set of four unit vectors â, b̂, ĉ and d̂ that define the axes of a 4D coordinate system centred
at the from point. These are ensured to be orthogonal by using the 4D cross-product to
compute them, such that:

d̂ =
to− from
‖to− from‖

â=
up×over× d̂
‖up×over× d̂‖

b̂=
over× d̂× â
‖over× d̂× â‖

ĉ = d̂× â× b̂.

Note two aspects in the equations above: (i) that the input vectors
−→
up and −−→over are left

unchanged (i.e., b̂=
−→
up and ĉ =−−→over) if they are already orthogonal to each other and

orthogonal to the vector from from to to (i.e., to− from), and (ii) that the last vector ĉ does
not need to be normalised since the cross-product already returns a unit vector. These
new unit vectors can then be used to define a transformation matrix to transform the 4D
coordinates into a new set of points E (as in eye coordinates) with a coordinate system with
the viewer at its centre and oriented according to the unit vectors. The points are given by:

E =
[
P− from

][
â b̂ ĉ d̂

]
.

For an orthographic projection given E = [e0 e1e2 e3], the first three columns e0, e1
and e2 can be used as-is, while the fourth column e3 defines the orthogonal distance to
the viewer (i.e., the depth). Finally, in order to obtain a perspective projection, he scales
the points inwards in direct proportion to their depth. Starting from E , he computes
E ′= [e ′0 e ′1e

′

2 e ′3] as:

e ′0=
e0

e3 tanϑ/2

e ′1=
e1

e3 tanϑ/2

e ′2=
e2

e3 tanϑ/2

e ′3= e3.

Where ϑ is the viewing angle between x and the line between the from point and every
point as shown in Fig. 2. A similar computation is done for y and z . In E ′, the first three
columns (i.e., e ′0, e

′

1 and e ′2) similarly give the 3D coordinates for a perspective projection
of the 4D points while the fourth column is also the depth of the point.
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Figure 2 The geometry of a 4D perspective projection along the x axis for a point p. By analysing the
depth along the depth axis given by e3, it is possible to see that the coordinates of the point along the x
axis, given by e0, are scaled inwards in order to obtain e ′0 based on the viewing angle ϑ . Note that x̂n−1 is an
arbitrary viewing hyperplane and another value can be used just as well.

METHODOLOGY
Wepresent here three different projections fromRn toRn−1 which can be applied iteratively
to bring objects of any dimension down to 3D for display. We three projections that are
reasonably intuitive in 4D to 3D: a ‘long axis’ projection that puts 3D objects side by side, the
orthographic and perspective projections that work in the same way as their 3D to 2D ana-
logues, and a projection to an (n−1)-sphere followed by a stereographic projection toRn−1.

‘Long axis’ projection
First we aim to replicate the idea behind the example previously shown in Fig. 1—a series
of 3D objects that are shown next to each other, seemingly projected separately with the
correspondences across scale or time shown as long edges (as in Fig. 1) or faces connecting
the 3D objects. Edges would join correspondences between vertices across the models,
while faces would join correspondences between elements of dimension up to one (e.g. a
pair of edges, or an edge and a vertex). Since every 3D object is apparently projected
separately using a perspective projection to 2D, it is thus shown in the same intuitive way
in which a single 3D object is projected down to 2D. The result of this projection is shown
in Fig. 3 for the model previously shown in Figs. 1 and in 4 for a 4D model using 3D space
with time.

Although to the best of our knowledge this projection does not have a well-known name,
it is widely used in explanations of 4D and nD geometry—especially when drawn by hand
or when the intent is to focus on the connectivity between different elements. For instance,
it is usually used in the typical explanation for how to construct a tesseract, i.e., a 4-cube
or the 4D analogue of a 2D square or 3D cube, which is based on drawing two cubes and
connecting the corresponding vertices between the two (Fig. 5). Among other examples
in the scientific literature, this kind of projection can be seen in Fig. 2 in Yau & Srihari
(1983), Fig. 3.4 in Hollasch (1991), Fig. 3 in Banchoff & Cervone (1992), Figs. 1–4 in Arenas
& Pérez-Aguila (2006), Fig. 6 in Grasset-Simon, Damiand & Lienhardt (2006), Fig. 1 in Paul
(2012) and Fig. 16 in Van Oosterom &Meijers (2014).

Conceptually, describing this projection from n to n−1 dimensions, which we hereafter
refer to as a ‘long axis’ projection, is very simple. Considering a set of points P in Rn,
the projected set of points P ′ in Rn−1 is given by taking the coordinates of P for the
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(A) (B) (C)

Figure 3 Amodel of a 4D house similar to the example shown previously in Fig. 1, here including
also a window and a door that are collapsed to a vertex in the 3D object at the lower level of detail. (A)
shows the two 3D objects positioned as in Fig. 1, (B) rotates these models 90◦ so that the front of the house
is on the right, and (C) orients the two 3D objects front to back. Many more interesting views are possible,
but these show the correspondences particularly clearly. Unlike the other model, this one was generated
with 4D coordinates and projected using our prototype that applies the projection described in this sec-
tion.

(A) (B)

Figure 4 We take (A) a simple 3Dmodel of two buildings connected by an elevated corridor, and
model it in 4D such that the two buildings exist during a time interval [−1,1] and the corridor only
exists during [−0.67,0.67], resulting in (B) a 4Dmodel shown here in a ‘long axis’ projection. The two
buildings are shown in blue and green for clarity. Note how this model shows more saturated colours due
to the higher number of faces that overlap in it.

Figure 5 The typical explanation for how to draw the vertices and edges in an i-cube. Starting from a
single vertex representing a point (i.e. a 0-cube), an (i+1)-cube can be created by drawing two i-cubes and
connecting the corresponding vertices of the two. Image by Wikimedia user NerdBoy1392 (retrieved from
https://commons.wikimedia.org/wiki/File:Dimension_levels.svg under a CC BY-SA 3.0 license).
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(D) (E) (F)

(A) (B) (C)

Figure 6 (A–C) The 4D house model and (D–F) the two buildings model projected down to 3D using
an orthographic projection. The different views are obtained by applying different rotations in 4D. The
less and more detailed 3D models can be found by looking at where the door and window are collapsed.

first n− 1 axes and adding to them the last coordinate of P which is spread over all
coordinates according to weights specified in a customisable vector x̂n. For instance, Fig. 3
uses x̂n = [2 0 0], resulting in 3D models that are 2 units displaced for every unit in
which they are apart along the n-th axis. In matrix form, this kind of projection can then
be applied as P ′= P[I x̂n].

Orthographic and perspective projections
Another reasonably intuitive pair of projections are the orthographic and perspective
projections from nD to (n−1)D. These treat all axes similarly and thus make it more
difficult to see the different (n−1)-dimensional models along the n-th axis, but they result
in models that are much less deformed. Also, as shown in the 4D example in Fig. 6, it is
easy to rotate models in such a way that the corresponding features are easily seen.

Based on the description of 4D-to-3D orthographic and perspective projection described
from Hollasch (1991), we here extend the method in order to describe the n-dimensional
to ( n−1)-dimensional case, changing some aspects to give a clearer geometric meaning
for each vector.
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2Visual cues can still be useful in higher
dimensions. See http://eusebeia.dyndns.
org/4d/vis/08-hsr.

Similarly, we start with a point from∈Rn where the viewer is located, a point to∈Rn

that the viewer directly points towards (which can be easily set to the centre or centroid of
the dataset), and a set of n−2 initial vectors−→v 1,...,

−→v n−2 inRn that are not all necessarily
orthogonal but nevertheless are linearly independent from each other and from the vector
to− from. In this setup, the −→v i vectors serve as a base to define the orientation of the
system, much like the traditional

−→
up vector that is used in 3D to 2D projections and the

−−→over vector described previously. From the above mentioned variables and using the nD
cross-product, it is possible to define a new set of orthogonal unit vectors x̂0,...,x̂n−1 that
define the axes x0,...,xn−1 of a coordinate system in Rn as:

x̂n−1=
to− from
‖to− from‖

x̂0=
−→v 1×···×

−→v n−2× x̂n−1
‖
−→v 1×···×

−→v n−2× x̂n−1‖

x̂i=
−→v i+1×···×

−→v n−2× x̂n−1× x̂0×···× x̂i−1
‖
−→v i+1×···×

−→v n−2× x̂n−1× x̂0×···× x̂i−1‖

x̂n−2= x̂n−1× x̂0×···× x̂n−2.

The vector x̂n−1 is the first that needs to be computed and is oriented along the line from
the viewer (from) to the point that it is oriented towards (to). Afterwards, the vectors are
computed in order from x̂0 to x̂n−2 as normalised n-dimensional cross products of n−1
vectors. These contain a mixture of the input vectors −→v 1,...,

−→v n−2 and the computed
unit vectors x̂0,...,x̂n−1, starting from n−2 input vectors and one unit vector for x̂0, and
removing one input vector and adding the previously computed unit vector for the next x̂i
vector. Note that if−→v 1,...,

−→v n−2 and x̂n−1 are all orthogonal to each other, ∀0< i< n−1,
x̂i is simply a normalised −→v i.

Like in the previous case, the vectors x̂0,...,x̂n−1 can then be used to transform anm×n
matrix of m nD points in world coordinates P into an m×n matrix of mnD points in eye
coordinates E by applying the following transformation:

E =
[
P− from

][
x̂0 ··· x̂n−1

]
.

As before, if E has rows of the form [e0 ··· en−1] representing points, e0,...,en−2
are directly usable as the coordinates in Rn−1 of the projected point in an n-dimensional
to (n−1)-dimensional orthographic projection, while en−1 represents the depth, i.e. the
distance between the point and the projection (n− 1)-dimensional subspace, which
can be used for visual cues2 . The coordinates along e0,...,en−2 could be made to fit
within a certain bounding box by computing their extent along each axis, then scaling
appropriately using the extent that is largest in proportion to the extent of the bounding
box’s corresponding axis.

For an n-dimensional to (n−1)-dimensional perspective projection, it is only necessary
to compute the distance between a point and the viewer along every axis by taking into
account the viewing angle ϑ between x̂n−1 and the line between the to point and every point.
Intuitively, this means that if an object is n times farther than another identical object, it
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Figure 7 The geometry of an nD perspective projection for a point p. By analysing each axis x̂i ( ∀0 ≤
i < n− 1) independently together with the final axis x̂n−1, it is possible to see that the coordinates of the
point along that axis, given by ei, are scaled inwards based on the viewing angle ϑ .

(A) (B)

Figure 8 A polyhedron and a polychoron in Jenn 3D: (A) a cube and (B) a 24-cell.

is depicted n times smaller, or 1
n of its size. This situation is shown in Fig. 7 and results in

new e ′0,...,e
′

n−2 coordinates that are shifted inwards. The coordinates are computed as:

e ′i =
ei

en−1 tanϑ/2
, for 0≤ i≤ n−2.

The (n−1)-dimensional coordinates generated by this process can then be recursively
projected down to progressively lower dimensions using this method. The objects
represented by these coordinates can also be discretised into images of any dimension. For
instance, Hanson (1994) describes how to perform many of the operations that would be
required, such as dimension-independent clipping tests and ray-tracing methods.

Stereographic projection
A final projection possibility is to apply a stereographic projection from Rn to Rn−1, which
for us was partly inspired by Jenn 3D (http://www.math.cmu.edu/~fho/jenn/) (Fig. 8).
This program visualises polyhedra and polychora embedded in R4 by first projecting them
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3Intuitively, an unbounded volume that
wraps around itself, much like a 2-sphere
can be seen as an unbounded surface that
wraps around itself.

inwards/outwards to the volume of a 3-sphere3 and then projecting them stereographically
to R3, resulting in curved edges, faces and volumes.

In a dimension-independent form, this type of projection can be easily done by
considering the angles ϑ0,...,ϑn−2 in an n-dimensional spherical coordinate system.
Steeb (2011, §12.2) formulates such a system as:

r =
√
x20+···+x

2
n−1

ϑi= cos−1

 xi√
r2−

∑i−1
j=0x

2
j

, for 0≤ i< n−2

ϑn−2= tan−1
(
xn−1
xn−2

)
.

It is worth to note that the radius r of such a coordinate system is a measure of the depth
with respect to the projection (n−1)-sphere Sn−1 and can be used similarly to the previous
projection examples. The points can then be converted back into points on the surface of
an (n−1)-sphere of radius 1 by making r = 1 and applying the inverse transformation.
Steeb (2011, §12.2) formulates it as:

xi= r cos ϑi
i−1∏
j=0

sin ϑj, for 0≤ i< n−2

xn−1= r
n−2∏
j=0

sin ϑj .

The next step, a stereographic projection, is also easy to apply in higher dimensions,
mapping an (n+ 1)-dimensional point x = (x0,...,xn) on an n-sphere Sn to an n-
dimensional point x ′= (x0,...,xn−1) in the n-dimensional Euclidean space Rn. Chisholm
(2000) formulates this projection as:

x ′i =
xi

xn−1
, for 0≤ i< n.

The stereographic projection from nD to (n−1)D is particularly intuitive because it
results in the n-th axis being converted into an inwards-outwards axis. As shown in Fig. 9,
when it is applied to scale, this results in models that decrease or increase in detail as one
moves inwards or outwards. The case with time is similar: as one moves inwards/outwards,
it is easy to see the state of a model at a time before/after.

RESULTS
We have implemented a small prototype for an interactive viewer of arbitrary 4D objects
that performs the three projections previously described. It was used to generate Figs. 3, 6
and 9, which were obtained by moving around the scene, zooming in/out and capturing
screenshots using the software.

The prototype was implemented using part of the codebase of azul
(https://github.com/tudelft3d/azul) and is written in a combination of Swift 3 and

Arroyo Ohori et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.123 13/22

https://peerj.com
https://github.com/tudelft3d/azul
http://dx.doi.org/10.7717/peerj-cs.123


(A) (B)

Figure 9 (A) The 4D house model and (B) the two buildings model projected first inwards/outwards
to the closest point on the 3-sphere S3 and then stereographically toR3. The round surfaces are ob-
tained by first refining every face in the 4D models.

C++11 using Metal—a low-level and low-overhead graphics API—under macOS 10.12
(https://developer.apple.com/metal/). By using Metal, we are able to project and display
objects with several thousand polygons with minimal visual lag on a standard computer. Its
source code is available under the GPLv3 licence at https://github.com/kenohori/azul4d.

We take advantage of the fact that the Metal Shading Language—as well as most other
linear algebra libraries intended for computer graphics—has appropriate data structures
for 4D geometries and linear algebra operations with vectors and matrices of size up to
four. While these are normally intended for use with homogeneous coordinates in 3D
space, they can be used to do various operations in 4D space with minor modifications and
by reimplementing some operations.

Unfortunately, this programming trick also means that extending the current prototype
to dimensions higher than four requires additional work and rather cumbersome
programming. However, implementing these operations in a dimension-independent
way is rather not difficult outside in a more flexible programming environment. For
instance, Fig. 10 shows how a double stereographic projection can be used to reduce the
dimensionality of an object from 5D to 3D. This figure was generated in a separate C++
program which exports its results to an OBJ file. The models were afterwards rendered in
Blender (https://www.blender.org).

In our prototype, we only consider the vertices, edges and faces of the 4D objects, as the
higher-dimensional 3D and 4D primitives—whose 0D, 1D and 2D boundaries are however
shown—would readily obscure each other in any sort of 2D or 3D visualisation (Banks,
1992). Every face of an object is thus stored as a sequence of vertices with coordinates in
R4 and is appended with an RGBA colour attribute with possible transparency. The alpha
value of each face is used see all faces at once, as they would otherwise overlap with each
other on the screen.

The 4D models were manually constructed based on defining their vertices with 4D
coordinates and their faces as successions of vertices. In addition to the 4D house previously
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4This is sufficient for our purposes, but
other applications would need to find three
linearly-independent points or to use a
more computationally expensive method
that finds the best fitting plane for the face.

5An alternative would be to embed these in
4D from the beginning, but it would result
in distorted shapes depending on their
position and orientation due to the extra
degrees of rotational freedom in R4.

(A) (B)

Figure 10 (A) A stereographic projection of a 4-orthoplex and (B) a double stereographic projection of
a 5-orthoplex. The family of orthoplexes contains the analogue shapes of a 2D square or a 3D octahedron.

shown, we built a simpler tesseract for testing. As built, the tesseract consists of 16 vertices
and 24 vertices, while the 4D house consists of 24 vertices and 43 faces. However, we used
the face refining process described below to test our prototype with models with up to a few
thousand faces. Once created, the models were still displayed and manipulated smoothly.

To start, we preprocess a 4D model by triangulating and possibly refining each face,
which makes it possible to display concave faces and to properly see the curved shapes
that are caused by the stereographic projection previously described. For this, we first
compute the plane passing through the first three points of each face4 and project each
point from R4 to a new coordinate system in R2 on the plane. We then triangulate and
refine separately each face in R2 with the help of a few packages of the Computational
Geometry Algorithms Library (CGAL) (http://www.cgal.org), and then we reproject the
results back to the previously computed plane in R4.

We then use a Metal Shading Language compute shader—a technique to perform
general-purpose computing on graphics processing units (GPGPU)—in order to apply
the desired projection from R4 to R3. The three different projections presented previously
are each implemented as a compute shader. By doing so, it is easier to run them as
separate computations outside the graphics pipeline, to then extract the projected R3

vertex coordinates of every face and use them to generate separate representations of
their bounding edges and vertices5 . Using their projected coordinates in R3, the edges
and vertices surrounding each face are thus displayed respectively as possibly refined line
segments and as icosahedral approximations of spheres (i.e., icospheres).

Finally, we use a standard perspective projection in a Metal vertex shader to display
the projected model with all its faces, edges and vertices. We use a couple of tricks in
order to keep the process fast and as parallel as possible: separate threads for each CPU
process (the generation of the vertex and edge geometries and the modification of the
projection matrices according to user interaction) and GPU process (4D-to-3D projection
and 3D-to-2D projection for display), and blending with order-independent transparency
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without depth checks. For complex models, this results in a small lag where the vertices
and edges move slightly after the faces.

In the current prototype, we have implemented a couple functions to interact with the
model: rotations in 4D and translations in 3D. In 4D, the user can rotate the model around
the six possible rotation planes by clicking and dragging while pressing different modifier
keys. In 3D, it is possible to move a model around using 2D scrolling on a touchpad to shift
it left/right/up/down and using pinch gestures to shift it backward/forward (according to
the current view).

DISCUSSION AND CONCLUSIONS
Visualising complete 4D and nD objects projected to 3D and displayed in 2D is often
unintuitive, but it enables analysing higher-dimensional objects in a thorough manner
that cross-sections do not. The three projections we have shown here are nevertheless
reasonably intuitive due to their similarity to common projections from 3D to 2D, the
relatively small distortions in the models and the existence of a clear fourth axis. They also
have a dimension-independent formulation.

There are however many other types of interesting projections that can be defined in
any dimension, such as the equirectangular projection where evenly spaced angles along
a rotation plane can be directly converted into evenly spaced coordinates—in this case
covering 180◦ vertically and 360◦ horizontally. Extending such a projection to nD would
result in an n-orthotope, such as a (filled) rectangle in 2D or a cuboid (i.e., a box) in 3D.

By applying the projections shown in this paper to 4D objects depicting 3D objects that
change in time or scale, it is possible to see at once all correspondences between different
elements of the 3D objects and the topological relationships between them.

Compared to other 4D visualisation techniques, we opt for a rather minimal approach
without lighting and shading. In our application, we believe that this is optimal due to
better performance and because it makes for simpler-looking and more intuitive output. In
this manner, progressively darker shades of a colour are a good visual cue for the number
of faces of the same colour that are visually overlapping at any given point. Since we apply
the projection from 4D to 3D in the GPU, it is not efficient to extract the surfaces again in
order to compute the 3D normals required for lighting in 3D, while lighting in 4D results
in unintuitive visual cues.
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