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Abstract – We considered the analysis of a study for Dorper, Red Maasai and crossbred lambs
born over a period of 6 years at the Diani Estate, Kenya. The study was designed to compare
survival and performance traits of genotypes with differing susceptibilities to helminthiasis. The
available data include information on time to death and repeated measurements of body weight,
packed cell volume (PCV) and faecal egg count (FEC) of the animals. In the paper, we consider
joint modelling of the survival time and the repeated measurements. Such an approach allows to
account for the possible association between the survival and repeated measurement processes.
The advantages and limitations of the joint modelling are discussed and illustrated using the
Diani Estate study data.

repeated measurements / time-to-event / joint modelling / sheep / helminthiasis

1. INTRODUCTION

The data used in this study came from an animal breeding experiment car-
ried out by the International Livestock Research Institute (ILRI) from 1991 to
1996 [1] at the Diani Estate, Kenya Coast. The objective of the experiment was
to study genetic resistance to naturally acquired gastro-intestinal nematodes
in different breeds of sheep, namely the Red Maasai (found in East Africa
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and perceived to be resistant to helminthiasis), Dorper (originating from South
Africa and presumed to be susceptible) and their cross breeds. Three ewe geno-
types (Dorper, Red Maasai, and Red Maasai × Dorper) were mated to Dorper
and Red Maasai rams in single-sire mating groups in a diallel design to gener-
ate two pure-bred and four cross-bred genotypes. The data collected during the
study consisted of repeated measurements of the traits: body weight (BWT),
packed cell volume (PCV) and faecal egg count (FEC), which were measured
periodically over a lamb’s first year of life. Overall, 1745 lambs were born alive
during the six-year period of the study. The repeated measurements, however,
were highly unbalanced since 655 (38%) of the lambs died and 92 (5%) were
stolen before they reached one year of age.

An assessment of the level of genetic resistance has been carried out by
Baker et al. [1, 2], by applying linear mixed models to individual measure-
ments of the traits that were recorded from birth to one year of age. In the
analysis undertaken by these authors, only the information on the animals that
survived to each of the analysed time points was utilised. Nguti et al. [16] used
these same traits in a frailty model for survival, where a correlation was in-
duced among the ages at the time of death for lambs from the same sire. In that
analysis, PCV and FEC were separately included in the model as time-varying
covariates, with either a baseline or time-varying BWT. One handicap of this
latter analysis was that the measured traits were only recorded at monthly time
points, and were thus unknown at the time of death. To overcome this prob-
lem, the nearest preceding measured value of the trait was used to impute for
the value at the time of death, resulting in a piecewise covariate process. In
addition, the analysis did not correct for the possible measurement error in the
recorded values of BWT, PCV and FEC. Such an error can result from both
the analytical error and short-term, biological variability. Failure to account
for the measurement error and for any missing time-varying covariate obser-
vations has been shown to cause the estimated regression parameters in the
Cox proportional hazard (PH) model to be biased towards the null [4, 18].

In the study described, as in many longitudinal studies where individuals
are followed over time, the data can be grouped into three categories: (1) the
elapsed time to an event such as death; (2) repeated measurements of time-
varying variables (like PCV, FEC, BWT); (3) time-varying (e.g., rainfall) or
constant baseline (e.g., sire, breed) covariates that may affect both the re-
peated measurement and the time-to-event processes. When modelling of the
repeated measurements is of interest, one may focus, for instance, on how the
measurements change with time, on how the parameter estimates are influ-
enced by the drop-out of individuals during the course of the study, or on how
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the measurements may be affected by the additional covariates. Looking at
things from a time-to-event process point of view, the interest may focus on,
e.g., how the time to the event is affected by both the repeated measurement
process and the additional covariates. A vast amount of literature exists on the
methods suitable for either approach. To analyse event-time data, parametric
or non-parametric models can be used, but the Cox PH model is often the
method of choice. Repeated measurements are commonly analysed using lin-
ear mixed effects models [13]. These models are attractive for several reasons,
one of them being the ability to easily accommodate unbalanced designs, es-
pecially regarding the timing and frequency of the observations. The models
also allow for an explicit partitioning of variability and estimation of individual
effects. In particular, at least two sources of variability are readily identified:
between- and within-individual variation. The between-individual variability
is often modelled by a vector of correlated, individual random effects.

In the last ten years, many methods, which simultaneously use the infor-
mation available in both the time-to-event and the repeated measurement pro-
cesses, have been proposed in medical research. In particular, several mod-
els have been developed in the area of acquired immunodeficiency syndrome
(AIDS) research [5, 7, 20, 22, 24] and in schizophrenia studies [9, 25]. A de-
tailed review of research work in joint modelling of times to an event and re-
peated measurements is given in the reference [23]. The need for joint models
to model survival and performance traits in animal studies is discussed in [6].

Several advantages of joint modelling of the repeated measurement and the
time-to-event processes have been highlighted in the literature: (1) the repeated
measurements can be extrapolated from the observed measurement times to
the specific event time in a way that utilises the entire measurement history;
(2) the time-to-event is allowed to depend on the ‘true’ but unknown value of
the repeated measurement, thus making an adjustment for the measurement
error, which in turn leads to reduced bias of the parameter estimates of the Cox
model; and (3) the repeated measurement process is adjusted for any loss of
information arising from death or loss of individuals.

The objective of the current paper was to use the joint modelling approach
to model the time to death and the repeated measurements of PCV, BWT and
FEC. For this, the methodology proposed by Henderson et al. [9] was used.
The paper is organised as follows. In Section 2 more details on the motivating
dataset are given. Section 3 provides a brief background on the linear mixed ef-
fects and the Cox PH models, as well as the joint model of Henderson et al. [9].
In Section 4 we adopt the joint model to the analysis of the motivating dataset.
The results are presented in Section 5 and discussed in Section 6.
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2. MOTIVATING DATA

Measurements of PCV, FEC and BWT were taken from lambs from birth to
one year of age in batches of lambs born in each of the years 1991 to 1996.
Packed cell volume and FEC were measured according to the methods reported
by Baker et al. [1]. All lambs were weighed at birth and their BWT, PCV and
FEC were subsequently recorded at one and two months of age. On either
of these latter occasions, when individual lambs had an FEC greater than or
equal to 2000 eggs per gram (epg) and/or a PCV less than or equal to 20%,
they were treated (drenched) with an anthelmintic drug. Lambs with low PCV
were also checked for trypanosome infections. At about three months of age,
when weaned, the lambs were again weighed, and blood and faecal samples
were collected for PCV and FEC, respectively. All lambs were then drenched.
The lambs were then left to graze on pasture, separately from the ewes and
rams. Every week, a monitor group of about 50 lambs, made up of approxi-
mately equal numbers of lambs of each genotype and sex, was sampled and
their mean FEC was recorded. If the mean FEC was over 2000 epg then, dur-
ing two consecutive days, all lambs were weighed, faeces and blood samples
were taken and the lambs were drenched. This procedure was followed until
the lambs reached on average one year of age. It resulted in five drenchings per
year except for 1994 and 1996. In 1994, the year with the highest rainfall, the
lambs were drenched eight times post-weaning, while in 1996 six drenchings
occurred.

3. METHODOLOGY

In this section, we first briefly discuss the methods used in (separate) mod-
elling of repeated measurements and time-to-event data. Then we shortly
review joint modelling.

3.1. Linear mixed effect models for repeated measures

Data sets resulting from follow-up studies are often highly unbalanced, with
subjects having an unequal number of measurements. Moreover, the data have
complex correlation structure due to repeated measurements for each individ-
ual. As a result, such data are not ideally suited to analysis by classical least
squares techniques and linear mixed effects models [13] are now standard tools
for analysing such complex hierarchical data.
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Let Yi j denote the observed jth measurement for the ith individual recorded
at time ti j (i = 1, . . . ,N; j = 1, . . . , ni) and let YT

i = (Yi1, Yi2, . . . , Yini). Then a
linear mixed effects model is written as

Yi = X1iβL + Zisi + εi, (1)

where X1i and Zi are ni × p and ni × q design matrices, respectively, βL is a
p × 1 vector containing the fixed effects, and si is a q × 1 vector of the random
effects. It was assumed that si is N(0,G), i.e., it is normally distributed with
mean zero and variance-covariance matrix G = [gkl], where gkl = Cov(sik, sil).
Furthermore, it was assumed that si is independent from the vector of resid-
ual random errors εi. The residual errors were assumed to be N(0, Ri), with
variance-covariance matrix Ri depending on i only via its size (ni × ni). It
then follows that, marginally, Yi is normally distributed with mean X1iβL and
variance-covariance matrix Vi = ZiGZT

i + Ri. In model (1), Ri captures the
within-individual variability while the between-individual variability is mod-
elled through the random effects si. In particular, if

ZT
i =

(
1 1 ... 1
ti1 ti2 ... tini

)

then model (1) is known as a random intercept and slope model (see refer-
ence [21], p. 25). The underlying assumption of this model is that the mea-
surements increase linearly with time, but for each individual the linear trend
has its own intercept and slope. Furthermore, if Var(εi j) = σ2

e , the result that
the assumed covariance function of the response for this model is

Cov(Yik, Yil) = g11 + g22tiktil + g12(tik + til) + 1(k = l)σ2
e , (2)

where 1(A) is the indicator function of event A. Note that function (2) is
quadratic over time.

Model (1) has been used extensively to analyse repeated measurements aris-
ing from animal breeding programmes [8, 11, 14, 15]. In these applications
more emphasis has been placed on the covariance structure of the random ef-
fects (si, εi) in order to capture different sources of variability, such as those
due to maternal, paternal and environmental effects.

To estimate the parameters of model (1), various approaches can be applied.
One approach is the classical method of maximum likelihood (ML), which re-
sults in generalised least squares (GLS) estimates for βL. This method of esti-
mation, however, leads to underestimation of the variance parameters involved
in G and Ri. As an alternative, the restricted maximum likelihood estimation
(REML) is more commonly used, which remedies this problem [21].
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3.2. The Cox proportional hazard model

Let the ith individual (i = 1, . . . ,N) be observed from a time zero to a failure
time Ti or to a potential right censoring time Ci. Let T o

i = min(Ti,Ci), be the
observed time and δi be the censoring indicator which is equal to 1 if T o

i = Ti

and 0 otherwise. Hence the observed data for the ith subject are (T o
i , δi). The

basic analytical quantities for time-to-event data are the survivor function

S (t) = Pr(T ≥ t),

which is the probability of surviving beyond time t, and the hazard function

λ(t) = lim
∆t→0+

Pr(t ≤ T < t + ∆t|T ≥ t)
∆t

,

which is the instantaneous failure rate after surviving up to time t. In most
time-to-event studies, interest focuses on how the hazard function is affected
by independent covariates. To assess this effect, Cox [3] has proposed the fol-
lowing hazard model:

λi(t) = λ0(t) exp
(
xT

2iβS

)
, (3)

where λ0(t) is the baseline hazard function common to all individuals, x2i is
a p × 1 vector of the observed covariates for the ith individual, and βS is the
corresponding vector of regression parameters to be estimated. Model (3) is
known as the Cox proportional hazard model and has been used extensively
over the last three decades in the analysis of failure-time data.

The Cox model assumes that the analysed time-to-event observations are
independent. Models which allow to account for correlation of the failure times
have been studied extensively (see [10, 12, 19]). With clustered time-to-event
data, a common approach is to add a random multiplicative factor to the Cox
model, shared by the observations from the same cluster. This factor is called
the frailty and accounts for the correlation of the times within a cluster (e.g.,
the correlation of survival times of lambs from the same sire). The resulting
model is called a shared frailty model.

3.3. A joint model for repeated measurements and time-to-event

Let YT
i = (Yi1, Yi2, ..., Yini) be the vector of the repeated measurements for

the ith individual measured at times tT
i = (ti1, . . . , tini ). Let T o

i = min(Ti,Ci)
and δi denote, respectively, the observed time and censoring indicator for
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the ith individual. The observed data available for the ith individual are thus
(T o

i , δi,Yi, ti, X1i, x2i), where X1i denotes the matrix of the observed values of
covariates believed to influence the repeated measurements Yi, while x2i is a
vector of the observed values of covariates believed to affect the time-to-event
process.

Henderson et al. [9] have proposed a model for the joint analysis of both
the time-to-event and repeated measurements. They postulate a latent (unob-
served) bivariate Gaussian process Wi(t) = {W1i(t),W2i(t)} such that the re-
peated measurements process depends on W1i(t) and the event time process
depends on W2i(t). In particular, for the repeated measurements process, con-
sider a model of the general form

Yi = µi(ti) +W1i(t i) + ε i, (4)

where εi is an N(0, Ri) error vector such that Ri is a diagonal matrix and
Var(εi j)=σ2

e . Note that in (4), we use µi(ti) = (µi(ti1), . . . , µi(tini ))
T and

W1i(ti) = (W1i(ti1), . . . ,W1i(tini ))
T as shorthand notation. Furthermore, µi(ti)

is the systematic component, which can be described by a linear model, e.g.,
µi(t i) = X1iβL. As a basic example for the latent process W1i(t), Henderson
et al. [9] consider

W1i(t) = U1i + U2it, (5)

where (U1i,U2i) is a bivariate normal random vector with zero mean and
variance-covariance

G1 =

(
σ2

1 σ12

σ12 σ
2
2

)
.

One can observe that µi(t) in model (4) corresponds to X1iβL in model (1),
while W1i(t) corresponds to Zisi, with si ≡ (U1i,U2i)T .

On the contrary, the time-to-event is modelled through a Cox proportional
hazard model

λi(t) = λ0(t) exp
{
xT

2iβS +W2i(t)
}
. (6)

It is assumed that the repeated measurement and time-to-event processes are
conditionally independent given Wi(t). However, in order to induce association
between the two processes, W2i(t) is taken to be related to particular compo-
nents of W1i(t). This is achieved via the general equation

W2i(t) = γ1U1i + γ2U2i + γ3W1i(t). (7)

For example, a joint model with W2i(t) = γ1U1i + γ2U2i, would allow both the
random intercept U1i and slope U2i, involved in (5), to affect the risk of the
event.
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The parameters of the models for the repeated measurement process and the
time-to-event process are estimated jointly by maximising the observed joint
likelihood of the data, as described in the references [23, 24].

4. APPLICATION

We now describe the application of the joint model described in the previ-
ous section to the data introduced in Section 2. Separate analyses of the re-
peated measurements of PCV, FEC and BWT were performed. Survival times
of lambs that survived beyond one year, or those of lambs that were stolen,
were censored at one year and at the last recorded observation, respectively.

Nguti et al. [16] reported an average lamb mortality of 19% in the pre-
weaning period and 31% in the post-weaning period. The age at death during
the post-weaning period ranged from 3 to 12 months (median 6.4 months). The
number of repeated measurements recorded from weaning ranged from 1 to 8
(median 6) per lamb with 1994 having the most post-weaning measurements.
Variable patterns of each trait were observed over the one year as well as across
the six years. For example, Figure 1 shows the scatter plot of the measurements
recorded from one to 12 months for PCV. In the plot, individual profiles for a
randomly selected sample of 15 lambs are highlighted. Although all animals
were weighed and sampled on the same day, the ages varied as a result of the
lambs being born within a period of about 20−40 days.

In the joint models with either PCV, BWT or FEC as repeated measure-
ments, the fixed effects of genotype (6 levels), year of birth (6 levels) and sex
(2 levels) were included in the repeated measurements component of the joint
model. As suggested by Figure 1, PCV was assumed to be curvilinear over
time. This curvilinear trend over time was also assumed for FEC and BWT
(figures not shown). The age of dam (5 levels) was considered as a baseline
covariate for the time-to-event component only, but not for the repeated mea-
surements, where it was not found to be significant.

Consequently, we can define βT
L = [µ,βT

0 ], where βT
0 =

[α1, α2, α3, α4, α5, ς1, ς2, ς3, ς4, ς5, 
1], αm (m = 1, . . . , 5) are the binary
indicators capturing the breed effects, ςk (k = 1, . . . , 5) are the indicators for
year of birth effects and 
l is the binary indicator for males. As a result, the
repeated measurements model can be written as

Yi = X1iβL + η1 ti + η2 t∗i +W1i(ti) + ε i, (8)

where X1i is the ni × 12 design matrix corresponding to βL, (η1, η2) are the pa-
rameters associated with the time trend, t∗Ti = (t2

i1, . . . , t
2
ini

) is the vector of the
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Figure 1. PCV measurements for the years 1991 to 1996. Bold vertical line indicates when the lambs were weaned.
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quadratic times, and W1i(ti) = (W1i(ti1), . . . ,W1i(tini ))
T . Let βT = (βT

L , η1, η2),
and X1i(ti) = (X1i | ti | t∗i ) be the ni × 14 design matrix corresponding to β.
Model (8) can then be re-written as

Yi = X1i(ti)β +W1i(ti) + ε i. (9)

To specify the survival component of the joint model, let βT
S =

[βT
0 , a1, a2, a3, a4], where ar (r = 1, . . . , 4) are the binary indicators coding

the dam age groups (with levels: ≤ 2 years, 3, 4, 5 and ≥ 6 years). The model
for survival time is then given by

λi(t) = λ0(t) exp
{
xT

2iβS +W2i(t)
}
, (10)

where x2i is the ni × 15 design matrix associated with βS .
For all three traits the following settings for W1i and W2i were considered:

(S1) W1i(t) = U1i, W2i = 0;
(S2) W1i(t) = U1i + U2it, W2i = 0;
(S3) W1i(t) = U1i, W2i = γW1i;
(S4) W1i(t) = U1i + U2it, W2i = γ1U1i + γ2U2i + γ3W1i(t).

Settings (S1) and (S2) assume independence between the repeated mea-
surement and survival processes. Settings (S3) and (S4) correspond to (S1)
and (S2), respectively, with respect to the structure of W1i(t), but allow for
dependence between the processes (joint models).

To obtain parameter estimates for the fixed effects, variance components and
the association parameters of the joint models (S3) and (S4) specified above, a
programme was written in SAS©. Estimates from either setting (S1) and (S2)
were computed using PROC MIXED (for repeated measurements) and PROC
PHREG (for survival time) in SAS©.

Estimates of the standard errors for all parameter estimates in the joint mod-
els were obtained by using the jackknife method. This was achieved by leav-
ing out the observations for lambs from the same sire and then re-fitting the
model to the remaining observations. Classically, jackknife provides reliable
estimates of the standard errors if the observations omitted are independent
from those that are left in. When observations for lambs from the same sire are
left out, so is the genetic component of these lambs. This genetic component is
assumed here to provide more individual contribution to the lamb characteris-
tics (e.g. survival, BWT) than the common environmental components, which
are shared by lambs born in the same year. This is supported by the findings in
reference [2]. These authors show that for the analysed data set, the differences
observed in heritability estimates of PCV and FEC for Dorper- compared with
Red Maasai-sired lambs were more likely due to the differences in genetic
variance rather than in environmental variability.
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5. RESULTS

In this section the results of the fitted models for PCV, BWT and FEC for
settings (S1)–(S2) are reported. For each trait the results of the joint model are
compared with those of the corresponding independence model for both the
repeated measurements and survival estimates.

5.1. Packed cell volume from one month

Initially, the analysis of the repeated measurements for PCV from one month
until one year of age was considered. When fitting the model corresponding to
setting (S2), a non-positive definite estimate of the variance-covariance ma-
trix G1 (see Sect. 3.3) was obtained. On further investigation, it was discov-
ered that the PCV repeated measurements were negatively correlated, with the
correlation increasing in absolute value over time. This negative serial correla-
tion cannot be captured by a model with a random intercept and random slope,
as specified under setting (S2). In particular, by taking into account the mag-
nitude of the correlation and low variability of the slopes (g22 in Eq. (2)) of
individual profiles, the variance of the random slope is estimated to be less
than or equal to 0, which is obviously an inadmissible value. Therefore, for the
PCV measurements collected from one month to one year of age, the models
for settings (S2) and (S4) could not be fitted. On the contrary, the models for
settings (S1) and (S3), which do not account for the negative correlation, could
be used. The results for these models are given in Table I. Strictly speaking,
one should treat the results with caution since they are based on models with a
possibly misspecified variance-covariance structure.

Setting (S1): Under this setting, which assumes independence between PCV
measurements and survival time, the Dorper (D×D) breed had the lowest mean
PCV from one month to one year of age, which was between 0.1 to 1.9% units
lower than for other genotypes (see Tab. I). This difference increased as the
Red Maasai genotype in the lambs increased, with the Red Maasai having the
highest mean PCV. The linear and quadratic time effects were both significant
(P < 0.001) implying an average non-linear trend in PCV. The trend is as
indicated in Figure 1, which shows a general sharp decline in PCV after one
month in all years except 1996 followed by a slight rise. The lambs born in
1992–1995 had on average lower PCV (0.3 to 3.2%) units than those born in
1991. The mean PCV was the highest in 1996. On average, male lambs had
lower PCV than female lambs.

By exponentiating the estimates given in the ‘Survival model - S1’ col-
umn in Table I, one can see that, as compared to the Dorper, the relative
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Table I. Estimates from settings S1 (W1i(t) = U1i, W2i(t) = 0) and S3 (W1i(t) = U1i,
W2i(t) = γW1i(t)) for repeated measurements of PCV(%) from one month to 12 months
and survival.

Repeated measurements model Survival model
S1 S3 S1 S3

est s.e. est s.e. est s.e. est s.e.
Fixed effects
Intercept 31.730 0.238 31.457 0.394 - - - -
time(months) –2.856 0.052 –2.866 0.119 - - - -
time*time 0.217 0.005 0.217 0.011 - - - -
Genotype
DxD ref ref ref ref
Dx(DxR) 0.132 0.231 0.237 0.281 –0.476 0.121 –0.514 0.136
DxR 0.355 0.332 0.449 0.392 –0.569 0.172 –0.583 0.209
RxD 1.406 0.260 1.603 0.381 –0.872 0.169 –0.945 0.197
Rx(RxD) 1.668 0.224 1.935 0.313 –1.341 0.141 –1.390 0.184
RxR 1.937 0.279 2.230 0.356 –1.342 0.177 –1.407 0.226
Year of birth
1991 ref ref ref ref
1992 –0.412 0.222 –0.373 0.303 –0.023 0.185 –0.048 0.209
1993 –0.340 0.219 –0.470 0.248 0.921 0.149 0.948 0.157
1994 –2.867 0.252 –3.098 0.270 1.358 0.167 1.361 0.185
1995 –3.178 0.251 –3.384 0.291 1.328 0.165 1.361 0.187
1996 1.097 0.257 1.008 0.306 0.724 0.197 0.769 0.248
Gender
Females ref ref ref ref
Males –0.512 0.138 –0.558 0.156 0.220 0.088 0.232 0.115
Age of dam
≤2 years - - - - ref ref
=3 years - - - - –0.277 0.158 –0.271 0.160
=4 years - - - - –0.544 0.167 –0.505 0.181
=5 years - - - - –0.368 0.159 –0.278 0.182
≥6 years - - - - –0.509 0.168 –0.461 0.150
Variances
σ2

e 25.817 0.398 25.905 0.839 - - - -
σ2

1 3.037 0.283 2.804 0.327 - - - -
Association
γ - - - - - - –0.236 0.020

σ2
e is residual error variance; σ2

1 is the only variance component in matrix G1.
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mortality hazard of the other genotypes ranged from exp(−0.476) = 0.62 to
exp(−1.34) = 0.26. The R × (R × D) and R × R breeds had the lowest, and
similar, mortality. The hazard of the lambs born in the years 1993–1996 was
statistically significantly higher than that of the lambs born in 1991 and ranged
from 2.2 to 4.0. Male lambs had a higher mortality hazard than females while
the hazard ratio decreased with increasing age of the dam.

Setting (S3): This setting corresponds to (S1), but assumes dependence be-
tween PCV measurements and survival time. As compared with (S1) the dif-
ferences in the mean PCV, relative to the Dorper breed, increased slightly for
all other genotypes. For instance, the estimated mean PCV for the non-Dorper
genotypes was 0.2−2.2% units higher than for the Dorper breed (Tab. I). This
increase might be the result of the adjustment of the analysis of the repeated
measurements for the variation in death rates. The estimated time trend param-
eters for the repeated measurements model for the (S1) setting were similar to
those obtained for (S3).

Relative to the mortality hazard for the Dorper breed, the hazard ratio for the
non-Dorper genotypes now ranged between 0.60 to 0.24, as compared to the
(S1) setting (Tab. I). Significant negative estimates (P < 0.001) were obtained
for the association parameters (γ in Tab. I) for the survival model under (S3).
This indicates that the mortality hazard decreased with increasing PCV.

5.2. Packed cell volume from weaning

Since the critical period for assessing genetic resistance to endoparasites
in lambs is between weaning and 12 months of age [1], the analysis of the
PCV repeated measurements for the period from weaning onwards was also
considered. In this analysis, the survival time was redefined by using weaning
as the time of origin. Consequently in this analysis only the animals alive at
the time of weaning were considered. Models under settings (S1) to (S4) were
considered. The results for settings (S1) and (S3) (not shown) were similar to
those reported for the analysis of data from one month of age (Tab. I). However,
unlike the period from one month of age, the time trend had a more moderate
negative slope estimate. This corresponds to Figure 1, which shows a more
gradual decline in PCV after weaning than before. Furthermore, the relative
mortality hazard in the post-weaning period exhibited similar patterns as in
the analysis of data from one month of age, but now the R × (R × D) had the
lowest mortality (exp(−1.641) = 0.19) when compared to the Dorper breed. A
detailed description of the results from (S2) and (S4) (Tab. II) is given below.
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Settings (S2): In the repeated measurements model with both random in-
tercepts and slopes, (Tab. II), similar trends for the fixed effects parameter
estimates were observed as in the simpler, random-intercept-only model. How-
ever the ranges of the estimates were reduced. For example for setting (S1),
the genotype parameter ± s.e. estimates were the following: 0.361 ± 0.287
(D × (D × R)), 0.978 ± 0.412 (D × R), 1.756 ± 0.318 (R × D), 2.405 ± 0.276
(R × (R × D)) and 2.866 ± 0.344 (R × R). On the contrary, for setting (S2)
the corresponding estimates were (see Tab. II): 0.169 ± 0.267 (D × (D × R)),
0.726± 0.387 (D×R), 1.585± 0.290 (R×D), 2.070± 0.254 (R× (R×D)) and
2.586 ± 0.319 (R × R).

The random intercept and slope were negatively correlated (σ12 = −1.82,
see Tab. II). This implies that lambs with a high PCV at weaning had a more
rapid decline in PCV than those with a low PCV. The estimated variance com-
ponent for the random intercept (σ2

1) was 15.89 (s.e. 0.99) compared to 6.47
(s.e. 0.43) in the simpler model (S1) (results not shown). Note, however, that,
according to equation (2), the negative correlation between random intercept
and slope will reduce the total variability under the (S2) setting, making it sim-
ilar to the sum of σ2

1 and σ2
e in the simpler (S1) model. It is also worth noting

that, according to equation (2), under (S2) the covariance between two PCV
measurements depends on time, and can be negative if the correlation between
random intercept and slope is negative. Since it is possible that the correlation
between PCV measurements may change with time and may be negative (see
remarks in Sect. 5.1), this gives more credibility to the results obtained for
(S2) because the model used in an (S1) settting fimposes a constant positive
correlation between PCV measurements.

Setting (S4): As compared with (S1) and (S2) settings, the differences in
the mean PCV for all other genotypes, as compared with the Dorper breed,
increased slightly in the joint models constructed under both (S3) (results not
shown) and (S4) (Tab. II) settings. For instance, for the (S3) setting, the esti-
mated mean PCV from weaning for the non-Dorper genotypes was 0.6−3.4%
units higher than for the Dorper breed. For the (S4) setting (Tab. II), the dif-
ference was between 0.3% and 3.0%. This increase might be attributed to the
adjustment of the analysis of the repeated measurements for the variation in
death rates.

Relative to the mortality hazard for the Dorper breed, the hazard ratio for
the non-Dorper genotypes now ranged from 0.55 to 0.16 for the (S4) setting
(Tab. II). These estimates were lower than the estimates obtained for the cor-
responding (S1) and (S2) survival models. For (S3) setting the mortality haz-
ard for lambs born in 1993–1995 was about five times higher than in 1991
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Table II. Estimates from settings S2 (W1i(t) = U1i+U2it, W2i(t) = 0) and S4 (W1i(t) =
U1i +U2it, W2i(t) = γ1U1i + γ2U2i + γ3W1i(t)) for repeated measurements of PCV(%)
from weaning to 12 months and survival.

Repeated measurements model Survival model
S2 S4 S2 S4

est s.e. est s.e. est s.e. est s.e.
Fixed effects
Intercept 25.817 0.273 25.844 0.444 - - - -
time (months) –1.465 0.052 –1.562 0.081 - - - -
time*time 0.160 0.006 0.164 0.009 - - - -
Genotype
DxD ref - ref - ref - ref -
Dx(DxR) 0.169 0.267 0.333 0.354 –0.492 0.142 –0.594 0.200
DxR 0.726 0.387 0.842 0.489 –0.678 0.200 –0.634 0.284
RxD 1.585 0.290 1.892 0.451 –0.975 0.195 –1.221 0.277
Rx( RxD) 2.070 0.254 2.521 0.404 –1.641 0.176 –1.843 0.257
RxR 2.586 0.319 2.991 0.440 –1.332 0.201 –1.569 0.304
Year of birth
1991 ref - ref - ref - ref -
1992 1.460 0.237 1.392 0.404 0.037 0.228 –0.260 0.340
1993 –0.779 0.239 –1.208 0.358 1.468 0.174 1.678 0.282
1994 –3.685 0.286 –4.311 0.631 1.570 0.203 1.343 0.403
1995 –3.631 0.290 –4.285 0.661 1.533 0.203 1.396 0.471
1996 2.101 0.286 1.998 0.365 0.531 0.268 0.582 0.308
Gender
Females ref - ref - ref - ref -
Males –0.539 0.154 –0.597 0.188 0.300 0.104 0.357 0.170
Age of dam
≤2 years - - - - ref - ref -
=3 years - - - - –0.377 0.177 –0.425 0.184
=4 years - - - - –0.728 0.187 –0.685 0.205
=5 years - - - - –0.549 0.178 –0.453 0.227
≥6 years - - - - –0.810 0.196 –0.676 0.213
Variances
σ2

e 12.901 0.272 12.641 0.401
σ2

1 15.894 0.990 15.380 1.517
σ12 –1.817 0.145 –1.590 0.236
σ2

2 0.276 0.024 0.261 0.028
Association
γ1 - - - - - - –0.273 0.097
γ2 - - - - - - –1.986 0.505
γ3 - - - - - - –0.251 0.087

σ2
e is residual error variance; σ2

1, σ12 and σ2
2 are variance-covariance elements of matrix G1.
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(with parameter ± s.e. estimates as: 1.637±0.209 (1993), 1.640±0.252 (1994),
1.677±0.250 (1995)). For (S4) the ratio was about five for 1993, while for 1994
and 1995 it was about four times, a lower ratio than for (S3). This is supported
by Figure 1. The lambs born in 1994 and 1995 had much lower PCV measure-
ments at weaning than those born in 1991, and PCV has been shown to cor-
relate with survival. However for the former, PCV increased over time while
those for the latter decreased. Thus, the adjustment for the PCV evolution over
time results in a slight decrease in the mortality hazard for 1994–1995. On the
contrary, the lambs born in 1993 and 1991 had almost similar PCV measure-
ments at weaning. The decrease in 1993 over time was, however, much sharper
(larger negative slope) than in 1991. Adjusting for this decrease translates into
a higher mortality hazard for 1993. Finally, higher hazard ratios are observed
for 1994 and 1995 in (S3) than (S4), since the latter model adjusts the risk
only for the overall level of PCV over time (without adjusting for the rate of
change).

Significant negative estimates (P < 0.001) were obtained for all the asso-
ciation parameters: γ̂ = −0.303 ± 0.0203 for setting (S3), and γ1 − γ3 as in
Table II for setting (S4). This indicates that the mortality hazard decreased
with increasing PCV. Thus, after weaning in the (S3) setting, lambs with PCV
measurements higher than the average had a lower mortality hazard than those
with lower PCV measurements. The standard deviation of the distribution of
the random intercepts in the repeated measurements part of the joint model
for the (S3) setting was estimated to be equal to 2.51. Thus, the model pre-
dicts that for a (random) increase of PCV due to an increase of the random
intercept W1i = U1i by one standard deviation, the risk of death decreases by
exp(−γ̂ ∗W1i) = exp(−0.303 ∗ 2.51) = 0.47. For the (S4) model, a large nega-
tive estimate was obtained for γ2(= −1.92), which corresponds to the random
individual slope. Thus, the model indicates that at any time lambs that had a
large decrease in PCV had an increased risk of death.

5.3. Body weight

Measurements of body weight from birth to one year of age were used in
this analysis. The models were fitted using all four settings. The parameter
estimates of the fixed effects were similar for settings (S1)–(S3) and (S2)–(S4).
We thus report only the estimates of the models constructed under settings (S2)
and (S4) which are shown in Table III.
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Table III. Estimates from settings S2 (W1i(t) = U1i+U2it, W2i(t) = 0) and S4 (W1i(t) =
U1i+U2it, W2i(t) = γ1U1i+γ2U2i+γ3W1i(t)) for repeated measurements of BWT(kg)
from birth to 12 months and survival.

Repeated measurements model Survival model
S2 S4 S2 S4

est s.e. est s.e. est s.e. est s.e.
Fixed effects
Intercept 4.662 0.103 4.665 0.146 - - - -
time (months) 2.330 0.016 2.229 0.045 - - - -
time*time –0.101 0.001 –0.101 0.003 - - - -
Gentotype
DxD ref - ref - ref - ref -
Dx(DxR) –0.036 0.103 –0.042 0.109 –0.494 0.108 –0.498 0.130
DxR –0.405 0.150 –0.396 0.159 –0.630 0.157 –0.577 0.165
RxD –0.058 0.117 –0.074 0.131 –0.809 0.149 –0.947 0.194
Rx(RxD) –0.361 0.100 –0.391 0.125 –1.263 0.124 –1.221 0.160
RxR –0.715 0.127 –0.727 0.142 –1.302 0.157 –1.404 0.203
Year of birth
1991 ref - ref - ref - ref -
1992 –0.621 0.102 –0.637 0.160 0.073 0.161 0.158 0.163
1993 0.504 0.100 0.647 0.138 0.763 0.136 0.017 0.219
1994 –1.852 0.120 –1.836 0.140 1.384 0.148 1.330 0.162
1995 –1.238 0.120 –1.167 0.145 1.246 0.149 0.968 0.188
1996 –2.033 0.118 –2.088 0.060 0.763 0.173 1.084 0.325
Gender
Females ref - ref - ref - ref -
Males 0.113 0.064 0.095 0.118 0.202 0.079 0.387 0.097
Age of dam
≤2 years - - - - ref - ref -
=3 years - - - - –0.187 0.144 0.096 0.147
=4 years - - - - –0.490 0.152 0.086 0.162
=5 years - - - - –0.333 0.145 0.291 0.163
≥6 years - - - - –0.433 0.152 0.098 0.148
Variances
σ2

e 2.533 0.038 2.520 0.091 - - - -
σ2

1 0.825 0.058 0.867 0.052 - - - -
σ12 0.179 0.013 0.221 0.017 - - - -
σ2

2 0.070 0.004 0.082 0.007 - - - -
Association
γ1 - - - - - - –0.086 0.389
γ2 - - - - - - –3.285 1.609
γ3 - - - - - - 0.006 0.079

σ2
e is residual error variance; σ2

1, σ12 and σ2
2 are variance-covariance elements of matrix G1.
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Setting (S2): The Dorper (D × D) breed had the highest mean BWT, which
was between 0.04 and 0.72 kg higher than for the other genotypes (Tab. III).
There was a non-linear trend in the change of body weight over time. On aver-
age, the lambs born in 1994–1996 were lighter than those born in 1991. Male
lambs were on average 0.11 kg heavier than the females.

Compared with the Dorper, the relative mortality hazard of the other geno-
types ranged from 0.61 to 0.27, with the Red Maasai (R × R) and R × (R × D)
having the lowest hazard. As for the previous PCV analyses, an increased mor-
tality hazard was noted for the years 1993–1996. Lambs born to ewes ≥ 3 years
of age had lower hazard than those born to younger ewes.

Setting (S4): Adjusting the repeated measurement process for the variation
in death rates only had a slight effect on the parameter estimates of the (S4)
models when compared to setting (S2).

The relative mortality of the genotypes now ranged from 0.61 to 0.24 with
the R×R genotype having the lowest hazard mortality. This result indicates that
despite being lighter in body weight when compared to the other genotypes,
the Red Maasai demonstrated better performance in terms of survival. The age
of the dam effect was non-significant. This could be due to the fact that in this
analysis we accounted for the low body weight of lambs born to young dams,
which biologically may be due to low milk production of the dam in her first
parity.

Negative estimates of the parameters relating the random components of the
repeated measurements model to the survival model were observed (see the
estimates for γ1 − γ3 in Tab. III). In particular, there was a significant nega-
tive association only between random growth rate (γ2 (= −3.28), P < 0.001)
and risk of death. This shows that the animals that had weight profiles with
increasing slope had a reduced risk of death. In a reduced model with γ1 and
γ3 constrained to zero (results not shown), the estimate obtained for the asso-
ciation parameter γ2 was γ̂2 = −3.262 (s.e. = 0.389). The standard deviation
of the random slope in this reduced model was equal to 0.22. Thus for every
increase by one standard deviation, the mortality hazard associated with the
rate of change in BWT was reduced by exp(−3.262 × 0.22) = 0.49.

5.4. Faecal egg count

The repeated measurements for FEC were log-transformed into LFEC =
ln(FEC+25) since the data were highly skewed. Initially, an analysis of the re-
peated measurements from one month to one year of age was considered. As in
the case with PCV, a negative correlation between repeated measurements, that
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increased over time, was observed. This problem precluded the estimation of
any of the settings (S1)–(S4). Consideration of only the LFEC measurements
from weaning onwards did not resolve the problem, since the negative cor-
relation continued to persist among measurements collected towards the end
of the one year period. The problem may be due to strong oscillations of the
individual patterns that were observed in the LFEC measurements from one
month onward, as well as from the time of weaning, that could be linked with
the treatment protocol instigated in the study. A possible solution might be to
extend the random structure (W1i) of the repeated measurements model by in-
cluding a serial correlation component in the model for the repeated measure-
ments process. Owing to the limitation of software availability, this modelling
option was not attempted.

6. DISCUSSION

The data discussed in this paper were previously analysed by Baker et al. [2]
and Nguti et al. [16]. Baker et al. [2] analysed the repeated measurements of
BWT, PCV and FEC without taking into account the survival pattern of the an-
imals, and chose to analyse the data for each time point separately. They con-
firmed the higher resistance (lower FEC) and higher resilience (higher PCV)
of Red Maasai than the Dorpers. Nguti et al. [16], studied the survival of each
genotype and introduced the effects of BWT, PCV and FEC as time-varying
covariates in a shared frailty model, with the frailty defined as a random effect
of sire. Introduction of PCV and FEC as time-varying covariates in that anal-
ysis in models with BWT (time-invariant or time-varying) reduced the magni-
tude of the sire variance, confirming the moderate levels of heritability reported
by Baker et al. [2].

In the analysis presented in the current paper, individual repeated measure-
ments were analysed jointly with the survival process. By doing so, parameter
estimates in both components of the joint model in general increased in abso-
lute order of magnitude, as compared with the models assuming independence
between the two processes. For instance, in the joint model with PCV as the
repeated measurement, the range of the mortality hazard ratios for different
genotypes relative to the Dorper changed from 0.61−0.19 for (S1) and (S2)
models to 0.55−0.16 for (S3) and (S4) models. Thus, the adjustment for the
evolution of PCV resulted in a clearer separation between the Dorpers and the
Red Maasai. On the contrary, adjustment for the death rates widened the ranges
of the parameters reflecting the differences among the various genotypes in
PCV measurements. As shown by Baker et al. [2] the PCV values among the
genotypes were similar at the first sampling at one month, prior to any sign
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of the disease. The subsequent reductions in PCV were inversely correlated
with the levels of FEC, suggesting that the differences in overall mean PCV
values among the genotypes were more likely the result of the different levels
of resistance between the Dorpers and the Red Maasai, rather than any genetic
differences between breeds in their normal PCV values.

In general, repeated measurements such as PCV, BWT or FEC are only
recorded at specific time points. When such variables are used in a proportional
hazards model as time-varying covariates, the standard method is to impute the
missing observations by using the last observed value. This results in a piece-
wise constant profile. This approach has been shown to lead to biased model
parameters [18], with the presence of measurement error in the covariate at-
tenuating the estimates towards zero. On the contrary, in the joint analysis, the
repeated measurements are imputed by the ‘true’ values predicted under the
model for the repeated measurement process. This reduces the attenuation and
can explain the increase in the magnitude of parameter estimates observed for
the joint models. In addition, the joint modelling allows other characteristics of
the repeated measurements pattern, such as the rate of change (slope), to influ-
ence the risk of death. The effects of these characteristics is well demonstrated
in this study when repeated measurements of PCV recorded from weaning
were considered. Including a random slope had a major effect on the post-
weaning risks of death for the years 1993 to 1995 when compared with 1991.

Nguti [17] compares the results from the survival component of the joint
model under setting (S4) for the repeated measurements of PCV (from wean-
ing) and BWT (from birth) together with those for a Cox PH model with
a time-varying covariate for these measurements. Differences in hazard esti-
mates were observed by the two approaches. However, it would be erroneous
to make direct comparisons of the two sets of results since the methodolog-
ical aspects of the two models are different. The survival component of the
joint model can be viewed as a conditional model (conditioned on the random
effects which may be partially confounded with genotype), while a Cox PH
model with a time-dependent covariate can be viewed as a population average
model.

The aforementioned potential of the joint models for a more accurate anal-
ysis of the repeated measurements and survival processes is an attractive fea-
ture of the methodology. However, it might be that the models do not have
the capacity to fit the actual data as well as with the FEC measurements. In
such a case a careful reflection on the source of this lack-of-fit should result
in proposing a change in the structure of the model. For instance, it should
be noted that the post-weaning measurements were obtained at the time lambs
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were diagnosed for treatment based on the observations of the sentinel group
of 50 lambs (see Sect. 2). Treatment will have resulted in decreases in FEC es-
pecially, and also increases in PCV. Thus data collected in between treatments,
when measurements were more likely to have been within normal limits, were
missing. These regular treatments are likely to have influenced the covariance
structure resulting in the observed negative correlations. A similar problem
occurred pre-weaning when individual animals were treated on the basis of
PCV and FEC. It should also be noted here that not all lambs that died did
so due to helminthiasis. Although Nguti [16] found a difference in survival
rate between Dorper and Red Maasai regardless of whether the deaths due to
causes other than helminthiasis were omitted or not, the decreases in PCV and
increases in FEC, that are typical of the onset of helminthiasis, may not have
been reflected in deaths due to other causes. More frequent sampling and use
of the data collected mid-way between treatment interventions may have both
helped in better understanding the patterns of changes in PCV and FEC, thus
overcoming the problem of a negative correlation.

In the application of any statistical method one needs to be aware of the
assumptions made. For example, in the joint models considered in this pa-
per, the models used a bivariate Gaussian process to induce the association
between the repeated measurements and the survival process. This, in turn,
imposes a particular, hierarchical structure (e.g., random intercepts and slopes)
of the model for the repeated measurements process. Such a structure may not
necessarily be adequate for a particular dataset. As already noted, the models
with random intercepts and random slopes were not able to capture the intrin-
sic patterns of FEC induced by the treatment interventions. On the contrary,
they coped better with the BWT profiles from the time of birth. In general,
random intercepts and slopes provide a representation of the dominant part of
the evolution of the profiles, but do not capture a more subtle behaviour (e.g.
short-term oscillations around an average pattern). Such a behaviour might be
captured by using an autocorrelated stochastic process. Henderson et al. [9]
has proposed the use of a non-stationary Gaussian process in their approach.
Unfortunately, due to the lack of appropriate software, this solution is not yet
available in practice.

The joint models applied in this paper did not allow for adjusting of corre-
lations among survival times of lambs from the same sire. For this purpose,
Nguti et al. [16] used frailty models (see Sect. 3.2) with a random sire effect.
In theory, the models formulated by Henderson et al. [9] allow for the inclu-
sion of a frailty term in the time-to-event component of the joint model, but
implementation needs to await the development of appropriate software.
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7. CONCLUSION

Classically, the effect of repeated measurements on the risk of death is as-
sessed by treating the repeated measurement as a time-dependent covariate in
a survival model. Estimates from such an analysis have been shown to be bi-
ased towards zero, thus showing over-estimated hazard ratios. The bias can be
removed by using joint models. This paper illustrates the application of such
models. Accounting for the survival (drop-out) mechanism was shown to affect
the parameter estimates related to the repeated measurement process.
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